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Abstract—The two-user multiple-input single-output (MISO)
broadcast channel with confidential messages (BCCM) is studied
in which the nature of channel state information at the trans-
mitter (CSIT) from each user can be of the form Ii, i = 1, 2
where I1, I2 ∈ {P,D,N}, and the forms P , D and N correspond
to perfect and instantaneous, completely delayed, and no CSIT,
respectively. Thus, the overall CSIT can alternate over time
between 9 possible states corresponding to all possible values
of I1I2, with each state occurring for λI1I2 fraction of the total
duration. The main contribution of this paper is to establish
the secure degrees of freedom (s.d.o.f.) region of the MISO
BCCM with alternating CSIT with the symmetry assumption
λI1I2 = λI2I1 . The results highlight the synergistic benefits of
coding across CSIT states for secrecy and the interplay between
various aspects of channel knowledge and its impact on s.d.o.f.

I. INTRODUCTION

Wireless systems are particularly vulnerable to security
attacks because of the inherent openness of the transmission
medium. With the adoption of multiple-input multiple-output
(MIMO) systems, there has been a significant recent interest
in information theoretic physical layer security, which seeks to
exploit the difference in the wireless channels between differ-
ent users to ensure security. Information theoretic security has
been investigated for a variety of channel models including
fading channels [1]–[3], MIMO wiretap channels [4]–[7], and
broadcast channels with confidential messages [8]–[10].

The focus of this paper is on the secure degrees of freedom
(s.d.o.f.) region of the fading two-user multiple-input single-
output (MISO) broadcast channel with confidential messages
(BCCM), in which the transmitter with two antennas has two
confidential messages, one for each of the single antenna
users (see Fig. 1). The secrecy capacity region of the MISO
broadcast channel for the case of perfect and instantaneous
channel state information (CSI) at all terminals (transmitter
and the receivers) has been characterized in [9], [10]. Using
these results, it follows that for the two-user MISO BCCM,
the sum s.d.o.f. is 2 with perfect and instantaneous channel
state information at the transmitter (CSIT). In practice, the
assumption of perfect and instantaneous CSIT may be too
optimistic as CSIT may be delayed, imprecise or may not
be available at all.

The impact of relaxing such assumptions on the rate (secure
or otherwise) has been widely studied in the literature. With
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perfect CSIT and no secrecy constraints, the sum degrees of
freedom (d.o.f.) for the two-user MISO broadcast channel is 2.
With no CSIT however, reference [11] showed that the d.o.f.
collapses to 1. With delayed (in which the delay in acquiring
CSIT is larger than the channel coherence time as in [12])
CSIT, it is shown in [12] that the sum d.o.f. for the two-user
MISO BC increases to 4

3 .
When security constraints are introduced, the s.d.o.f. is

known for several scenarios of delayed or no CSIT. For the
two-user MISO BCCM with no CSIT, the sum s.d.o.f. is
zero as the two users are statistically equivalent and hence
no secrecy is possible. On the other hand, with completely
outdated CSIT from both users, it has been shown in [13] that
the sum s.d.o.f. increases to 1.

In practice, the nature of CSIT can vary across users. This
observation naturally leads to the setting of heterogeneous (or
hybrid) CSIT which models the variability in the quality/delay
of channel knowledge supplied by different users. To the best
of our knowledge, the complete characterization of the d.o.f. of
all fixed heterogeneous CSIT configurations is only known
for the two-user MISO broadcast channel: see [14], [15] for
state PD for which the optimal sum d.o.f. is shown to be
3/2; and [16] which recently settled the states PN and DN
through a novel converse proof and showed that the optimal
sum d.o.f. is given by 1. Partial results are available for the
three-user MISO BC with hybrid CSIT in [17], [18] but by
and large the problem of heterogeneous CSIT even without
secrecy constraints remains open.

Besides exhibiting heterogeneity across users, the nature
of channel knowledge may also vary over time/frequency.
Such variability can arise either naturally due to the time
variation in tolerable feedback overhead from a user or it
can be artificially induced by deliberately altering the channel
feedback mechanism over time/frequency. This leads naturally
to the setting of alternating CSIT in which multiple CSIT
states arise over time. The alternating CSIT framework was
introduced in [19] where the d.o.f. region was characterized
for the two-user MISO BC.

In this paper, we consider the two-user MISO BCCM with
alternating CSIT with all 9 possible CSIT states: PP, PD,
PN, DP, DD, DN, NP, ND, and NN. We assume that these
states occur for arbitrary fractions of time, except for a mild
condition of symmetry, which is that states I1I2 and I2I1 occur
for equal fractions of the time if I1 6= I2. In our preliminary
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Fig. 1: MISO broadcast channel with confidential messages.

work [20], we considered the problem with only two states,
PD and DP and established the optimal s.d.o.f. region for this
specific problem. The main contribution of the present paper
is the characterization of the optimal s.d.o.f. region for the
general model with all 9 states. We highlight the synergistic
benefits of coding across states for secrecy and the impact of
channel knowledge on security.

II. SYSTEM MODEL

We consider a two-user MISO BCCM, shown in Fig. 1,
where the transmitter Tx, equipped with 2 antennas, wishes to
send independent confidential messages to two single antenna
receivers 1 and 2. The input-output relations at time t are given
by,

Y (t) = H1(t)X(t) +N1(t) (1)
Z(t) = H2(t)X(t) +N2(t), (2)

where Y (t) and Z(t) are the channel outputs of receivers 1
and 2, respectively. The 2 × 1 channel input X(t) is power
constrained as E[||X(t)||2] ≤ P , and N1(t) and N2(t) are
circularly symmetric complex white Gaussian noises with
zero-mean and unit-variance. The 1 × 2 channel vectors
H1(t) and H2(t) of receivers 1 and 2, respectively, are
independent and identically distributed (i.i.d.) with continuous
distributions, and are also i.i.d. over time. We denote H(t) =
{H1(t),H2(t)} as the collective channel vectors at time t and
Hn = {H(1), . . . ,H(n)} as the sequence of channel vectors
up until and including time n.

In practice, the receivers estimate the channel coefficients
and feed them back to the transmitter. At any time t, the re-
ceiver may send any function of all the channel measurements
upto and including time t to the transmitter. As an idealization,
we assume that the CSIT, if available, has infinite precision.

In order to model the delay in CSIT, we assume that at each
time t, there are three possible CSIT states for each user:
• Perfect CSIT (P): This denotes the availability of precise

and instantaneous CSI of a user at the transmitter. Es-
sentially, the transmitter has precise channel knowledge
before the start of the communication.

• Delayed CSIT (D): In this state, the transmitter does not
have the CSI at the beginning of the communication. In
slot t, the receiver may send any function of all the chan-
nel coefficients upto and including time t as CSI to the

transmitter. However, the CSIT becomes available only
after a delay such that the CSI is completely outdated,
that is, independent of the current channel realization.

• No CSIT (N): In this state, there is no CSI of the user
available at the transmitter.

Denote the CSIT of user 1 by I1 and the CSIT of user 2 by
I2. Then,

I1, I2 ∈ {P,D,N} . (3)

Thus, for the two-user MISO broadcast channel, we have 9
CSIT states, namely PP, PD, PN, DP, DD, DN, NP, ND,
and NN. Let λI1I2 be the fraction of the time the state I1I2
occurs. Then,

∑

I1,I2

λI1I2 = 1. (4)

We also assume symmetry: λI1I2 = λI2I1 for every I1, I2.
Specifically,

λPD = λDP (5)
λDN = λND (6)
λPN = λNP . (7)

Further we assume that perfect and global CSI is available at
both receivers.

A secure rate pair (R1, R2) is achievable if there exists a
sequence of codes which satisfy the reliability constraints at
the receivers, namely, Pr

[
Wi 6= Ŵi

]
≤ εn, for i = 1, 2, and

the secrecy constraints, namely,

1

n
I(W1;Z

n,Hn) ≤ εn,
1

n
I(W2;Y

n,Hn) ≤ εn, (8)

where εn → 0 as n→∞. A s.d.o.f. pair (d1, d2) is achievable,
if there exists an achievable rate pair (R1, R2) such that

d1 = lim
P→∞

R1

logP
, d2 = lim

P→∞

R2

logP
. (9)

Given the probability mass function (pmf), λI1I2 , our goal
is to characterize the s.d.o.f. region D(λI1I2).

Before stating our main results, we define the following:

λP , λPP + λPD + λPN (10)

λD , λPD + λDD + λDN (11)

λN , λPN + λDN + λNN . (12)

Using these definitions, it is easy to verify that

λP + λD + λN = 1. (13)

Here, we can interpret these three quantities as following:

• λP : represents the total fraction of time the CSIT of a
user is in the P state.

• λD: represents the total fraction of time the CSIT of a
user is delayed, that is, the state D.

• λN : represents the total fraction of time a user supplies
no CSIT.



III. MAIN RESULT AND DISCUSSION

Theorem 1: The s.d.o.f. region for the two-user MISO
BCCM with alternating CSIT, D(λI1I2), is the set of all non-
negative pairs (d1, d2) satisfying,

d1 ≤ min

(
2 + 2λP − λPP

3
, 1− λNN

)
(14)

d2 ≤ min

(
2 + 2λP − λPP

3
, 1− λNN

)
(15)

3d1 + d2 ≤ 2 + 2λP (16)
d1 + 3d2 ≤ 2 + 2λP (17)
d1 + d2 ≤ 2(λP + λD). (18)

Due to space constraints, the proof of Theorem 1 is omitted
here and is presented in [21]. We briefly present the key ideas
and challenges behind the achievability of the s.d.o.f. region
in Section IV along with a representative example which
illustrates the benefits of alternating CSIT for secrecy.

In the remainder of this section, we present a series of
remarks based on Theorem 1 to highlight several interesting
aspects and consequences of alternating channel knowledge
for secrecy.

Remark 1. [Sum s.d.o.f.: max(d1 + d2)]: From the region
stated in (14)-(18), it is clear that the sum s.d.o.f is given by,

sum s.d.o.f. = min

(
2

(
2 + 2λP − λPP

3

)
, 2(1− λNN ),

2(λP + λD), 1 + λP

)
(19)

We simplify the above expression by noting that the first two
terms in the minimum are inactive due to the inequalities 1+
λP ≤ 2

(
2+2λP−λPP

3

)
, and 2(λP + λD) = 2(1 − λN ) ≤

2(1−λNN ). These inequalities follow directly from (10)-(13).
Using these inequalities, the sum s.d.o.f. expression above is
equivalent to

sum s.d.o.f. = min (2(λP + λD), 1 + λP ) (20)
= min (2(λP + λD), 2λP + λD + λN ) (21)
= 2λP + λD +min(λD, λN ). (22)

Fig. 2 shows the sum s.d.o.f. as a function of λP and λD.

Remark 2. [Same-marginals property]: From (22), we
notice that the marginal probabilities λP , λD and λN are
sufficient to determine the sum s.d.o.f. Thus, for any given
pmf λI1I2 , satisfying the symmetry conditions (5)-(7), there
exists an equivalent alternating CSIT problem having only
three states: PP, DD and NN occurring for λP , λD and λN
fractions of the time respectively, that has the same sum s.d.o.f.
This observation is similar to the case when there is no secrecy
constraint [19]. However unlike in [19], the s.d.o.f. region
does not have the same property as we can see the explicit
dependence of the s.d.o.f. region on λPP and λNN .

Remark 3. [Benefit of delayed CSIT]: From a sum s.d.o.f.
perspective, we see that when λD ≥ λN , the sum s.d.o.f.

Fig. 2: The sum s.d.o.f. as a function of λP and λD.

depends only on λP . Hence, as long as λD ≥ λN holds, the
N states behave as D states in the sense that, if the N states
were enhanced to D states, the sum s.d.o.f. would not increase.
Essentially, the N states can be combined with various D states
and we obtain the same sum s.d.o.f. as if every N state were
replaced by a D state. On the other hand, if λD ≤ λN , the
delayed CSIT is as good as perfect CSIT, that is, enhancing
every D state to a P state does not increase the sum s.d.o.f.

Remark 4. [Minimum CSIT required for a sum s.d.o.f.
value]: Fig. 3 shows the trade-off between λP and λD for
a given value of sum s.d.o.f. The highlighted corner point
in each curve shows the most efficient point in terms of
CSIT requirement. Any other feasible point either involves
redundant CSIT or unnecessary instantaneous CSIT where
delayed CSIT would have sufficed. For example, following
are the minimum CSIT requirements for various sum s.d.o.f.
values:

sum s.d.o.f. = 2 : (λP , λD)min = (1, 0) (23)

sum s.d.o.f. =
3

2
: (λP , λD)min =

(
1

2
,
1

4

)
(24)

sum s.d.o.f. =
4

3
: (λP , λD)min =

(
1

3
,
1

3

)
(25)

sum s.d.o.f. = 1 : (λP , λD)min =

(
0,

1

2

)
(26)

In general, for a given value of sum s.d.o.f. = s, the minimum
CSIT requirements are given by:

(λP , λD)min =

{(
s− 1, 1− s

2

)
, if 1 ≤ s ≤ 2(

0, s2
)
, if 0 ≤ s ≤ 1

(27)

Remark 5. [Cost of security]: We recall that in the case
with no security [19], the sum d.o.f. is given by,

sum d.o.f. = 2− 2λN
3
− max(λN , 2λD)

3
(28)

Defining loss , (sum d.o.f.) − (sum s.d.o.f.), and using
(22), we see that the loss in d.o.f. that must be incurred to
incorporate secrecy constraints is given by,
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Fig. 3: Trade-off between delayed and perfect CSIT.

loss =





λN , if λN ≥ 2λD
2
3 (2λN − λD), if 2λD ≥ λN ≥ λD
1
3 (λN + λD), if λD ≥ λN

(29)

If we define α = λD/(λD + λN ), we can rewrite (29) as
follows,

loss = (λD + λN )×





(1− α), if α ≤ 1
3(

4
3 − 2α

)
, if 1

2 ≥ α ≥ 1
3

1
3 , if α ≥ 1

2

(30)

We show this loss as a function of α in Fig. 4. Note that
λD+λN is the fraction of the time a user feeds back imperfect
(delayed or none) CSIT. If this fraction is fixed, and λN ≥ λD,
increasing the fraction of delayed CSIT leads to a decrease in
the penalty due to the security constraints. However, when
λD ≥ λN , increasing the fraction of delayed CSIT further
does not reduce the penalty any more.

Remark 6. [Synergistic benefits for secrecy]: It was shown
in [19] that by coding across different states one can achieve
higher sum d.o.f. than by optimal encoding for each state
separately and time sharing. A similar result holds true in
our case as well. We illustrate this with the help of a few
examples.

Example 1. Consider a special case where only states PD
and DP occur, each for half of the time. In our previous work,
[20], we showed that optimal sum s.d.o.f. is 3

2 in this case. The
optimal s.d.o.f. for the PD (or DP) state alone is established
to be 1 in [21]. This can be achieved either by treating the
PD state as a PN state and zero forcing, or by treating PD as
a DD state. Thus, by encoding for each state separately and
time sharing between the PD and DP states, we can achieve
only 1 sum s.d.o.f., whereas joint encoding across the states
achieves sum s.d.o.f. of 3

2 . Thus, we have synergistic benefit
of 50% in this case.

Example 2. Consider another special case with three states:
PD, DP and NN each occurring for one-third of the time.
The optimal sum s.d.o.f. is 4

3 . If we encode for each state
separately and time share between them, we can achieve a
sum s.d.o.f. of 1

3 × 1+ 1
3 × 1+ 1

3 × 0 = 2
3 , since the NN state

does not provide any secrecy. If we encode across the PD and
DP states optimally and then time share with the NN state,
we can achieve 2

3 × 3
2 + 1

3 × 0 = 1 sum s.d.o.f. Thus, in this

α = λD

λD+λN

2
3
(λD + λN)

1
3
(λD + λN)

1
3

1
2 1

loss

λD + λN

0

Fig. 4: Cost of security.

case too, we get synergistic benefit by coding across all the
states together.

Example 3. Now, assume we have the following three states:
PN, NP and DD each occurring for one-third of the time. The
optimal sum s.d.o.f. for this case is 4

3 . By separately encoding
for each state and time sharing, we can achieve 1

3×1+ 1
3×1+

1
3×1 = 1 sum s.d.o.f. Note that the optimal s.d.o.f. for PN and
NP states, each occurring for half of the time, is 1. Thus, by
optimal encoding for PN and NP together and time sharing
with the DD state also yields sum s.d.o.f. of 1. Therefore,
there is synergistic benefit to be gained by coding across all
the states together in this case too.

Remark 7. [Lack of synergistic benefits]: There are some
situations where joint encoding across alternating states yields
no benefit in terms of the s.d.o.f. region. For example, consider
a case with only two states, PN and NP, each occurring for
half of the time. The optimal sum s.d.o.f. for the PN state
alone is 1, which is achieved by zero forcing. The optimal
sum s.d.o.f. of both PN and NP states together is also 1; thus
encoding for each state separately is optimal in this case. This
result is perhaps surprising, since in the case with no security,
we do get synergistic benefits of joint encoding across the PN
and NP states, [19]. The optimal sum d.o.f. with joint encoding
is 3

2 , while that for each state alone is 1.

IV. ACHIEVABILITY

The proof of the achievability of the s.d.o.f. region has two
steps: (1) We first identify and develop several key constituent
schemes. A summary of these constituent schemes is shown
in Table I. (2) These schemes are then combined carefully by
time sharing depending on the fractions of the different states.

Notation for Table I: A particular sum s.d.o.f. value can
be achieved in various ways through alternation between
different possible sets of CSIT states. To this end, we use
the following notation: if there are r schemes achieving a
particular sum s.d.o.f. value, we denote these schemes as:
Ssum s.d.o.f.

1 , Ssum s.d.o.f.
2 , . . . , Ssum s.d.o.f.

r . For example, in Table I,
for achieving the sum s.d.o.f. value of 1, we present r = 3
distinct schemes and these are denoted as S1

1 , S
1
2 and S1

3 .
Due to space constraints, we are unable to present all the

schemes here; the complete proofs are provided in [21]. As
a representative example, here we elaborate on one of the
schemes, S4/3

1 for the three states (PD,DP,NN).



Summary of Constituent Schemes (CS)
Sum s.d.o.f. CS Notation CSIT States Fractions (d1, d2)

2 S2 PP 1 (1, 1)

3/2 S
3/2
1 PD, DP

(
1
2
, 1
2

) (
3
4
, 3
4

)

S
3/2
2 PD, DP, PN,NP

(
1
4
, 1
4
, 1
4
, 1
4

) (
3
4
, 3
4

)

4/3 S
4/3
1 PD,DP,NN

(
1
3
, 1
3
, 1
3

) (
2
3
, 2
3

)

S
4/3
2 PN,NP,DD

(
1
3
, 1
3
, 1
3

) (
2
3
, 2
3

)

1
S1
1 DD 1

(
1
2
, 1
2

)

S1
2 DD,NN

(
1
2
, 1
2

) (
1
2
, 1
2

)

S1
3 DN,ND

(
1
2
, 1
2

) (
1
2
, 1
2

)

2/3
S
2/3
1 DD 1

(
2
3
, 0
)

S
2/3
2 DD,NN

(
2
3
, 1
3

) (
2
3
, 0
)

S
2/3
3 DN,ND,NN

(
1
3
, 1
3
, 1
3

) (
2
3
, 0
)

TABLE I: Constituent schemes.

Remark 8. From [20], it follows that the optimal sum s.d.o.f.
for two states PD and DP is 3/2. On the other hand, for
the NN state itself, the optimal sum s.d.o.f. is 0. Hence, time
sharing between (PD,DP) and NN achieves a sum s.d.o.f. of
2
3 × 3

2 + 1
3 × 0 = 1. The scheme S4/3

1 achieves sum s.d.o.f. of
4/3 and shows that the states PD,DP,NN are inseparable and
joint coding across all of the states is necessary to achieve the
optimal s.d.o.f.

A. Scheme S4/3
1

The scheme S4/3
1 uses the states (PD,DP,NN) for fractions

( 1
3 ,

1
3 ,

1
3 ) to achieve s.d.o.f. pair (d1, d2) = ( 2

3 ,
2
3 ). As shown

in Fig. 5, we send 2 symbols to each user in 3 time slots. Let
(u1, u2) and (v1, v2) be the symbols intended for the first and
second user, respectively. It is as follows:
1) Time t = 1, S(1) = PD: The Tx knows H1(1), it sends:

X(1) = [u1 0]T + qH1(1)
⊥, (31)

where H1(1)H1(1)
⊥ = 0, and q denotes an artificial noise

distributed as CN (0, P ). Here H1(1)
⊥ is a 2×1 beamforming

vector that ensures that the artificial noise q does not create
interference at receiver 1. The receivers’ outputs are:

Y (1) = h11(1)u1 (32)

Z(1) = h21(1)u1 + qH2(1)H1(1)
⊥ ∆
= K. (33)

Thus, receiver 1 has observed u1 while receiver 2 gets a linear
combination of u1 and q, which we denote as K. Due to
delayed CSIT from receiver 2, the transmitter can reconstruct
K in the next channel use and use it for transmission.
2) Time t = 2, S(2) = DP: The Tx knows H2(2),K. It sends

X(2) = [v1 +K v2 +K]
T
+ u2H2(2)

⊥. (34)

The received signals are:

Y (2) =h11(2)v1 + h12(2)v2 + (h11(2) + h12(2))K

+ u2H1(2)H2(2)
⊥ (35)

=L1(v1, v2,K) + u2H1(2)H2(2)
⊥ (36)

Z(2) =h21(2)v1 + h22(2)v2 + (h21(2) + h22(2))K (37)
∆
=L2(v1, v2,K), (38)

where we have defined L1(v1, v2,K) and L2(v1, v2,K) as
independent linear combinations of v1, v2 and K at receivers
1 and 2, respectively.

3) Time t = 3, S(3) = NN: The Tx sends

X(3) = [L1(v1, v2,K) 0]
T (39)

The receivers get:

Y (3) = h11(3)L1(v1, v2,K) (40)
Z(3) = h21(3)L1(v1, v2,K) (41)

At the end of three slots, therefore, the received outputs can
be summarized as:

Y =




u1

α1L1(v1, v2,K) + u2

L1(v1, v2,K)


 , Z =




K
L2(v1, v2,K)
L1(v1, v2,K)




Using Y, receiver 1 can decode (u1, u2), while receiver 2 can
decode (v1, v2) using Z.

Now, we view the three slots described above as a block
and treat the equivalent channel from u = (u1, u2) to (Y,H)
and (Z,H) as a memoryless wiretap channel by ignoring the
CSI of the previous block. We do the same for the channel
from v = (v1, v2) to (Y,H) and (Z,H). Note also that no
information about H is used to create the codebooks for u and
v. Using the proposed scheme, (u1, u2) (resp., (v1, v2)) can
be reconstructed from (Y,H) (resp., (Z,H)) to within a noise
distortion. More formally, following secrecy rate is achievable
for receiver 1 [22], [23]:

R1 =I(u;Y,H)− I(v;Z,H) (42)
=I(u;Y|H)− I(v;Z|H) (43)
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Fig. 5: Achieving sum s.d.o.f. of 4/3 using the scheme S4/3
1 for states (PD,DP,NN).

where we noted that u, v and q and independent of H. Now,

I(u;Y|H) =h(u1) + h(u2)− h(u1, u2|Y,H) (44)
=2 logP + o(logP ), (45)

where (44) follows since uis are independent of each other
and H, and (45) follows since (u1, u2) can be reconstructed
from Y and H within noise distortion. Also, we have,

I(v;Y|H) ≤I(v;L1(v,K)|H) (46)
=h(L1(v,K)|H)− h(L1(v,K)|v,H) (47)
≤ logP − h(K|v,H) + o(logP ) (48)
= logP − h(K) + o(logP ) (49)
= logP − logP + o(logP ) = o(logP ) (50)

where (46) follows from the Markov chain (v1, v2) →
L1(v1, v2,K) → Y. Thus, for the first user, a secrecy rate
of 2 logP − o(logP ) is achievable per block (which itself
contains 3 channel uses). This means that a s.d.o.f. of 2

3 is
achievable for receiver 1. Similarly, a s.d.o.f. of 2

3 is achievable
for the second user, thus showing the achievability of a sum
s.d.o.f. of 4

3 for the system.

V. CONCLUSIONS

We studied the two-user MISO BCCM and characterized
its s.d.o.f. region with alternating CSIT. The achievability of
the s.d.o.f. region is established by first identifying several
constituent schemes and then time-sharing between them. We
highlight the synergistic benefits of joint encoding across mul-
tiple CSIT states over time-sharing between their individually
optimal schemes. The optimal s.d.o.f. region also quantifies the
information theoretic minimal CSIT required from each user to
attain a certain s.d.o.f. value. In addition, we also quantify the
loss in d.o.f., as a function of the overall CSIT quality, which
must be incurred for incorporating confidentiality constraints.
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