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(\]' Abstract— For general connections, the problem of finding net-
work codes and optimizing resources for those codes is intisically
O 'difficult and little is known about its complexity. Most of the
@ .existing solutions rely on very restricted classes of netwk codes
L in terms of the number of flows allowed to be coded together,
and are not entirely distributed. In this paper, we consider a
™~ new method for constructing linear network codes for generh
(\l .connections of continuous flows to minimize the total cost of
edge use based on mixing. We first formulate the minimum-
—=icost network coding design problem. To solve the optimizatin
problem, we propose two equivalent alternative formulatios with
= discrete mixing and continuous mixing, respectively, and evelop
(/) «distributed algorithms to solve them. Our approach allows &irly

() 'general coding across flows and guarantees no greater costattn
=——lany solution without inter-flow network coding.
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minimum-cost solution for convex cost functions of flows pve
edges of the network is a convex optimization problem and
can be solved distributively using convex decompositignlIf
the case of general connections of continuous flows, however
network resource minimization, even when considering only
restricted code constructions, appears to be difficult.

In general, there are two types of coding approaches for
optimizing network use for general connections. The firpety
of coding is mixing, which consists of coding together flows
from sources using the random linear distributed code coaist
tion of [3] (originally proposed for multicast connectignas
though the flows were parts of a common multicast connection.
In this case, no explicit code coefficients are provided and

N | INTRODUGTION decodability is ensured with high probability by the random
> ' coding, given that mixing is properly designed. For example
— ' In the case of general connections (where each destinatior{7], a two-step mixing approach is proposed for network

O can request information from any subset of sources), thesource minimization of general connections, where flow pa
(O ‘problem of finding network codes is intrinsically difficullittle  tition and flow rate optimization are considered separately
(O is known about its complexity and its decidability remaims u [8], we introduce linear network mixing coefficients and et
’'known. In certain special cases, such as multicast commectia new method for constructing linear network codes for ganer
(\J (where destinations share all of their demands), it is saffic connections of integer flows to minimize the total cost ofedg
O 'to satisfy a Ford-Fulkerson type of min-cut max-flow coristra use. The minimum-cost network coding design problem in [8]
L) between all sources to every destination individually. fed-  is a discrete optimization problem, which jointly consisler
1 ticast connections, linear codes are sufficient [1], [2] @d mixing and flow optimization. The second type of coding
S distributed random construction exists [3]. In the literat is an explicit linear code construction, where one provides
= linear codes have been the most widely considered. Howegsecific linear coefficients, to be applied to flows at differe
>5 in general, linear codes over finite fields may not be sufficienodes, over some finite field. In this case, the explicit linea
g for general connections [4]. In addition, even when we ab#rsi code constructions are usually simplified by restrictingnth
simple scalar network codes (with scalar coding coeffislentto be binary, generally in the context of coding flows togethe
the problem of code construction for general connectioms, (i only pairwise. For example, in [9] and [10], simple two-flow
neither multicast nor its variations) remains vexing [SheT combinations are proposed for network resource mininugati
main difficulty lies in canceling the effect of flows that areof general connections.
coded together but not destined for a common destination.  The flow rate optimization in [7], the joint mixing and flow
The problem of code construction becomes more involveghtimization in [8], and the joint two-flow coding and flow
when we seek to limit the use of network links for reasorgptimization in [9], [10] can be solved distributively. Hewer,
of network resource management. In the case of multicalse separation of flow partition and flow rate optimizatiofiih
connections of continuous flows, it is known that finding and the pairwise coding in [9], [10] lead in general to fedisjb
region reduction and network cost increase. In [8], we do not
allow flow splitting and coding over time, leading to coded
symbols flowing through each edge of the network at an integer
rate. The restriction of integer flow rates affects the netwo
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cost reduction. the source rate for sourge whereR* denotes the set of nén-
In this paper, we consider a new method for constructingegative real numbers. L& = {s1,---,sp} denote the set
linear network codes to minimize the total cost of edge usé P = |S| sources. To simplify notation, we assume different
for satisfying general connections of continuous flows. Wéws do not share a common source node and no source node
generalize the linear network mixing coefficients introgdic has any incoming edges. L&t = {¢1,--- ,tr} denote the set
in [8]. In contrast to [8], we allow flow splitting and codingof 7' = | 7| terminals. Each terminal € 7 demands a subset
over time to further reduce network cost. Using mixing witlef P, = |P;| flows P, C P. Assume each flow is requested by
generalized mixing coefficients, we formulate the minimunat least one terminal, i.e;c7P, = P. To simplify notation,
cost network coding design problem, which is an instangee assume no terminal has any outgoing edges.
of mixed discrete-continuous programming. Our mixingdzhs Let B;; € Rt denote the edge capacity for edgej). Let
formulation allows for fairly general coding across flowfiees  z;; € [0, B;;] denote the transmission rate through edgg).
a tradeoff between performance and computational contglexie assume a cost is incurred on an edge when information
via tuning a design parameter controlling the mixing effecis transmitted through the edge. LEt;(z;;) denote the cost
and guarantees no greater cost than any solution withaert infunction incurred on edgéi, j) when the transmission rate
flow network coding. To solve the mixed discrete-continuoubrough edge(s, j) is z;;. AssumeU;;(z;;) is convex, non-
optimization problem, we propose two equivalent altereati decreasing, and twice continuously differentiablezip. We
formulations with discrete mixing and continuous mixingare interested in the problem of finding linear network cgdin
respectively, and develop distributed algorithms to sohem. designs and minimizing the network cdst; ;¢ Uij(zi;) of
Specifically, the distributed algorithm for the discretexmg general connections of continuous flows %or those designs.
formulation is obtained by relating the optimization prernl to
a constraint satisfaction problem (CSP) in discrete ogtation  B. Scalar Time-Invariant Linear Network Coding and Mixing

and applying recent results in the domain [11]. The distdbu  For ease of exposition, in this section, we illustrate linea
algorithm for the continuous mixing formulation is based oRetwork coding and mixing by considering unit flow rate, unit
penalty methods for nonlinear programming [12] in contiasio edge capacity and one (coded) symbol transmission for each
optimization. edge per unit time, and adopt scalar time-invariant natatio
Later, in Sections Ill, V, and 1V, we shall consider general
flow rates and edge capacities and allow flow splitting and

In this section, we first illustrate the network model fogoding over time, which enable multiple (coded) symbols to
general connections of continuous flows. The model is simillow through each edge at a continuous rate.
to that we considered in [8] for integer flows, except that Consider a finite field# with size F' = |F|. In linear
here we consider general flow rates and edge capacities, aatwork coding, a linear combination ovérof the symbols in
allow flow splitting and coding over time. Next, to faciliat {ox € F : k € Z;} from the incoming edge$(k. ) : k € Z;},
the understanding of the formulations proposed in Sectibns i.e., 0ij = > o7, akijori, can be transmitted through the
V, and IV, we also briefly illustrate the formal relationshighared edges, j), where coefficienty,;; € F is referred to
between linear network coding and mixing established in [8ps the local coding coefficient corresponding to edie)

£ and edge(i,j) € &£. On the other hand, the symbol of

A. Network Model edge (i,j) € &£ can be expressed as a linear combination

We consider a directed acyclic network with general coVer #_Of the source symboldo, € F : p € P}, ie,
nections. Letg = (V,&) denote the directed acyclic graphZi — > _pep Cijp0p, Where coefficient;; , € F is referred
where ) denotes the set of = [V| nodes andt denotes the ©© @ the global coding coefficient of flow € 7 z;nd edge
set of E = |€| edges. To simplify notation, we assume therflrJ) € €. Letei; = (ciju,- -+ s Cijp, -+, cij,p) € F7 denote
is only one edge from node € V to nodej € V, denoted the P go¢ﬁ|0|ents corresponding to this linear cc_>mb|nat|0n for
as edge(i,j) € £.1 For each node ¢ V, define the set of edge(z_,j.) € &, referred to as the_global codlr_lg vector of
incoming neighbors to b&; = {j : (j,7) € £} and the set of e_dge(z,j) e £. N(_)te that, we consider scalar time-invariant
outgoing neighbors to b&; = {; : (i,j) € £}. Let I; = |T;] linear network coding. In other wordsy,;; € F andc;;,, € ]-"
and O; = |0;| denote the in degree and out degree of nodie both scalars, andy;; andc;;, do not change over time.

i €V, respectively. Assumé& < D andO; < D for all i € V. When using scalar linear network coding, for each terminal,
Let P — {1,---, P} denote the set Opz:_ 1P| flows to be extraneous flows are allowed to be mixed with the desired flows

on the paths to the terminal, as the extraneous flows can be
cancelled at intermediate nodes or at the terminal.
In many cases, we shall see that the specific values of the

IMultiple edges from node to nodej can be modeled by introducing |OCQ| or gIObaI_ coding Coeff|C|e_nt5 are not req_u!red In our
multiple extra nodes, one on each edge. design. For this purpose, we introduce the mixing concept

II. NETWORK MODEL AND DEFINITIONS

carried by the network. For each flowe P, let s, € V be
its source. We consider continuous flows. It € R* denote



based on local and global mixing coefficients establishd@]in {x;; € {0,1}7 : (i,4) € £} is called feasible if the followiﬁg
Specifically, we consider the local mixing coefficiefit;; € three conditions are satisfied: %) ; = e, for source edge
{0,1} corresponding to edgék,i) € £ and edge(s, j) € €, (sp,j) € €, wheres, € S andp € P; 2) xi; = Viex, BrijXki
which relates to the local coding coefficient,;; € F as for edge(i,j) € £ not outgoing from a source, whefeZ S
follows. 8i;; = 1 indicates that symbat,; of edge(k,i) € £is and Bii; € {0,1}; 3) Vier,zip, = 1 for all p € P, and
allowed to contribute to the linear combination overforming z;:, = 0 for all i € Z, andp ¢ P, wheret € T.

symbol o;; and 3;;; = 0 otherwise. Thus, if3;;; = 0, we Note that Condition 3) in Definition 1 ensures that for each
have a;;; = 0 (note thatay,; can be zero whems,;; = 1). terminal, the extraneous flows are not mixed with the desired
Similarly, we consider the global mixing coefficient; , € flows on the paths to the terminal. In other words, using
{0,1} of flow p € P and edge(i,j) € &, which relates to linear network mixing, only mixing is allowed at intermetia
the global coding coefficient;; , € F as follows.z;;,, = 1 nodes. This is not as general as using linear network coding,
indicates that flowp is allowed to be mixed (coded) with which allows both mixing and canceling (i.e., removing ome o
other flows, i.e., symbob, is allowed to contribute to the multiple flows from a mixing of flows) at intermediate nodes.
linear combination ove# forming symbolo;;, andz;;, = 0 Given a feasible linear network mixing design (specified by
otherwise. Thus, ifr;;, = 0, we havec;;, = 0 (note that {g;;; € {0,1} : (k,%),(:,7) € £}), one way to accomplish
cijp can be zero whem;;, = 1). Then, we introduce the mixing whenF is large is to use random linear network coding

global mixing vectorx;; = (g1, ", Tijp, - ,Tij,p) € [3] (to obtain {ax;; € F : (k,i),(i,j) € £}), as discussed
{0,1}F for edge(i, j) € &, which relates to the global codingin the introduction. Note that, in performing random linear
vectorc;; = (¢ij1, -+ ,Cijp, - +Cij,P) € FP. Similarly, we network coding based Ofikij, aki; can be randomly chosen

consider scalar time-invariant linear network mixing. Tk& in F when ;;; = 1, but a;; must be chosen to be 0 when
Bri; € {0,1} andx;;, € {0,1} are both scalars, ang;; and j3y,;; = 0.

x;j,p do not change over time.
IIl. CONTINUOUSFLOWS WITH MIXING ONLY

Linear Network Coding Linear Network Mixing . . . .. .
. In _thls ;ecuon, we conS|de_r the m.|n|mum—cost scalar time-
->. \ T invariant linear network coding design problem for general
(2] connections of continuous flows with mixing only. Starting
/ from this section, we consider multiple global mixing vesto
'>8 (each may correspond to multiple global coding vectors) for

. . . ) . each edge and allow coded symbols to flow through each edge
Fig. 1: Comparisons between linear network coding and hneglt a continuous rate

network mixing. Given the two global coding vectors on the

left, we can tell that the (red) symbol can be decoded in thhe¢ Design Parameter
first case and cannot be decoded in the second case. Howev
given the two global mixing vectors on the right (same for th?
two cases on the left), it is not sufficient to tell whether thg
(red) symbol can be decoded or not.

SVe consider multiple global mixing vectors for each edge.
his generalizes the linear network mixing coefficientsant
uced in [8]. We refer to the number of global network mixing
vectors for each edge as the mixing parameter, denoted as
L e{l, -+, Lnax}, WhereL,,,x is the maximum number of
Global mixing vectors provide a natural way of speaking ajlobal network mixing vectors necessary for decodabilging
flows as possibly coded or not coded without knowledge of tmeixing (cf. Definition 1), and is given as follows. L3t denote
specific values of the global coding vectors. Intuitiveliplzpl  the set of atoms of the algebra generated{l® : ¢t € T},
mixing vectors can be regarded as a limited representafioni@., Y = {Nic7); : Vi = Py or Yy = P — P} — {0}. In
global coding vectors. Network mixing vectors may not bether words,y gives a set partition of? that represents the
sufficient for telling whether a certain symbol can be decoole flows that can be mixed (cf. Definition 1) over an edge in the
not, as illustrated in Fig. 1. Therefore, using the netwoiking worst case (i.e., all terminals obtaining flows through tame
representation, extraneous flows which are mixed with tleelge). We choosé,..x = |Y|. Note thatl < L.« < P,
desired flows on the paths to each terminal, are not guantedere L,,,, = 1 for the multicast case, i.e?, = P for all
to be cancelled at the terminal. Let denote the vector with ¢ € 7, and L. = P for the unicast case, i.6Ry NP =0
the p-th element being 1 and all the other elements being for all ¢ # ¢’ andt¢,t’ € 7. Fig. 2 illustrates an example of
Let vV denote the “or” operator (logical disjunction). We nowflow partition ) and mixing parametek for the general case.
define the feasibility for scalar linear network mixing. For a given mixing parametdr, we now introduce the global
Definition 1 (Feasibility of Scalar Linear Network Mixing): and local network mixing vectors. For ea¢h= 1,--- L,
For a networkG = (V,€) and a set of flowsP with let x;;(I) = (@;j1(1), -,z p(0), - ,2i;p(1) € {0,1}F
sourcesS and terminalsT, a linear network mixing design denote thé-th global network mixing vector over edgeg j) €



=: Ry, i=sp
0i, =% —R,, i=t i€V, peEP, teT. (12)
0, otherwise
Wy
7
t, t, In the above formulatioR, 4 »(1) = 0 can be interpreted

Fig. 2:lllustration of a feasible solution to Problem®.= {1, 2, 3}, as the rate. O,f de""e””g flowp € 7, to terminalt € 7
S = {s1,80,83}, Ri = Ry = Ry = 1, B;; = 2 for all (i,j) ¢ over edge(i,j) € & using x;;(l), and z;;(l) denotes the
E, T = {t1,ta}, P1 = {1,2} and P, = {1,2,3}. Thus,Y = transmission rate correspondingstg;(!) over edge(i, j) € &,
{{1,2},{3}}, Lmax = [Y| =2 andL € {1,2}. wherel = 1,---, L. Problem 1 is a mixed discrete-continuous
optimization problem and is NP-complete in general. For
notational simplicity, in this paper, we omit the conditioon
E. Let By,;;(I,m) € {0,1} denote the local mixing coeﬁicient{zig 2 (1,5) € &} {Ziq'(l_) p =1L G,j) € &}
corresponding to theth global network mixing vector of edge t/ijp(D) 1= 1.---, L, (i.5) € €,p € Pt € T}, {wigp(l) :
(k,i) € & (i.e., x4 (1)) and them-th global network mixing | = 1=+ L. (i.7) € €,p € P}, and{fy;(l,m) : I,m =

vector of edgdi, j) € € (i.e.,x;;(m)), wherel,m = 1,--- L. 1L (k,i), (i,j) € £} where there is no confusion.
' Remark 1 (Problem 1 witll, = 1 for Multicast): For the
B. Problem Formulation multicast case (i.e.p, = P forallt € 7) and L = 1, the

We would like to find the minimum-cost scalar time-invariangonstraint in (11) does not exist, the constraint in (6) can b
linear network coding design with design parameferc satisfied by choosing;;(1) = z;;, and the constraint in (8)

{1,---, Lmay} for general connections of continuous flowds always satisfied by choosing.;;(1,1) = 1 and choosing
with mixing only. x;5p(1) according to (9) and (10). Therefore, in the multicast
Problem 1 (Continuous Flows with Mixing Only): case, Problem 1 with, = 1 for general connections reduces
to the conventional minimum-cost network coding design
Uz(L) = H;m - Z Uij(zij) problem for the multicast case [6].
{{Z;jj}p{(?ﬁ( {)B}k{j % ’;7(1))}} (i.j)€E Remark 2 (Comparison with Intra-flow CodingiProblem 1
4.0 < 2 < By, (i,)) € & ) (with - any L € {1,---,Lmax}) With an extra constraint

o zijp(1) € {0,1} for all (i,5) € £ andl = 1,---,L
zijp(l) €{0,1}, 1=1,--- L, (i,5) €€, peP (2) %:peetipuiv;\lpe(nz to ; mi}nimum-c(ost)intra-flow coding problem.
Brij(l,m) € {0,1}, I,m=1,--- L, (k,i),(i,j) €E Thus, the minimum network cost of Problem 1 (with any

(3) L € {1,---,Luax}) is no greater than the minimum costs
;- L, (i,j) €& peP, teT forintra-flow coding.

(4) Remark 3 (Comparison with Two-step Mixind)roblem 1

o with L = L. andBy,;(1,m) = 1 instead of (3), is equivalent

Mot <zg), teT, I1=1,--- L, (i,j) €& to the minimum-cost z‘li)w rzalte control problem in the second

PEP: 5) step of the two-step mixing approach in [7]. Thus, the mimmu
network cost of Problem 1 witl, = L., iS no greater than
Zzu <z (i) €€ (©6) the minimum cost of the two-step mixing approach in [7].

Example 1 (lllustration of Linear Network Mixing)\Ve il-
lustrate a feasible mixing design (corresponding to a Bbasi
Z Zf_tk Z ka _ ’ solution) to Problem 1 with, = 2 for the example in Fig. 2.
== P P At “r %L For ease of illustration, in this example, we consider unitrse
i€V, pePL teT (7) rate and do not consider flow splitting and coding over time.
. ’ R For source edges (1,6), (1,4), (2,7), (2,4) and (3,4), chdos
i) < wijp()Bij, 1=1,---, L, (i,j) €&, global mixing vectors as followsx4(!) = x14(1) = (1,0,0),
pE P, te T (8) X24(l) = X27(l) = (0,1,0) and X34(l) = (0,0,1) for all
X5, ;) =ep, l=1,-- L, (5p,5) €E, pEP (9) I = 1,2. In addition, choose the local coding coefficients

(1) — y , as follows: Bi45(1,1) = Paus(1,1) = Bas(1,2) = 1,
Xl] (l) - \/k}EImm:l,--- ,Lﬁkl] (m7 l)xkl(m)7 5145(27 1) _ 5245(2’ 1) _ /8345(2’ 2) _ O 5145(771 ) _
Iit,p(l) =0,1l=1,---,L, i€y, p g P, teT °Note that (2) withj = t, (7) with i = ¢, and (8) withj = ¢ imply

11 VieT, 1=1,-.. ,L.Tit,p(l) = 1 for all p € P¢, i.e., Condition 3) of Definition
(11) 1, wheret € T.



B2a5(m,2) = Bsy5(m, 1) =0 for all m = 1,2, B456(1,1) =1, Zjev DO; = DE, the cardinality of{S;;({,m) : I,m 2
Bi56(2,1) = Pase(1,2) = Base(2,2) = 0, Busr(1,1) = 1,---,L, (k,i),(i,5) € £} is smaller than or equal th?DE.
Bi57(2,2) = 1 and B457(1,2) = Bas7(2,1) = 0. Therefore, Note that by (9) and (10),z;; (1)} can be fully determined by
for edges (4,5), (5,6) and (5,7) not outgoing from a sourc€py;; (1, m)}. Therefore, the cardinality of the discrete variables
the global mixing vectors are given by,s(1) = (1,1,0), {z4;,(0)} and {Bk:;(l,m)} of Problem 1 isL?DE, which
x45(2) = (0,0,1), x56(1) = (1,1,0), x56(2) = (0,0,0), increases ag increases.
x57(1) = (1,1,0) andx57(2) = (0,0,1). On the other hand, Next, we discuss the impact df on the network cost.
flow paths (sets of edge-mixing index paifs, j), ) for which Lemma 2:If Problem 1 is feasible for design paramefer
the rates of delivering flows are one) from the three sourcegen Problem 1 is feasible for design parameltes 1 and
i.e., {((4,4),10) : Z?f7-7p(l) =1, (4,j) e & 1 =1,---,L} for Ur(L+1) <U:(L), whereL =1, -+, Lyyax — 1.
all p € P, andt € T, are illustrated using green, blue and  proof: Given a feasible solution to Problem 1 with design
pink curves in Fig. 2. Accordingly, choose the transmissiofarameterL, by setting variables w.r.t. indek = L + 1 or
rates as followsz;;(1) = 1 and z;;(2) = 0 for all (i,j) = = L+1 to be zero, we can easily construct a feasible solution
(1,6),(1,4),(2,7),(2,4), (3,4), 245(1) = 245(2) = 256(1) = to Problem 1 with design parametes-1. This feasible solution
z57(1) = 257(2) =1, 256(2) = 0, andz;; = 2;;(1) + 2;;(2) for  corresponds to the same network cost as the one with design
all (4,7) € €. parametet.. But the network cost with design paramefet 1

The following lemma shows the existence of a feasible linegan be further optimized by solving Problem 1 with design

network code corresponding to Problem 1. parametet. + 1. Therefore, we can shoW* (L + 1) < U*(L)
Lemma 1:Suppose Problem 1 is feasible. Then, for eaddrall L =1, -+, Lyax — 1. m

feasible solution, there exists a feasible linear netwawkec By Lemma 2, we know that the network cobt'(L) is

with a field sizeF" > T to deliver the desired flows to eachnon-increasing w.r.tZ. This can also be understood from the
terminal. example in Fig. 2. Note that by Condition 3) in Definition 1,
Proof: Please refer to Appendix A. B flow 3 is not allowed to be mixed with flow 1 and flow 2 on their

Note that a feasible linear network code can be obtained frgsaths to terminat,;. WhenL = 1 < L., flow 3 cannot be

a feasible linear network mixing design (a feasible sohutiodelivered over edgét, 5) to terminalt, using feasible mixing.

to Problem 1) using random linear network coding [3], a® other words, Problem 1 witli, = 1 is not feasible (i.e., of

illustrated in Section 1I-B. infinite network cost). However, wheh = 2 = L., flow
Example 2 (lllustration of Linear Network CodingyVe il- 3 can be delivered to termina without mixing with flow 1

lustrate how to obtain a feasible linear network code usirgd flow 2 over edgé4, 5), e.g., using global mixing vectors

random linear network coding, based on the feasible liner nx,;(1) = (1,1,0) andx45(2) = (0,0,1) over edge(4, 5). In

work mixing design illustrated in Example 1. In this exampleother words, Problem 1 witl, = 2 is feasible (i.e., of finite

one local mixing coefficient (global mixing vector) corresls network cost). Thus, we can see the impack.afin the network

to one local coding coefficient (global coding vectdrFor cost shown in Lemma 2.

the source edges, choose the global coding vectors as fllow

cij(1) = xq;(1) for all (i,7) = (1,6),(1,4),(2,7),(2,4),(3,4) V. ALTERNATIVE FORMULATION WITH DISCRETEMIXING

and! = 1,2. For alll,m = 1,---,L and (k,i), (i,j) € &, . . . . L

if Brij(l,m) = 0, chooseay;;(l,m) = 0; if Bii;(l,m) = 1, Problem 1 is a mixed discrete-continuous optimization prob

chooseny; (1,m) uniformly at random from. Therefore, for lem with two main challenges. One is the choice of the

the edges not outgoing from a source, the global coding vect§eWork mixing coefficients (discrete variables), and tiieeo
are given bye;; (1) = >y.c7 L aa;(m. ey (m) for all 1S the choice of the flow rates (continuous variables). Iis thi
ij\\) = 2kez; m=1,- L ¥kij (M L) Chi

(i.5) = (4,5), (5,6), (5.7) andl = 1,--- , L. section, we first propose an equivalent alternative fortira
’ . T of Problem 1 which naturally subdivides Problem 1 according
C. Network Cost and Complexity Tradeoff to these two aspects. Then, we propose a distributed digorit
to solve it.

The design parametdr in Problem 1 determines the com-
plexity and network cost tradeoff. First, we illustrate thgact
of L on the complexity of Problem 1. By (3), we know tha
for given (k,1%),(i,j) € &, the cardinality of{3;;(l,m) : Problem 1 is equivalent to the following problem.
I,m=1,---,L}is L% Sincez( 0; = Zjev 1;0; < Problem 2 (Equivalent Problem of Problem 1):

fA. Alternative Formulation

,j)€E

3Note that when flow splitting or coding over time happens, losal mixing U;(L) = (o1 (IlI)l}helM(L) U;({Iijyp(l)})
coefficient (global mixing vector) may correspond to muéigocal coding P
coefficients (global coding vectors). In this case, a linegtwork code can be . .
designed in a similar way based on the sub-flows and sub-exigaslished in where U ({z5,,(1)}) and M(L) are given by the following

the proof of Lemma 1. two subproblems.



Subproblem 1 (Subproblem of Problem 2: Flow Optimizatiord: more compact form as follows:
For given{z;; (1)}, we have: .
¢f_],p(xlj(l)a {Xkl(m) tm o= 17 U aLa ke Iz}a
= min Uii(zi; ; cm=1,--- ,LkeZ;,j€T

{zi L2 O} FL, (O} (1-;65 i(2i5) {xp;(m) :m j»J })

’ 1, if j &7, (14) holds
st (1.4).6).6).(7).8) TIET
1, if j €7 andp € P;, (14) and (13) hold
1, if j €T andp ¢ P;, (14) and (11) hold
0
l

Uz ({zijp(D)})

(1>

, otherwise

Subproblem 2 (Subproblem of Problem 2: Feasible Mixing):

Find the setM (L) = {{z4;,(1)} : (2),(3),(9), (10), (11), (13)}

of feasible{x;; ,({)}, where (13) is given by: Note that, whenj & T, {xx;(m) :m = 1, L.k € T,,j €

T} = 0 and we ignore it in the cIaus@f]ffp(-). For (13) and
Viez, i=1,.L Titp(l) =1, pE Py, t €T, (13) (11) in cIause;beifp(), we usej as the terminal index instead

of ¢t. It can be seen that the constraints in (10) (i.e., (14)),

(11) and (13) are considered in clausglp(-). In addition, the

Note that for given{z;, ()}, Subproblem 1 is a convex constraint in (9) is copsidered when choosing; (1) = e, for
optimization problem (involving continuous flow rates) an e = 1’_'d" ’%’ (Islp’hj) € £ andp € PS' 'Il')herel;flore,zthe csp
hence has polynomial-time complexity. On the other hand; S as considered all the constraints in Subproblem 2.

problem 2 is a discrete feasibility problem (involving diste We. now construct the clause partition of SL_Jb_probIe_m 2
mixing coefficients) and is NP-complete in general. Therefo SPecifically, the set of clauses variabig,, (1) participates in

Problem 2 is still a mixed discrete-continuous optil”ﬂiZH'[iois as follows:

problem and is NP-complete in general. CHP {gbff’l”} . {gbjkﬂ; e Oj}

B. Distributed Solution l=1,--- L, (i,j) €& peP, igsS.  (16)
In this part, we develop a distributed algorithm to solvgjote that, when J 7 T

I?roblem 2 py splving Subproble_m 1 and Sul:_)problem 2, respe{%ﬁﬁ im=1,--- L keI je T} — § and we ignore it
tively, in a distributed manner. First, we consider Subfeob2. 2l 0 (16

Subproblem 2 can be treated as a CSP and solved distrityutiV8l 2i7.» M (16)- y _
using clause partition and the Communication-Free Legrnin B2sed on the clause partition, a feasibie; ()} € M(L)

(CFL) algorithm from [11]. While CSPs are NP-complete iffC Subproblem 2 can be found distributively using the proba-
general, CFL provides a probabilistic distributed iteratalgo- Pilistic distributed iterative CFL algorithm [11, Algohim 1].
rithm with almost sure convergence in finite time. Specifical SPecifically, for all (i,j) € & p € P andl = 1,.--, L,
{4,(1)} U {Bi; (I m)} can be treated as the variables of thi¥) €ach iteration, each node realizes a Bernoulli random
CSP.{0,1} can be treated as the finite set of the CSP. Frofgfiable selectingr;;, (1), messages ofi;;, (1)} are passed

(10), we have an equivalent constraint purely{on; , ()}, i.e. between adjacent nodes for each nede evaluate its related
’ PRI clauses in (16); based on the evaluation, each riogiedates

the distribution of the Bernoulli random variable selegtin

3 Brij(m,1) €{0,1} Vk € I,m = 1,--- , L, zi;.p(1). Given a feasibldz;; (1)} € M(L) obtained by CFL,
S.t. x5 (1) = Vet m=1,-,.LBrij (M, 1)Xgi (m), Subproblem 1 is convex and can be solved distributivelygisin
l=1,---,L, (i,j)€E, i&S. (14) standard convex decomposition. We omit the details here due

to the page limitation.
Now, we can develop a distributed algorithm to solve Prob-

In the following, we shall only consider solving for thejem 2 pased on CFL and convex decomposition, as briefly
variables {z;; (1)} of the CSP in a distributed way using;,strated in Algorithm 14

clause partition and CFL, &$3x;(/, m)} can be obtained from

feasible {z;;,(1)} by (9) and (10). In addition, we directly 4, Step 3, CFL is run for a sufficiently long time. Step 4 (Step 6
choosex; ;(l) = e, forall I = 1,--- L, (sp,j) € £ and can be implemented with a master node obtaining the networkergence
p. . . y .
e P according to (9) information of CFL (network cost) from all nodes or with alhales computing
D g . rkc ,
) ] o ) the average convergence indicator of CFL (average netwast cally via a
For notational simplicity, we write the clauses for;; ,(1)}  gossip algorithm.



Algorithm 1 Algorithm for Problem 2

1: initialize n =1 andU; = +o0.
2: loop
Run CFL to the CSP corresponding to Subproblem 2to Constraint (8) in Problem 1. Constraints (20) and (21) in

3

Note that Constraints (17) and (18) in Problem 3 ca7n be
treated as the continuous relaxation of Constraints (2) and
(3) in Problem 1. Constraint (19) in Problem 3 corresponds

Problem 3 can be treated as the continuous counterpart of

4: if the CFL finds a feasible solutidien
5 For the obtained feasible solution to Subproblem Zonstraint (10) in Problem 1. The following lemma shows
solve Subproblem 1 distributively using convex dethe relationship between Problem 1 (mixed discrete-cootirs

composition. LetU,, denote the corresponding net-optimization problem) and Problem 3 (continuous optimizat

work cost.

problem).

6: if U,, < U, then Lemma 3 (Relationship between Problem 1 and Problem 3):
7. SetUn+1 = Un andn =n + 1. (I) If {Zij}a {Zij (Z)}a { fj,p(l)}? {Iij,p(l)}7 {Bklj (la m)}
8: end if is a feasible solution to Problem 1, then
9: end if {2i} {2 (O} A (D3 AZig. (D { Brig (1, m) }
10: end loop is a feasible solution to Problem 3, where
Tijp(l) = wyp(l) and Bri;(l,m) = Bri(l,m);
if {zij 1 {2 O3 AL O3 Az (D}, {Brij (1, m) }
feasible  solution to Problem 3, then

Based on the convergence result of CFL [11, Corollary

we can easily see thaf, — U} (L) almost surely as — oo,
if Problem 2 is feasible.

The complexity of solving Problem 2 mainly lies in solving
for the network mixing coefficients (discrete variables) in

V. ALTERNATIVE FORMULATION WITH CONTINUOUS

MIXING

2', a
TZij},{Zij(l)},{ LoD Azijp(D}, {Brij(1,m)} is a feasible

solution to Problem 1, wherer;;,(I) = [z;;,(1)] and

Brij(l,m) = [Bri;(l,m)]. (i) The feasibilities of Problem 1

and Problem 3 imply each other. (iii) The optimal values of

Problem 1 and Problem 3 are the same, U&.(L) = U} (L).
Proof: Please refer to Appendix B. [ |

By Lemma 3, solving Problem 1 is equivalent to solving

Subproblem 2. In this section, we first propose an equivalé:)nrtOblem 3.
alternative formulation of Problem 1 (Problem 2) with conti B, Distributed Solution

ous mixing. Then, we elaborate on some distributed algosth

to solve it.

A. Alternative Formulation

Problem 1 (Problem 2) is a mixed discrete-continuous op
mization problem. Applying continuous relaxation to (2)dan
(3) and manipulating (10), we obtain the following continsgo

optimization problem.

Uz (L) =

Problem 3 (Continuous Formulation of Problem 1):

= min
{Zwij}v{zij(l)}{ffj,p(l)}
{Zijp (D} ABrij (L m)}

> Uijlzig)

(i.5)€€

s.t. (1),(4),(5), (6), (7), (9). (11)

‘fijap(l) € [0’1]’ = 11' o 7L7 (273) € ga p S ,P (17)
Brij(l,m) € [0,1], l,m=1,---, L, (k,i),(i,7) € E

Problem 3 is a (pure) continuous optimization problem. It is
not convex due to Constraints (20) and (21). Several penalty
methods [12] can be applied to find a local minimum of
ﬁ_roblem 3 with polynomial-time complexity. Those methods
can also be implemented in a distributed manner using stdnda
decomposition. On the other hand, by weak duality [12], dual
method can be applied to find a lower bound of the global
minimum value of Problem 3. The difference between an
obtained local minimum and this lower bound can serve as
an upper bound on the performance gap between the local
minimum and the global minimum of Problem 3.

VI. CONCLUSION

In this paper, we considered linear network code construc-
tions for general connections of continuous flows to minaniz
the total cost of edge use based on mixing. To solve the

. o (18) minimum-cost network coding design problem, we proposed
igp(D) < ZTijp()By, L=1,---, L, (i,j) €, two equivalent alternative formulations with discrete mgx
pEP, teT (19) and continuous mixing, respectively, and developed disteid

Tijp(m) > Brij(l,m)Zkip(), k€T, 1=1,--- L

algorithms to solve them. Our approach allows fairly gehera
coding across flows and guarantees no greater cost than any

m=1--,L L # ?’ (i,j)e&peP (20)  solution without inter-flow network coding.
Tigp(m) < kez‘; Lﬂk”(l’m)xki”’m’ APPENDIXA: PROOF OFLEMMA 1
m=1,-- L, T, 0, (i,j) €E,pcP 1) First, we considerL = 1. We omit the index termg1)

and (1,1) behind the variables for notational simplicity. Let
{zij}s {zijp}, {Bris} and {ff; ,} denote a feasible solution



to Problem 1. We shall extend the proof of Lemma 1 in [&his equivalence by considering the following two casesaiufy
for the integer flows ff; , € {0,1}) and unit source ratesm = 1,---, L, Z; # 0, (i,j) € £ andp € P. First, consider
(R, = 1) with one global coding vector over each edgée case whergs;;(l,m)zr (1) = 0 for all &k € Z; and
(zi; € {0,1}) to the general continuous flowg( , € [0, Bi;]) | = 1,---, L. Constraint (10) implies that;; ,(m) = 0, and
and source ratesR, € RT) with multiple global coding Constraints (22) and (23) also imply that ,(m) = 0. Second,
vectors ¢; ; € [0, B;;]) over each edge. In the general caseonsider the case where there exists at least one (paiy,

we code over timen > 1. For all p € P, convert source wherek € Z; andl =1, - -- , L, such thatsy;; (I, m)xy; , (1) =

p with source rateR, over timen to [nR,| unit rate sub- 1. Constraint (10) implies that;; ,(m) = 1, and Constraints
sourcespy, - -+ ,p|nr,|- FOr each edgédi,j) € &, allow the (22) and (23) also imply that;; ,(mm) = 1. Note that under the
total number of the sub-flows of flow € P, to terminal integer constraints:;; ,(!) € {0,1} and By (l,m) € {0, 1},

t € T to be fewer than or equal tonff; ,]. Therefore, the the above two cases are the only two possible cases. Therefor
flow path of flowp can be decomposed infeR,| unit rate we can show Constraint (10) is equivalent to Constraint$ (22
sub-flow pathg:, - -+, p|,r,) from sourcep € P; to terminal and (23).

t € T. The sum rate of unit rate sub-flows of flowover  Next, we show that the first statement of (i) holds. Suppose
edge(i,j) € £ is less than or equal thnf; ,]. The sum rate {zii b Lz (O3 A (DY, {zij (D)}, {Brij (1,m)} is a feasible

ij,p

of unit rate sub-flows of all the flows over edgg j) is less splution to Problem 1. Letti; (1) = wijp(l) € {0,1}
than or equal toz;; = maxier ) cp, [ 4 p1- Decompose for all | = 1,---,L, (i,j) € € andp e P, and
edge(i, 7) into z;; sub-edges. Let sub-flows to termirtapass Brij(l,m) = Brij(l,m) € {0,1} for all k € T;,, T, #
different sub-edges, i.e., each sub-edge transmit at mwst ¢ (;,5) ¢ £ andl,m = 1,---,L. Since Constraints

sub-flow to terminat. We have now reduced the general cas@7), (18) and (19) in Problem 3 can be treated as the
to the special case considered in Lemma 1 in [8]. Therefoee, Wontinuous relaxation of Constraints (2), (3) and (8) in
can show that there exists a feasible linear network code oy&oblem 1,4 itj.p(l)}’ {Zijp (D)}, {Bkij(lam)} satisfies Con-
timen. The associated average sum transmission rate over egggints (17), (18) and (19). In addition, since Constraint
(4,7) is Zij/n. Note thatz;; /n — z;;/n < P/n. Therefore, this (10) is equivalent to Constraints (22) and (23), and Con-
code design can achieve the minimum co$(1) by takingn  straints (20) and (21) can be treated as the continuous re-
arbitrarily large. laxation of Constraints (22) and (23)Zi;., (1)}, {Bri; (1, m)}

When L > 1, we can convert each eddé j) € £ into L satisfies Constraints (20) and (21). Therefore, we can show
edges. Then, we can apply the above proof foe= 1 to the {zis b Lz (O} AL (O} {Za (D)), {Bri;(1,m)} is a feasible
equivalent constructed network. solution to Problem 3.

APPENDIXB: PROOF OFLEMMA 3 Finally, we show that the second statement of (i) holds.
It is obvious that (i) implies (ii). Next, we show that (i) SUPPOSEzi;}, {zi; (1)}, { /5, (D} {Zijp (D}, {Bris (I, m)} is a
implies (iii). Suppose (i) holds, which indicates that eacf§asible solution to Problem 3. Letijp(1) = [2ip(1)] for
{2:;} associated with a feasible solution to Problem 1 is adl = 1--.L, (i,j) € £andp € P, ar,‘d.ﬁkij(lvm) =
associated with a feasible solution to Problem 3, and viesave [Okij(l,m)] for all ke I, I, # 0, (i,j) € & and
In addition, {z;;} fully determines)” , . . Ui;(z;). Thus, the l,m=1,.--, L. In other words, 'fﬁﬂz‘j,p(l)_:_ 0 (Brij(1,m) =
set of feasible network costs to Problem 1 is the same as tHat then zijp(1) = 0 (B (l,m) = 0); if zijp(l,m) €
to Problem 3, implying the optimal values of the two problem&): 1l (Bki; ([, m) € (0, 1)), thenzi; , (1) = 1 (Byi;(l,m) =
are the same. Therefore, we can show that (i) implies (iii}): 't 1S obvious that{fj; (1)}, {zi;p(1)}, {Bri; (I, m)} sat-
Thus, to show Lemma 3, it is sufficient to show (i). Note thdplies Constraints (2), (3) and (8). It remains to show
in the proof, we only need to consider the different conagai{%ii»(1)}, {Bri;(1,m)} satisfies Constraint (10). Note that
between Problem 1 and Problem 3. Constraint (10) is for alim = 1,---, L, Z; # 0, (i,j) € &
To show (i), we first show that whenm;; (1) € {0,1} andp € P. Thus, similarly, we prove this result by consid-

and By;(1,m) € {0,1}, Constraint (10) is equivalent to the€ring the following two cases for any, = 1,---, L, I, #

following two constraints in (22) and (23). 0, (i,j) € € andp € P. First, consider the case where
Brij(l,m)Tkip(1) = 0 for all k € Z; andl = 1,---,L.
Tijp(m) = Brij (L, m)akip(l), k€L, I=1,---,L Constraints (20) and (21) imply that,; ,(m) = 0, and
m=1,---,L, T, #0, (i,j) €E,pEP (22) hence, we haver;;,(m) = [z;,(m)] = 0. In addition,
255 p(m) < Z Brij (1L, m)aki p (1), Brij(l,m)Trip(l) = 0 for all &k € Z; andl = 1,---,L

k€T l=1,- L also implies Byij (I, m)zkip(1) = [Brij(l,m)][Zrip()] =
LT, 0. (i) eEneP agy O forall k €7 andl = 1. L. Thus, in this case,
e b b LA ) E S e 23 we can show{z; , (1)}, {Bri;(1,m)} satisfies Constraint (10).
Note that Constraints (10), (22) and (23) are for mll = Second, consider the case where there exists at least one
1,---,L, T; # 0, (i,j) € £ andp € P. Thus, we prove pair (k,1), wherek € Z, andl = 1,---,L, such that



Brij(l,m)Zki » (1) € (0,1]. Constraints (20) and (21) together
with Constraints (17) and (18) imply that;; ,(m) € (0,1],

and hence, we have;; ,(m) = [Zri ()] = 1. In addition,
Brij(1,m)Z1i »(1) € (0,1] together with Constraints (17) and
(18) also impIyB;ﬂ-j (l,m)l‘ki7p(l) = I_Bkij (l,m)] (i‘kﬁp(lﬂ =

1. Thus, in this case, we can shofw;; (1)}, {Bki;(l,m)}
satisfies Constraint (10). Note that under the continuous co
straintsz;; (1) € [0,1] and S5 (I, m) € [0,1], the above two
cases are the only two possible cases. Therefore, we can show

{3} {2 (D}, {1 (O} Azijp(D}, {Brij (1, m)} is a feasible
solution to Problem 1.
Therefore, we complete the proof of Lemma 3.
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