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Abstract

Vector linear network coding (LNC) is a generalization of the conventional scalar LNC, such that the

data unit transmitted on every edge is anL-dimensional vector of data symbols over a base field GF(q).

Vector LNC enriches the choices of coding operations at intermediate nodes, and there is a popular

conjecture on the benefit of vector LNC over scalar LNC in terms of alphabet size of data units: there

exist (single-source) multicast networks that are vector linearly solvable of dimensionL over GF(q) but

not scalar linearly solvable over any field of sizeq′ ≤ qL. This paper introduces a systematic way to

construct such multicast networks, and subsequently establish explicit instances to affirm the positive

answer of this conjecture forinfinitely manyalphabet sizespL with respect to anarbitrary prime p.

On the other hand, this paper also presents explicit instances with the special property that they do not

have a vector linear solution of dimensionL over GF(2) but have scalar linear solutions over GF(q′) for

someq′ < 2
L, whereq′ can be odd or even. This discovery also unveils that over a given base field, a

multicast network that has a vector linear solution of dimensionL does not necessarily have a vector

linear solution of dimensionL′ > L.

Index Terms

Vector network coding, scalar network coding, multicast networks, alphabet size, direct sum.

The preliminary results of this paper were partially presented at 2015 IEEE International Conference on Communications and
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I. INTRODUCTION

In the conventional theory of linear network coding (LNC) [1][2], the data unit transmitted

along every edge of unit capacity in a network consists of a single data symbol belonging to a

base field GF(q). Every outgoing edge of a nodev transmits a data symbol that is a GF(q)-linear

combination of the incoming data symbols tov. Such a coding mechanism is referred to as

scalar LNC.

A generalization of scalar LNC isvector LNC[3] or block LNC [4], which models the data

unit transmitted along every edge of unit capacity as anL-dimensional vector of data symbols

over a base field GF(q), and concomitantly defines the coding operations performed at every

intermediate node as GF(q)-linear combinations of all data symbols in incoming data unit vectors,

as illustrated in Fig. 1.
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Fig. 1. Consider an intermediate nodev with 1 outgoing edge and2 incoming edges in a network. In vector LNC,v receives two

vectors(m11, · · · ,m1L) and(m21, · · · , m2L) of L data symbols belonging to a base field GF(q). The data unit transmitted on

the outgoing edge ofv is also a vector ofL data symbols over GF(q), in which each data symbol is a GF(q)-linear combination

of all 2L incoming data symbols tov.

The introduction of the concept of vector LNC stems from its potential to enrich the choices

of coding operations at intermediate nodes in a network. Thepotential of vector LNC has been

considered from several different aspects (See for example[3]-[13]). In particular, the work in [3]

demonstrated a classic multi-source multicast network which has a simple vector linear solution

of dimension2 over GF(2) but does not have a scalar linear solution over anybase field. It was
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also noted in [3] that the network constructed in [14] which is not scalar linearly solvable over

any field has a vector linear solution. There is another exemplifying network proposed in [5]

which does not have a scalar linear solution over any field buthas a vector linear solution of

dimension3 over GF(2). These exemplifying networks manifest the superiority of vector LNC

over scalar LNC in terms of enabling a linear solution.

Up to now, most studies on vector LNC have been in the context of general (non-multicast)

networks. Specific to a (single-source) multicast network,though it is well known that there is

a scalar linear solution over a field with size no smaller thanthe number of receivers [15], there

are still benefits to consider vector LNC, as summarized in [11]. In particular, the alphabet size

of data units is a key factor that affects the linear solvability of a multicast network. Under the

same alphabet sizeqL, in which case the transmission delay of a data unit along an edge is same,

vector LNC of dimensionL over GF(q) provides much more choices for coding operations than

scalar LNC over GF(qL), and every scalar linear code over GF(qL) can be transformed into a

vector linear code of dimensionL over GF(q), so that the scalar linear code is a solution if and

only if its corresponding vector linear code is a solution too. Thus, a network has a scalar linear

solution over GF(qL) only if it has a vector linear solution of dimensionL over GF(q). It would

be natural to conceive the following benefit of vecor LNC, as conjectured in [11]:

• There exists a multicast network that is vector linearly solvable of dimensionL over GF(q),

but not scalar linearly solvable over GF(q′) for any q′ ≤ qL.

If proven true, this conjecture will imply practical benefitof vector LNC in terms of reducing the

alphabet size to yield a solution on a multicast network, which is a fundamental research topic

in the network coding literature. However, even though the work in [11] indicated the possible

correctness of this conjecture from the perspective of multivariate determinant polynomials of

transfer matrices, it failed to provide explicit multicastnetworks to verify its correctness.

In the first part of the paper, we propose a systematic way to construct a multicast network

vector linearly solvable over GF(q) at dimensionL but not scalar linearly solvable over GF(q′) for

September 21, 2018 DRAFT



4

anyq′ ≤ qL. Explicit multicast networks are also subsequently constructed based on this method

so that the aforementioned conjecture is proven to be correct for infinitely manyalphabet sizes

pL with respect to anarbitrary prime p. Moreover, some of the illustrated multicast networks

vector linearly solvable at dimensionL over GF(p) do not have a scalar linear solution over

GF(q′), not only for all thoseq′ ≤ pL, but also for someq′ > pL. This affirms that in some

multicast networks, vector LNC can indeed be superior to scalar LNC, in a stronger sense than

as conjectured, in terms of alphabet size of data units to yield a solution. The vector coding

techniques we propose to beat scalar codes have several implications:

• Scalar linear solutions over respective alphabetsGF(qL1), · · · ,GF(qLm) do not necessarily

imply another scalar linear solution overGF(qL1+···+Lm), but they guarantee a vector linear

solution of dimensionL1 + · · ·+ Lm over GF(q).

• For scalar linear codes over respective alphabetsGF(qL1), · · · ,GF(qLm), even in the case

that none of them has a solution, it is still possible to combine their corresponding vector

linear codes, by direct sum, to form a vector linear solutionof dimensionL1 + · · · + Lm

over GF(q).

In the second part of the paper, we compare the alphabet size requirements for scalar and

vector linear solvability of multicast networks from another direction. Specifically, now that the

non-existence of a vector linear solution of dimensionL over GF(q) implies the non-existence

of a scalar linear solution over GF(qL), a natural question is whether it can further imply the

non-existence of a scalar linear solution over every GF(q′) with q′ ≤ qL. At a first glance, one

might be inclined to believe its correctness. However, as weshall demonstrate, the answer to this

question isnegative. Another contribution of this paper is to show explicit multicast networks,

for the first time in the literature, which do not have a vectorlinear solution of dimensionL

over GF(2) but have a scalar linear solution over GF(q′) for someq′ < 2L, whereq′ can be odd

or a power of2. This discovery suggests that it is also possible for scalarLNC to outperform
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vector LNC (of dimensionL ≥ 2) in multicast networks, in terms of using a smaller alphabet

to yield a solution. More importantly, it further disclosesthat

• over a given base field, a multicast network vector linearly solvable of dimensionL is not

necessarily vector linearly solvable of dimensionsL′ with L′ > L.

This discovery is intriguing in the sense that it appears to contradict the folklore on multicast

networks: the larger the alphabet block length, the more likely a linear solution exists.

Recently, a few multicast networks were discovered in [16] with the intriguing property that

they are scalar linearly solvable over a small field but not necessarily scalar linearly solvable

over a larger field. They share a common topological structure, and can thus be subsumed in a

particular class of multicast networks, whose scalar linear solvability is completely characterized

in [17]. One of the fundamental building blocks for the results obtained in this paper is the further

analysis of the vector linear solvability of this special class of multicast networks, which was

not dealt with in [16] and [17].

The remainder of this paper is organized as follows. In Section II, we establish the

mathematical notations to be adopted and review some usefulfundamental results of vector

and scalar LNC. In Section III, we present a general way to construct multicast networks vector

linearly solvable over GF(q) of dimensionL but not scalar linearly solvable over GF(q′) for any

q′ ≤ qL, and present instances for an arbitrary primep and infinitely many alphabet sizespL.

In Section IV, we verify that on multicast networks smaller alphabets can be better than larger

ones for yielding a vector linear solution. Section V summarizes the paper.

II. PRELIMINARIES

A. Mathematical Model for Vector Linear Codes

This work focuses on a single-source multicast network, which is modeled as a finite directed

acyclic multigraph, with a unique source nodes and a setT of receivers. For a nodev in the

network, denote byIn(v) andOut(v), respectively, the set of its incoming and outgoing edges.
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Every edge has unit capacity and every outgoing edge from thesources transmits a data unit

generated bys. Write |Out(s)| = ω, which will be referred to as the source dimension of the

network. Then there are totallyω source data units to be transmitted across the network. A

topological order is assumed on the set of edges led by ones inOut(s). For every receiver

t ∈ T , based on the data units received from edges inIn(t), its goal is to recover the source

data units generated froms. The maximum flow for every receivert ∈ |T |, which is defined to

be the maximum number of edge-disjoint paths leading froms to t, is assumed to beω.

In the conventional scalar LNC, the data unit transmitted along every edgee merely consists

of a single data symbol belonging to a symbol alphabet which is mathematically modeled as a

finite field GF(q). A scalar linear codeis an assignment of alocal encoding kernelkd,e ∈ GF(q)

to every pair(d, e) of edges such thatkd,e = 0 when(d, e) is not an adjacent pair of edges. Every

scalar linear code uniquely determines a global encoding kernel fe, which is anω-dimensional

column vector over GF(q), for each edgee in the network. On a multicast network, a scalar linear

code is called ascalar linear solutionif for every receivert ∈ T , the juxtaposition[fe]e∈In(t) of

the global encoding kernels for edges incoming tot has full rankω.

As a generalization of scalar LNC, vector LNC models the dataunit transmitted along every

edgee to be anL-dimensionalrow vectorme of data symbols over a base field GF(q). Thus,

the mathematical model for the data unit alphabet in vector LNC is a vector space GF(q)L rather

than a finite field. Under the new mathematical structure of data units, the model of scalar LNC

can be naturally extended to vector LNC as follows.

A vector linear code of dimensionL over GF(q), or a vector linear code overGF(q)L for

short, is an assignment of alocal encoding kernelKd,e, which is anL× L matrix overGF(q),

to every pair(d, e) of edges such thatKd,e is the zero matrix0 when (d, e) is not an adjacent

pair. Then, for every edgee outgoing from a non-source nodev, the data unit vector of data
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symbols transmitted one is

me =
∑

d∈In(v)

mdKd,e

Furthermore, every vector linear code uniquely determinesa global encoding kernelFe, which

is anωL× L matrix over GF(q), for every edgee such that

• The columnwise juxtaposition[Fe]e∈Out(s) of Fe for e ∈ Out(s) forms anωL×ωL identity

matrix I;

• For every outgoing edgee from a non-source nodev, Fe =
∑

d∈In(v) FdKd,e.

Correspondingly, the data unit vector transmitted along every edgee can also be represented as

me = [md]d∈Out(s)Fe.

A vector linear code over GF(q)L is called avector linear solutionif for every receivert ∈ T ,

the juxtaposition[Fe]e∈In(t) of the global encoding kernels for edges incoming tot has full rank

ωL. Correspondingly, there is anL|In(t)|×L|Out(s)| decoding matrixDt over GF(q) for every

receivert such that the source data units can be recovered att via

[me]e∈In(t)Dt =
(
[md]d∈Out(s)[Fe]e∈In(t)

)
Dt

= [md]d∈Out(s)

(
[Fe]e∈In(t)Dt

)

= [md]d∈Out(s)I = [md]d∈Out(s).

A scalar linear code can be regarded as a vector linear code from two different facets. On one

hand, it is straightforward to see that every scalar linear code over GF(qL) is naturally a vector

linear code of dimension 1 over GF(qL). On the other hand, letΦ be a mapping from GF(qL)

into the ring ofL× L matrices over GF(q) via

Φ(0) = 0,

Φ(γk) = Ck
p, 0 ≤ k ≤ qL − 2,

(1)
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whereCp is the L × L companion matrix of a primitive polynomialp(x) of degreeL over

GF(q), andγ is a fixed root ofp(x), that is, a primitive element of GF(qL). As a consequence of

the Cayley-Hamilton theorem, this mapping is a homomorphism, and{0,C0, · · · ,CqL−2} forms

a matrix representation of the finite field GF(qL) (See, for example, [18]). Then, every scalar

linear code over GF(qL) with local encoding kernels(kd,e) corresponds to a vector linear code

over GF(q)L with local encoding kernels prescribed as

Kd,e = Φ(kd,e), (2)

and moreover, based on the homomorphic property ofΦ, we can derive the following result.

Proposition 1. Given a (not necessarily multicast) network, a scalar linear code over GF(qL)

with local encoding kernels(kd,e) is a solution if and only if the corresponding vector linear code

overGF(q)L with local encoding kernelsKd,e = Φ(kd,e) qualifies as a solution too. Moreover, if

Dt is a decoding matrix of the scalar linear solution for receiver t, thenΦ(Dt) is also a decoding

matrix of the corresponding vector linear solution fort, whereΦ is applied componentwise for

the entries inDt.

In summary, Table I compares the mathematical structures ofscalar and vector LNC.

B. A Special Class of Multicast Networks

Recently, the first few known multicast networks that are scalar linearly solvable over GF(q)

but not necessarily over a larger GF(q′) were discovered in [16]. They share a similar topology

and can be generalized into a class of multicast networksNω,d, as replotted in Fig. 2, with

topological parametersω andd = (d1, d2, · · · , dω). The networkNω,d has source dimensionω,

and consists of nodes on five layers. The sources is the unique node in the first layer. There

areω layer-2 nodesuj, 1 ≤ j ≤ ω, each of which is connected froms by an edge. There areω

layer-3 nodesvj , 1 ≤ j ≤ ω, each of which is connected from two upstream layer-2 nodesuj
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TABLE I

COMPARISON OF SCALAR AND VECTORLNC WHEN THE ALPHABET SIZE OF DATA UNITS IS FIXED TOqL WITH q EQUAL TO

A PRIME POWER

Scalar LNC Vector LNC

Data unit alphabet Base field GF(qL) Vector space GF(q)L

Local encoding kernel Element in GF(qL) L× L matrix over GF(q)

# of candidates for

qL qL
2

local encoding kernels

(for adjacent pairs of edges)

anduj+1 (uω+1 representsu1) by a respective edge. For each layer-3 nodevj , there aredj > 1

outgoing edges, each of which leads to a different downstream layer-4 (grey) node. Thus, the

ω-tupled = (d1, · · · , dω) controls the number of layer-4 nodes. There is a non-depicted bottom-

layer node connected from every setN of ω layer-4 nodes withmaxflow(N) = ω, that is,

with ω edge-disjoint paths starting froms and ending at nodes inN . All bottom-layer nodes

are receivers.

The following is a concise formula for the scalar linear solvability of Nω,d derived in [17].

Theorem 2. Consider a networkNω,d with parametersω andd = (d1, d2, · · · , dω). It is linearly

solvable over GF(q) if and only if there is positive divisord of q − 1 subject to

q ≥ d

(⌈
d1
d

⌉

+ · · ·+

⌈
dω
d

⌉

− ω + 1

)

+ 2 (3)

Corollary 3. The networkNω,d with parametersω and d = (2, 2, · · · , 2) is called theSwirl

Network [16]. As a consequence of Theorem 2, it is scalar linearly solvable over GF(q) if and
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Fig. 2. The networkNω,d consists of nodes on 5 layers. Layer-1 consists of the sourcenodes only, and layer-4 nodes are depicted

in grey. There is a non-depicted bottom-layer node connected from every setN of ω layer-4 nodes withmaxflow(N) = ω.

All bottom-layer nodes are receivers.

only if q > ω + 2 or q − 1 is not a prime.

The analysis of the vector linear solvability ofNω,d will be one of the building blocks for the

main discoveries of this paper.

III. M ULTICAST NETWORKS WITH VECTOR LNC SUPERIOR TOSCALAR LNC

In this section, we shall first introduce a general method to construct multicast networks vector

linearly solvable over GF(q)L but not scalar linearly solvable over any GF(q′) with q′ ≤ qL. Then,

we make use of this method to design infinitely many instancesto verify that vector LNC can

indeed outperform scalar LNC for multicast networks in terms of the required alphabet size to

yield a solution. The main results to be established in this section are outlined in Fig. 3.
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Vector linearly solvable

over GF(p)L
Scalar linearly solvable

over GF(pL)

Theorem 10

Scalar linearly solvable

over some GF(q¢), q¢ £ pL 

Corollary 7Proposition 6, 9

Corollary 11

Fig. 3. The main results to be established in Section III. Herein p is an arbitrary prime.

A. A General Construction Method

Under the same alphabet size of data units, which is considered to be a prime power throughout

the paper, the number of candidates to which the local encoding kernels can be assigned increases

exponentiallyfrom qL to qL
2
. Consequently, it is natural to conceive that vector LNC outperforms

scalar LNC on a multicast network in the sense that the minimum alphabet size to yield a vector

linear solution might be smaller than the minimum required in a scalar solution. However, to the

best of our knowledge, no explicit demonstration of this advantage for vector LNC on multicast

networks has ever been given, and this advantage was only partially confirmed in [11]. In the

work of [11], an algebraic framework is established to characterize the vector linear solvability of

a multicast network, which can be regarded as a generalization of the classic algebraic framework

in [2] that concentrates on scalar linear solvability. Specifically, the framework associates every

receiver in a multicast network with a transfer matrix whoseentries are multivariate polynomials.

Correspondingly, it associates a multicast network with a multivariate polynomial obtained by the

product of the determinants of all transfer matrices. It is then shown that a multicast network is

vector linearly solvable over GF(q)L if and only if there is an assignment ofL×L matrices over

GF(q) to the variables in the associated polynomial under which the evaluation of this polynomial

is an invertible matrix over GF(q). Meanwhile, a multivariate polynomial was discovered in [11]

which does not have such an assignment over GF(q) for anyq ≤ 210, but has a feasible assignment

over GF(2)10. However, that work did not show the existence of a multicastnetwork that can be

associated with this particular polynomial, and hence whether there exists a multicast network
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12

with the desired advantage of vector LNC remains elusive.

We next propose a general construction method, based on which the design of a multicast

network vector linearly solvable over GF(q)L but not scalar linearly solvable over GF(q′) for

everyq′ ≤ qL reduces to the design of a multicast network vector linearlysolvable over GF(q)L

but not scalar linearly solvable over GF(qL).

Algorithm 1. Let N1 be a multicast network with source dimensionω that is vector linearly

solvable overGF(q)L but not scalar linearly solvable over GF(qL). Set n = qL. Construct a

multicast networkN of source dimensionω as follows:

• Create the unique source nodes′ and another nodes, as well asω edges starting froms′

and ending ats.

• Add N1 as a subnetwork ofN . Createω edges froms to the original source nodes1 of

N1.

• Add an (n + 1, 2)-combination networkN2 (See, e.g., [19][20]), as depicted in Fig. 4, to

be another subnetwork ofN . Create 2 edges froms to the original source nodes2 of N2.

• For every original receivert of N2, createω − 2 edges froms to t.

In this way, every node that is originally a receiver inN1 or N2 is also a receiver inN . �

Theorem 4. Let N1 be a multicast network that is vector linearly solvable overGF(q)L but not

scalar linearly solvable over GF(qL). The networkN constructed by Algorithm 1 withn = qL

has a vector linear solution over GF(q)L. However, it is not scalar linearly solvable over GF(q′)

for any q′ ≤ qL, and not vector linearly solvable over GF(q′)L
′

for any q′L
′

< qL.

Proof: The networkN is vector linearly solvable over GF(q′)L
′

or scalar linearly solvable

over GF(q′) if and only if so are the subnetworksN1 andN2.

It is well known that the(n+1, 2)-combination network is scalar linearly solvable over GF(q′)

if and only if q′ ≥ n. In a similar argument to characterize its scalar linear solvability, one can

deduce that an(n+1, 2)-combination network is vector linear solvable over GF(q′)L
′

if and only

DRAFT September 21, 2018
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... ...

...u1 u2 un un+1

v1,2 v1,n v1,n+1

...
v2,n v2,n+1 vn,n+1

Fig. 4. An (n + 1, 2)-combination networkN2. It is well known to be scalar linearly solvable over GF(qL) if and only if

qL ≥ n. It can also be shown to be vector linearly solvable over GF(q)L if and only if qL ≥ n.

if there areL′ × L′ invertible matricesA1, · · · ,An−1 over GF(q′) such that

rank(Ai −Aj) = L′, ∀1 ≤ i < j ≤ n− 1, (4)

Thus,{A1, · · · ,An−1}, together with0 form anL′-dimensional rank-metric code of distanceL′

over GF(q′). According to the Singleton bound for the rank-metric codes (See [21] for example),

there are at mostq′L
′(L′−L′+1) = q′L

′

codewords for such a rank-metric code. Thus, if there are

L′ × L′ invertible matricesA1, · · · ,An−1 over GF(q′) subject to (4), thenn − 1 ≤ q′L
′

− 1,

i.e. q′L
′

≥ n. On the other hand, whenq′L
′

≥ n, a scalar linear solution can be constructed for

the (n+1, 2)-combination network over GF(q′L
′

), which in turn induces a vector linear solution

over GF(q′)L
′

according to Proposition 1. We can now conclude that an(n+ 1, 2)-combination

network is vector linearly solvable over GF(q′)L
′

if and only if q′L
′

≥ n.

In consequence, the subnetworkN2 of N has a vector linear solution over GF(q)L, but neither

a scalar nor a vector linear solution when the alphabet size of data units is smaller thanqL. On

the other hand, the subnetworkN1 of N is vector linearly solvable over GF(q)L but not scalar

linearly solvable over GF(qL). We can see when the alphabet size is no greater thanqL, the

networkN does not have any scalar linear solution, and has a vector linear solution only over

GF(q)L.
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B. The First Explicit Network Construction

In order to apply Algorithm 1 to construct a multicast network vector linearly solvable over

GF(q)L but not scalar linearly solvable overGF(q′) for anyq′ ≤ qL, a key step that has not been

explicated is to provide a multicast network that is vector linearly solvable overGF(q)L but not

scalar linearly solvable overGF(qL). We next show that the Swirl Network with appropriate

source dimensionω is actually the first known one with such a property.

Assume that the alphabet size of data units is2L. When2L−1 is a prime, the Swirl Network

with dimensionω ≥ 2L − 2 does not have a scalar linear solution over GF(2L). Recall that a

prime in the form of2L−1 is called a Mersenne prime. After examining the list of all known 48

Mersenne primes in the ascending order [22], we found that the 5th one,213− 1, can be written

as24 · 29 − 1 but neither24 − 1 nor 29 − 1 is a Mersenne prime. Thus, the Swirl Network turns

out to be the first exemplifying multicast network scalar linearly solvable over both GF(qL1) and

GF(qL2) but not over GF(qL1+L2). This has been noticed in [16].

Now consider a (possibly non-multicast) network and a scalar linear solution of it, with local

encoding kernels denoted by(kd,e,j), over GF(qLj ) for all 1 ≤ j ≤ m. We can define a vector

linear code of dimensionL := L1 + L2 + · · · + Lm over GF(q) with local encoding kernels

prescribed by

Kd,e =













Φ(kd,e,1) 0 · · · 0

0 Φ(kd,e,2) · · · · · ·

· · · · · ·
. . . 0

0 0 0 Φ(kd,e,m)













, (5)

whereΦ is the homomorphism from GF(qL) into the ring ofL×L matrix over GF(q) defined in

(1). In the same way as to prove Proposition 1, one can prove that this vector code over GF(q)L

qualifies as a solution too. We thus obtained the following.

Proposition 5. If a (possibly non-multicast) network is scalar linearly solvable over GF(qLj ) for
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all 1 ≤ j ≤ m, then it is not necessarily scalar linearly solvable over GF(qL), but must be vector

linearly solvable over GF(q)L, whereL = L1 + L2 + · · ·+ Lm.

As a consequence of the above analysis, the Swirl Network with source dimensionω ≥ 213−2

has a vector linear solution over GF(2)13 but no scalar linear solution over GF(213). This satisfies

our desired property. Next result can be further obtained.

Proposition 6. Let 2L − 1 be an arbitrary Mersenne prime no smaller than213 − 1. The Swirl

Network with source dimensionω ≥ 2L − 2 is vector linearly solvable over GF(q′)L
′

for every

q′L
′

≥ 2L, but not scalar linearly solvable over GF(q′) for anyq′ with 2L ≤ q′ ≤ ω+2 andq′−1

being a prime.

Proof: Corollary 3 characterizes the scalar linear solvability ofthe considered Swirl network.

It remains to show its vector linear solvability. Assumeq′ is odd. The Swirl Network is scalar

linearly solvable over GF(q′L
′

) for everyL′ ≥ 1, and hence vector linearly solvable over GF(q′)L
′

by Proposition 1. Assumeq′ = 2. The caseL′ = 13 has been discussed in the analysis prior to

the present proposition. Consider the caseL′ > 13. Since2L
′

− 1 a Mersenne prime,L is an

(odd) prime too. Thus,L′−13 is even and hence2L
′−13−1 must be a composite. Consequently,

the considered Swirl Network is scalar linearly solvable over GF(24), GF(29) and GF(2L
′−13)

respectively. Consequently, it is vector linearly solvable over GF(2)L′ according to Proposition

5.

Corollary 7. Let 2L−1 be a Mersenne prime no smaller than213−1, andN1 represent the Swirl

Network with source dimensionω ≥ 2L−2. The multicast networkN constructed by Algorithm

1 with n = 2L has a vector linear solution over GF(2)L, but does not have a scalar linear solution

over GF(q′) for any q′ ≤ 2L. Moreover, it is vector linearly solvable over GF(q′)L
′

for everyq′L
′

larger than2L, but not scalar linearly solvable over GF(q′) for any q′ with 2L ≤ q′ ≤ ω + 2 and

q′ − 1 being a prime.
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Proof: It follows from Theorem 4 together with Proposition 6.

We have now affirmed the correctness of the conjecture raisedin [11] by explicit examples

that vector linear coding can indeed be superior to scalar one in terms of the required alphabet

size in a linear network coding solution. Furthermore, these first exemplifying networks suggest

that there are cases where vector linear coding are superiorto scalar linear coding in a stronger

sense than as conjectured in [11]:

• It is possible for a multicast network vector linearly solvable over GF(q′)L
′

for every prime

powerq′L
′

≥ qL, but not scalar linearly solvable not only over any GF(q′) with q′ ≤ qL, but

also over some GF(q′) with q′ > qL, which can be extremely large compared withqL.

C. Construction of Infinitely Many Network Instances

In the previous subsection, the key to proving the Swirl Network to be vector linearly solvable

over GF(2)L but not scalar linearly solvable over GF(2L) is the observation that scalar linear

solutions over respective alphabetsGF(qL1), · · · ,GF(qLm) do not necessarily imply another

scalar linear solution overGF(qL1+···+Lm), but they guarantee a vector linear solution over

GF(q)L1+···+Lm. At this moment, it only brings us a few alphabet sizes2L with the property

that there is a multicast network vector linearly solvable over GF(2)L but not scalar linearly

solvable over GF(2L). In this subsection, we shall identifyinfinitely manyalphabet sizes with

this property. Towards this goal, we first characterize the vector linear solvability of the network

Nω,d described in Section II.B.

Lemma 8. The networkNω,d with parametersω andd = (d1, · · · , dω) has a vector linear solu-

tion over GF(q)L if and only if there exist invertible matricesA11, · · · ,A1d1 , · · · ,Aω1, · · · ,Aωdω
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of sizeL× L over GF(q) such that

rank (Ajk1 −Ajk2) = L ∀1 ≤ j ≤ ω, 1 ≤ k1 < k2 ≤ dj, (6)

rank
(
I+ (−1)ω−1MωMω−1 · · ·M1

)
= L

∀ Mj ∈
{
Aj1, · · · ,Ajdj

}
, 1 ≤ j ≤ ω. (7)

The technical proof of this lemma is provided in Appendix A. It is worthwhile to note that

whenL = 1, the lemma degenerates to a scalar linear solvability characterization ofNω,d, which

coincides with the one derived in [17] as a preliminary to further obtain Theorem 2.

Proposition 9. Let l be an arbitrary integer larger than 2. Setω ≥ 484 and d =
(⌈

26l+1−1
22

⌉

,
⌈
26l+1−1

22

⌉

, · · · ,
⌈
26l+1−1

22

⌉)

. Then,Nω,d is vector linearly solvable over GF(2)6l+1

but not scalar linearly solvable over GF(26l+1).

Proof: We first show that the networkNω,d is not scalar linearly solvable over GF(26l+1).

Observe that the smallestn for 2n ≡ 1 mod p for p = 3, 5, 7, 11, 13, 17, 19 is, respectively,

2, 4, 3, 10, 12, 8, 18. Thus, it can be seen that the smallest positive integer thatpossibly divides

26l+1−1 is 23, and for every proper divisord of 26l+1−1, d ≤ 26l+1−1
23

< 26l+1−1
22

. Consequently,

d








⌈

⌈26l+1−1
22

⌉

d

⌉

+ · · ·+

⌈

⌈26l+1−1
22

⌉

d

⌉

︸ ︷︷ ︸

ω

−ω + 1








+ 2

≥d







⌈
26l+1 − 1

22d

⌉

+ · · ·+

⌈
26l+1 − 1

22d

⌉

︸ ︷︷ ︸

ω

−ω + 1







+ 2

>ω

(
26l+1 − 1

22
− d

)

+ d+ 2

≥484
26l+1 − 1

22
− 483

26l+1 − 1

23
+ 2 = 26l+1 + 1,

and hence condition (3) does not hold. Theorem 2 then affirms that Nω,d is not scalar linearly

solvable over GF(26l+1).
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We next establish a vector linear solution forNω,d over GF(2)6l+1. Write d =
⌈
26l+1−1

22

⌉

,

L = 6l + 1, L1 = 9 and L2 = 6l − 8. Let G1 be theL1 × L1 invertible matrix over GF(2)

representing a primitive element in GF(2L1), and G2 be theL2 × L2 invertible matrix over

GF(2) representing a primitive element in GF(2L2) according to the homomorphism presented

in (1) in Section II.A. Then,rank(Gj1
1 − G

j2
1 ) = L1 for all 1 ≤ j1 < j2 ≤ 2L1 − 1, and

rank(Gj1
2 −G

j2
2 ) = L2 for all 1 ≤ j1 < j2 ≤ 2L2 − 1.

Write m1 =
2L1−1

7
andm2 =

2L2−1
3

. Note that bothm1 andm2 are integers. For1 ≤ j ≤ m1,

1 ≤ k ≤ m2, defineBjk to be theL× L matrix over GF(2) as

Bjk =






G
7j
1 0

0 G3k
2




 .

Thus,rank (Bj1k1 −Bj2k2) = rank
(
G

7j1
1 −G

7j2
1

)
+ rank

(
G3k1

2 −G3k2
2

)
= L for all 1 ≤ j1 <

j2 ≤ m1, 1 ≤ k1 < k2 ≤ m2. Since

m1m2 − d =
29 − 1

7

26l−8 − 1

3
−

⌈
26l+1 − 1

22

⌉

>
26l+1

21 · 22
−

29 + 26l−8 − 1

21
− 1 > 0,

where the last inequality holds asl is assumed larger than2, we can setAn1, · · · ,And to be

arbitrary d distinct matrices in{Bjk : 1 ≤ j ≤ m1, 1 ≤ k ≤ m2} for 1 ≤ n ≤ ω − 1, and set

Aω1 = A0A11,Aω2 = A0A12, · · · ,Aωd = A0A1d, where

A0 =






G1 0

0 G2




 .

In this way,rank (Ajk1 −Ajk2) = L for all 1 ≤ j ≤ ω and1 ≤ k1 < k2 ≤ d, and

I /∈ {A0Bω · · ·B2B1 : Bn ∈ {Bjk, 1 ≤ j ≤ m1, 1 ≤ k ≤ m2}}

⊃ {MωMω−1 · · ·M1 : Mj ∈ {Aj1, · · · ,Ajd} , 1 ≤ j ≤ ω} .

This means that the designedA11, · · · ,A1d, · · · ,Aω1, · · · ,Aωd satisfy (6) and (7), soNω,d is

vector linearly solvable over GF(2)L according to Lemma 8.
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In the proof ofNω,d to be vector linearly solvable over GF(2)6l+1 in Theorem 9, we essentially

constructed a scalar linear code over GF(29) and another scalar linear code GF(26l−8), none of

which qualifies as a solution according to Theorem 2. Then, wecombine their corresponding

vector linear codes by direct sum and form a vector linear solution. This provides a new approach

to design vector linear codes which scalar codes cannot substitute. By a similar but more elaborate

argument, we are able to obtain the following generalization.

Theorem 10. Let p be an arbitrary prime. There exists a positive integerm such that for every

pml+1, l ≥ 1, an instanceNω,d can be found to be vector linearly solvable over GF(p)ml+1 but

not scalar linearly solvable over GF(pml+1).

Proof: Please refer to Appendix B.

If we let N1 represent the networkNω,d established in Theorem 10, then the multicast network

N constructed by Algorithm 1 withn = pml+1 has a vector linear solution over GF(p)ml+1, but

does not have a scalar linear solution over GF(q′) for any q′ ≤ pml+1. The conjectured benefit

of vector linear codes raised in [11] is thus proven in the following more general sense.

Corollary 11. For every primep, there are infinitely many alphabet sizespL each of which

corresponds to a multicast network vector linearly solvable over GF(p)L but not scalar linearly

solvable over any GF(q′) with q′ ≤ pL.

IV. V ECTOR LNC WITH SMALLER ALPHABETS BETTER THAN LARGER ONES

In this section, we shall investigate the vector linear solvability of multicast networks from

another direction, in which the main results to be established are outlined in Fig. 5. According

to Proposition 1, we have known that if a multicast network isnot vector linearly solvable over

GF(q)L, then it is not scalar linearly solvable over GF(qL) either. A natural subsequent question

is: when a multicast network is not vector linearly solvableover GF(q)L, is it scalar linearly
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unsolvable over GF(q′) for any q′ ≤ qL? It is tempting to think of a ‘yes’ answer, since vector

LNC offers a much larger set for local encoding kernel choices. However, we next prove the

negativeanswer to this question, through further study of the Swirl Network.

Vector linearly solvable

over GF(q)L
¢
 

Vector linearly solvable

over some GF(q)L, 1 < L < L¢

Proposition 14

Scalar linearly solvable

over some GF(q¢), q¢ < qL
¢
 

Proposition 13

Fig. 5. The main results to be established in Section IV.

Consider the Swirl NetworkNω,d with ω ≥ 6 andd = (2, · · · , 2) again. As a consequence

of Corollary 3, it is scalar linearly solvable over both GF(5) and GF(7), no matter how largeω

is selected. We shall next investigate its vector linear solvability.

Our first goal is to check whether the Swirl Network has a vector linear solution over GF(2)3

whenω = 6. Based on Lemma 8, a straightforward way to do so is to exhaustively enumerate

all invertible 3 × 3 matrices over GF(2) forA11,A12, · · · ,A61,A62 to see whether conditions

(6) and (7) hold. However, because there are total(23 − 20)(23 − 21)(23 − 22) = 168 invertible

3 × 3 matrices over GF(2), the raw exhaustive enumeration will involve 16812 combinations,

and such computational complexity is too high to realize. Inorder to reduce the computational

complexity in exhaustive enumeration, we are able to further refine the equivalent conditions

in Lemma 8 for the Swirl Network as follows. Similar refinement can also be conducted for a

generalNω,d but we shall not address it in this paper.

Lemma 12. The Swirl Network has a vector linear solution over GF(q)L if and only if there
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exist invertible matricesB1, · · · ,Bω,Bω+1 of sizeL× L over GF(q) such that

rank (I−Bj) = L ∀ 1 ≤ j ≤ ω, (8)

rank (Bω+1 +MωMω−1 · · ·M1) = L

∀ Mj ∈ {I,Bj} , 1 ≤ j ≤ ω. (9)

Proof: Please refer to Appendix C.

Consider the case thatq = 2 andL = 3. There are total 48 invertible matricesB over GF(2)

of size3×3 satisfyingrank(I−B) = 3 by computer search. Thus, the number of combinations

to search for invertible matricesB1, · · · ,B7 subject to (8) and (9), whenω is set to 6, is487,

which becomes more manipulable. By a divide-and-conquer method onω, we first find that there

are 2304 sets of invertible matricesB1, · · · ,B4 subject to (8) and (9) whenω is set to 3. Based

on this finding, further exhaustive enumeration verifies that no invertible matricesB1, · · · ,B7

can be found to make (8) and (9) hold. It can also be readily verified that there are not invertible

matricesB1, · · · ,B7 over GF(2) of size2× 2 to make conditions (8) and (9) hold, so the Swirl

Network is not vector linearly solvable over GF(2)2 either. In addition, the Swirl Network is not

scalar (and thus not vector) linearly solvable over GF(2). Since the Swirl Network withω > 6

has a vector linear solution over GF(q)L only if so is the Swirl Network withω = 6, we conclude

the following.

Proposition 13. For ω ≥ 6, the Swirl Network is scalar linearly solvable over GF(5) and GF(7),

but does not have a vector linear solution over GF(2)L for anyL ≤ 3.

The Swirl Network affirms that even though the choice of localencoding kernels in scalar

LNC is more restricted than in vector LNC, scalar LNC can still outperform vector LNC (of

dimension larger than 1) in terms of enabling a linear solution using a smaller alphabet. Since

every scalar solution can be regarded as a vector solution ofdimension 1, this finding suggests
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that the alphabet size for vector LNC is not always the largerthe better for yielding a solution

on a multicast network.

Next, we present a more surprising result that over the same base field, a higher dimension

of vector LNC isnot always more likely to enable a linear multicast solution.

Proposition 14. The Swirl Network, which has a scalar linear solution over GF(24) and thus

a vector linear solution over GF(2)4, is not vector linearly solvable over GF(2)5 when source

dimensionω is large enough.

Proof: According to Corollary 3 and Proposition 1, it is straightforward to see that the

Swirl Network is scalar linearly solvable over GF(24) and then vector linearly solvable over

GF(2)4. In order to show that the Swirl Network is not vector linearly solvable over GF(2)5, by

Lemma 12, it is equivalent to show the non-existence of invertible matricesB1, · · · ,Bω+1 of

size5× 5 over GF(2) to make conditions (8) and (9) hold. However, asω is large and there are

(25−1)(25−2) · · · (25−24) = 9999360 invertible matrices of size5×5 over GF(2), which form

the general linear groupGL5(2), it is hard to directly check this by exhaustive enumeration. By

analyzing the group structure ofGL5(2), which is provided in [23], we shall first greatly reduce

the cases to the degree that exhaustively enumeration is manipulable.

Assume that there is a vector linear solution for the Swirl Network over GF(2)5, and let

B1, · · · ,Bω+1 be 5× 5 matrices over GF(2) satisfying conditions (8) and (9).

Recall that the conjugacy class of an elementa in a groupG refers to the set{gag−1 : g ∈ G}.

The elements in a group can be partitioned into conjugacy classes and elements in the same

conjugacy class have the same order. Sincerank(I−ABA−1) = rank(A(I−B)A−1) for every

A ∈ GL5(2), rank(I −B) = 5 for a matrixB ∈ GL5(2) if and only if rank(I −B′) = L for

every matrixB′ in the conjugacy class ofB in GL5(2). After examining the representative of

every conjugacy class inGL5(2), as listed in [23], we found that there are only 8 conjugacy

classes inGL5(2) in which the matricesB satisfy rank(I − B) = 5. Two of the 8 conjugacy
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classes comprise matrices of order 21 inGL2(5), and the other 6 conjugacy classes comprise

matrices of order 31 inGL2(5). Thus,B1, · · · ,Bω+1 are contained in the union of these8

conjugacy classes.

Next, asω is assumed large enough,

{I,B1, · · · ,B
31
1 } ⊆ {MωMω−1 · · ·M1 : Mj ∈ {I,Bj}, 1 ≤ j ≤ ω},

and thusrank(Bω+1 +B
j
1) = 5 for all 1 ≤ j ≤ 31. Let B′

1 be the representative listed in [23]

for the conjugacy class whichB1 belongs to. Then,B′
1 can be written asAB1A

−1 for some

A ∈ GL5(2). Also write B′
ω+1 = ABω+1A

−1. Then,

rank(B′
ω+1 −B

′j
1 ) = rank(A(Bω+1 −B

j
1)A

−1) = 5 ∀1 ≤ j ≤ 31.

It can be observed that the set{B′
1,B

′2
1 , · · · ,B

′31
1 } is identical no matter which conjugacy

class of order31 matricesB′
1 is in. It can further be checked thatrank(B′j

1 −B′k
1 ) = 5 for all

1 ≤ j < k ≤ 31. Thus, the33 matrices0,B1, · · · ,B31
1 ,Bω+1 form a 5-dimensional rank-metric

code of distance5 over GF(2). However, this contradicts the fact that the number of codewords

of such a code is at most25 = 32 according to the Singleton bound of rank-metric codes.

Consequently,B′
1 can only be the representative for either of the two conjugacy classes of

order 21 matrices. It can be observed that the set{B′
1, · · · ,B′21

1 } is identical for both cases.

Then, exhaustive enumeration can be readily conducted on all possibleB′
ω+1 ∈ GL5(2) with

rank(I−B′
ω+1) = 5 to verify that there does not existB′

ω+1 such thatrank(B′
ω+1−B′j

1) = 5

for all 1 ≤ j ≤ 21. We can now conclude that there does not exist a vector linearsolution over

GF(2)5 whenω is large enough.

Remark. It has been proven in [24] that the classical network proposed in [3] which is not

scalar linearly solvable over any field has a vector linear solution over GF(q)L if and only if L is

even. However, the discovery in Proposition 14 is more surprising in the sense that a multicast

network is considered, which always has a linear solution over a sufficiently larger alphabet.
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In comparison, a solvable (non-multicast) network is not even vector linearly solvable over any

GF(q)L [25].

Vector linearly solvable

over GF(q)L
¢

Scalar linearly solvable over

both GF(qL) and GF(qL
¢-L)

Vector linearly solvable

over GF(q)L

Scalar linearly solvable

over GF(qL
¢
)

Scalar linearly solvable

over GF(qL)

Vector linearly solvable over

both GF(q)L and GF(q)L
¢-L

[16]

Well-known

[16]

Well-known

Proposition 14

Theorem 10(Proposition 1)

(Proposition 5)

Scalar linearly solvable

over some GF(q¢), q¢ £ qL
¢
 

Proposition 13
Corollary 7

Proposition 6, 9

Corollary 11

Fig. 6. The relationship established between scalar and vector linear solvability on a multicast network. Herein,1 < hL < L′.

V. SUMMARY

In this paper, several new results are established for vector linear network coding (LNC)

on multicast networks. A systematic way is first introduced to construct a multicast network

that has a vector linear solution over GF(p)L, but does not have a scalar linear solution over

any GF(q′) with q′ ≤ pL, for an arbitrary prime p and infinitely manyalphabet sizespL. This

affirms a conjectured benefit of vector LNC over scalar one in [11]. In addition, the technique to

construct a vector linear solution is new: a vector linear solution over GF(q)L can be constructed

by direct sum of different scalar linear codes, which arenot necessarilyscalar linear solutions,

over GF(qL1), · · · , GF(qLm) with L1+ · · ·Lm = L. This is demonstrated to be useful and cannot

be substituted by scalar LNC because a multicast network which has scalar linear solutions over

GF(qL1), · · · , GF(qLm) is not even scalar linearly solvable over GF(qL1+···+Lm). In the second part

of the paper, explicit multicast networks are presented andproven to have the special property
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that they do not have a vector linear solution of dimensionL over GF(2) but have scalar linear

solutions over GF(q′) for someq′ < 2L, whereq′ can be odd or even. This discovery unveils a

surprising result for vector LNC on multicast networks: theexistence of a vector linear solution

over GF(2)L does not imply the existence of a vector linear solution overGF(2)L
′

with L′ > L.

Fig. 6 summarizes the relationship between scalar and vector LNC on a multicast network

established so far in the literature.

APPENDIX

A. Proof of Lemma 8

Denote byej1, · · · , ejdj thedj outgoing edges of layer-3 nodevj for each1 ≤ j ≤ ω. Consider

a vector linear code over GF(q)L. For 1 ≤ j ≤ ω, denote byUj1, · · · ,Ujdj the local encoding

kernels for adjacent pairs(dj, e) with e ∈ In(vj) and e ∈ In(vj−1), respectively, wherev0

stands forvω. Note that by left multiplyingUj1 to the local encoding kernels for downstream

adjacent pairs(e, ej1), · · · , (e, ejdj ), and resettingUj1 to be theL×L identity matrixI, the global

encoding kernels for edgesej1, · · · , ejdj remain unchanged. Hence, without loss of generality,

for all 1 ≤ j ≤ ω and 1 ≤ k ≤ dj, we can assumeUjk = I and letKjk,K
′
jk denote the local

encoding kernels for(e, ejk), e ∈ In(vj). Then, the juxtaposition of global encoding kernels for

edgesejk is equal to

[Fej1 · · ·Fejdj
]1≤j≤ω =










K11 K1d1
0 0 Kωd1

Kωdω

K′

11 K′

1d1

...
... 0 0

0 ··· 0
... 0 ··· 0

... ···
...

...
... K(ω−1)1 K(ω−1)dω−1

0 0

0 0 K′

(ω−1)1
K′

(ω−1)dω−1
K′

ω1 K′

ωdω










Since there is a receiver connected from every setN of ω grey nodes withmaxflow(N) and

eachejk is the unique incoming edge to a grey node, the vector linear code is a solution if and

only if for every setE of ω edges in{ejk : 1 ≤ j ≤ ω, 1 ≤ k ≤ dj} with maxflow(E) = ω,

wheremaxflow(E) means the number edge-disjoint paths starting from the source and ending

at edges inE, the matrix[Fe]e∈E is of full rank ωL.
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To prove the necessity part of the lemma, assume that the considered code is a vector linear

solution. First observe thatmaxflow(E) = ω whenE = {e1k1, · · · , e(ω−2)kω−2
, e(ω−1)1, e(ω−1)2},

where1 ≤ kj ≤ dj . Then the matrix[Fe]e∈E =







K1k1
0 0

K
′

1k1
··· ··· ···

0 ··· K(ω−2)kω−2
0 0

··· K′

(ω−2)kω−2
K(ω−1)1 K(ω−1)2

0 0 K′

(ω−1)1
K′

(ω−1)2







has full rank

ωL. Because

0 6= det([Fe]e∈E)

= det









K1k1
0 0

K′

1k1
··· ···

··· ··· K(ω−3)kω−3
0

0 K′

(ω−3)kω−3
K(ω−2)kω−2







 det
([

K(ω−1)1 K(ω−1)2

K′

(ω−1)1
K′

(ω−1)2

])

= det(K1k1) · · ·det(K(ω−2)kω−2
) det

([
K(ω−1)1 K(ω−1)2

K
′

(ω−1)1
K

′

(ω−1)2

])

,

the local encoding kernelsK1k1 , · · · ,K(ω−2)kω−2
are invertible matrices. By similar arguments on

the set{e1k1, · · · , e(ω−2)kω−2
, eω1, eω2}, {e11, e12, e3k3, · · · , eωkω}, and {e21, e22, e3k3, · · · , eωkω},

where1 ≤ kj ≤ dj, we can deduce that all local encoding kernelsKjk andK′
jk for 1 ≤ j ≤ ω,

1 ≤ k ≤ dj, are invertible matrices.

Write Ajk = K′
jkK

−1
jk for 1 ≤ j ≤ ω − 1, 1 ≤ k ≤ dj , andAωk = KωkK

′−1
ωk for 1 ≤ k ≤ dω.

We need show these invertible matrices satisfy conditions (6) and (7). Define another vector

linear code of dimensionL over GF(q) prescribed by the following global encoding kernels

[F′
ej1

· · ·F′
ejdj

]1≤j≤ω =









I I 0 0 Aω1 Aωdω

A11 A1d1

...
... 0 0

0 ··· 0
... 0 ··· 0

... ···
...

...
... I I 0 0

0 0 A(ω−1)1 A(ω−1)dω−1
I I









(10)

Since [F′
ej1

· · ·F′
ejdj

]1≤j≤ω = [Fej1 · · ·Fejdj
]1≤j≤ωDiag(∗), where Diag(∗) stands for

the square block diagonal matrix with diagonal blocks equalto K−1
11 , · · · ,K

−1
1d1

, · · · ,

K−1
(ω−1)1,K

−1
(ω−1)dω−1

,K′−1
ω1 ,K

′−1
ωdω

, we have, for any setE of ω edges withmaxflow(E) = ω,

rank ([Fe]e∈E) = rank ([F′
e]e∈E) .

ConsiderE = {e1k1 , e1k2 , e21, · · · , e(ω−1)1} subject tomaxflow(E) = ω, where1 ≤ k1 <
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k2 ≤ d1. Then,

0 6= det ([F′
e]e∈E) = det









I I 0 0
A1k1

A1k2
I ···

0 0 A21 ··· 0

··· ··· ··· I

0 0 0 A(ω−1)1









= det
([

I I

A1k1
A1k2

])
det

([
A21 0 0

0 ··· ···
··· A(ω−2)1 I

0 0 A(ω−1)1

])

.

This implies that0 6= det
([

I I

A1k1
A1k2

])
= det

([
I 0

A1k1
A1k2

−A1k1

])
, i.e., rank(A1k1 −A1k2) = L.

By similar arguments onE = {ejk1, ejk2, e(j+1)1, · · · , e(j+ω−1)1}, where1 ≤ j ≤ ω, 1 ≤ k1 <

k2 ≤ dj, andel1 refers toe(l−ω)1 wheneverl > ω, we can verify that condition (6) holds for the

consideredAjk .

Consider E = {e1k1, e2k2 , · · · , eωkω} subject to maxflow(E) = ω, where 1 ≤

kj ≤ dj. Then, [F′
e]e∈E =





I 0 0 Aωkω

A1k1
I ··· 0

0 A2k2
··· 0 ···

··· ··· I 0
0 0 A(ω−1)kω−1

I



 has full rank ωL.

Set Mω =

[
I 0 −Aωkω

0 ··· 0
··· ··· 0 ···
··· I 0

0 0 I

]

,Mω−1 =

[
I 0 AωkωA(ω−1)kω−1

0

0 I ··· 0
··· 0 ··· 0 ···
··· ··· I 0
0 0 0 I

]

, · · · , M2 =

[
I (−1)ω−1

AωkωA(ω−1)kω−1
···A2k2

0 0

0 I ··· ···
··· 0 ··· 0 ···
··· ··· I 0
0 0 0 I

]

. Obviouslydet(M2) = · · · = det(Mω−1) = det(Mω) =

1. A careful calculation yields

M2 · · ·Mω[F
′
e]e∈E =






I+(−1)ω−1Aωkω ···A1k1
0 0 0

A1k1
I ··· 0

0 A2k2
··· 0 ···

··· ··· I 0
0 0 A(ω−1)kω−1

I




 .

This implies det(I + (−1)ω−1Aωkω · · ·A1k1) = det([F′
e]e∈E) 6= 0, and hencerank(I +

(−1)ω−1Aωkω · · ·A1k1) = L. Condition (7) thus holds for the consideredAjk. The necessity

part of the lemma is proved.

For the sufficiency part, letAjk, 1 ≤ j ≤ ω, 1 ≤ k ≤ dj, be invertible matrices of sizeL×L

over GF(q) subject to conditions (6) and (7). Assume that the considered vector linear code has

local encoding kernelsKjk = I andK′
jk = Ajk when1 ≤ j ≤ ω − 1, andK′

jk = I, Kjk = Ajk

when j = ω, where1 ≤ k ≤ dj. In this way, the juxtaposition[Fej1 · · ·Fejdj
]1≤j≤ω of global

encoding kernels for edges{ejk : 1 ≤ j ≤ ω, 1 ≤ k ≤ dj} is identical to (10). It can then

be shown, by similar classified discussion following (10), that for every setE of ω edges in
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{ejk : 1 ≤ j ≤ ω, 1 ≤ k ≤ dj} with maxflow(E) = ω, theωL× ωL matrix [Fe]e∈E is of full

rank ωL. The considered code thus qualifies as a solution forNω,d.

B. Proof of Theorem 10

The casep = 2 has been considered in Proposition 9.

Assume thatp is odd andl is an arbitrary positive integer. Writea = p2+p+1 andb = 2(p−1).

Note thata dividesp3l−1 but does not dividep3l+1−1, andb dividesp2l−1 but does not divide

p2l+1 − 1. Label all odd primes smaller thanab asp1, · · · , pn for somen. For each1 ≤ j ≤ n,

denote byqj the smallest power ofpj that does not dividep−1, and bymj the smallest positive

integer subject topmj ≡ 1 mod qj. Define m to be the least common multiplier of12 and

m1, · · · , mn. In this manner, each ofa, b, q1, · · · , qn dividespml − 1, but none of them divides

pml+1 − 1. Moreover, asq1···qn
p1···pn

< p− 1, the largest divisor ofpml+1 − 1 that is smaller thanab

is b/2 = p− 1.

WriteL = ml+1, which is no smaller than 13. Denote(p
9−1)(pL−9−1)

ab
by d0, which is always an

integer asa dividesp9−1 andb dividespL−9−1. Consider the networkNω,d with ω sufficiently

large andd = (d0, · · · , d0
︸ ︷︷ ︸

ω−1

, (a − 1)(b − 1)d0). It suffices to show that it is not scalar linearly

solvable over GF(pL) but vector linearly solvable over GF(p)L.

Let d be a proper divisor ofpL−1. In the cased < d0, it is obvious to observe that condition

(3) does not hold for theω-tupled whenω is sufficiently large. Consider the cased ≥ d0. As

L ≥ 13 andab = 2(p3 − 1), it can be readily checked that(p
9−1)(pL−9−1)

ab
> pL−1

ab+1
, so d > pL−1

ab+1

and thus can be written as(pL − 1)/d′ for some divisord′ of pL − 1 that is smaller thanab. As
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argued previously,d′ ≤ b/2 = p− 1, so

(a− 1)(b− 1)d0 − (d′ − 1)
pL − 1

d′

≥(a− 1)(b− 1)
(p9 − 1)(pL−9 − 1)

ab
−

b− 2

b
(pL − 1)

=
a− b+ 1

ab
pL −

ab− a− b+ 1

ab
(p9 + pL−9 − 1) +

b− 2

b

>
2

ab
pL − p9 − pL−9 > 0.

This implies
⌈
(a−1)(b−1)d0

d

⌉

= d′. Consequently,

d







⌈
d0
d

⌉

+ · · ·+

⌈
d0
d

⌉

︸ ︷︷ ︸

ω−1

+

⌈
(a− 1)(b− 1)d0

d

⌉

− ω + 1







+ 2 =
pL − 1

d′
d′ + 2 > pL,

so condition (3) does not hold for the cased ≥ d0 either. Theorem 2 then asserts that the

considered networkNω,d is not scalar linearly solvable over GF(pL).

We next establish a vector linear solution forNω,d over GF(p)L. Let G1 be the 9 × 9

invertible matrix over GF(p) representing a primitive element in GF(p9), and G2 be the

(L − 9) × (L − 9) invertible matrix over GF(p) representing a primitive element in GF(pL−9)

according to the homomorphism presented in (1) in Section II.A. Then,rank(Gj1
1 −G

j2
1 ) = 9

for all 1 ≤ j1 < j2 ≤ p9 − 1, andrank(Gj1
2 −G

j2
2 ) = L − 9 for all 1 ≤ j1 < j2 ≤ pL−9 − 1.

For 1 ≤ j ≤ p9−1
a

, 1 ≤ k ≤ pL−9−1
b

, defineBjk to be theL × L matrix G over GF(q) as

Bjk =






G
aj
1 0

0 Gbk
2




. Then,rank(Bj1k1−Bj2k2) = rank(Gaj1

1 −G
aj2
1 )+rank(Gbk1

2 −Gbk2
2 ) = L

for all 1 ≤ j1 < j2 ≤ p9−1
a

, 1 ≤ k1 < k2 ≤ pL−9−1
b

. Set An1, · · · ,And0 to be the

d0 distinct matrices in{Bjk : 1 ≤ j ≤ p9−1
a

, 1 ≤ k ≤ pL−9−1
b

} for all 1 ≤ n ≤

ω − 1, and setAω1, · · · ,Aω((a−1)(b−1)d0) to be the (a − 1)(b − 1)d0 distinct matrices in
{

(−1)ω
[

Ga′

1 0

0 G
b′

2

]

Bjk : 1 ≤ a′ < a, 1 ≤ b′ < b, 1 ≤ j ≤ p9−1
a

, 1 ≤ k ≤ pL−9−1
b

}

. Condition (6)

naturally holds for thus definedAjk. Moreover, asGaj+a′

1 6= I and G
bj+b′

2 6= I, rank(I −

G
aj+a′

1 ) = 9 and rank(I − G
bj+b′

2 ) = L − 9 for all j ≥ 0, 1 ≤ a′ < a and 1 ≤ b < b′.
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Consequently, condition (7) holds for the definedAjk too. According to Lemma 8,Nω,d is

vector linearly solvable over GF(p)L.

C. Proof of Lemma 12

Given invertible matricesA11,A12, · · · ,Aω1,Aω2 over GF(q) of sizeL×L, define invertible

L× L matricesBj, 1 ≤ j ≤ ω + 1 in the following way:

B1 =
(
A−1

11

)
A12,

B2 =
(
A−1

11 A
−1
21

)
A22 (A11) ,

...

Bω =
(
A−1

11 · · ·A−1
ω1

)
Aω2

(
A(ω−1)1 · · ·A11

)
,

Bω+1 = (−1)ω−1A−1
11 · · ·A−1

ω1 .

(11)

Conversely, given invertibleL×L matricesBj, 1 ≤ j ≤ ω + 1, defineA11,A12, · · · ,Aω1,Aω2

to be arbitrary matrices satisfying (11). Such a selection always exists because we can set

A11, · · · ,A(ω−1)1 = I, Aω1 = (−1)ω−1B−1
ω+1, andAj2 = (Aj1 · · ·A11)Bj(A

−1
11 · · ·A−1

(j−1)1) for

1 ≤ j ≤ ω.

It can be readily checked that the two sets of matrices

{MωMω−1 · · ·M1 : Mj ∈ {Aj1,Aj2} , 1 ≤ j ≤ ω}

and

{Aω1 · · ·A11MωMω−1 · · ·M1 : Mj ∈ {I,Bj} , 1 ≤ j ≤ ω}

are identical. Then,

{
I+ (−1)ω−1Mω · · ·M1 : Mj ∈ {Aj1,Aj2} , 1 ≤ j ≤ ω

}

=
{
B−1

ω+1 (Bω+1 +Mω · · ·M1) : Mj ∈ {I,Bj} , 1 ≤ j ≤ ω
}
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Hence, condition (7) holds forA11,A12, · · · ,Aω1,Aω2 if and only if condition (9) holds for

B1, · · · ,Bω,Bω+1. Moreover, because for every1 ≤ j ≤ ω,

rank(I−Bj)

= rank
(
A−1

11 · · ·A−1
j1

(
Aj1 · · ·A11 −Aj2A(j−1)1 · · ·A11

))

= rank
(
A−1

11 · · ·A−1
j1 (Aj1 −Aj2)A(j−1)1 · · ·A11

)

= rank (Aj1 −Aj2) ,

condition (8) holds for B1, · · · ,Bω,Bω+1 if and only if condition (6) holds for

A11,A12, · · · ,Aω1,Aω2.
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