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Abstract

Vector linear network coding (LNC) is a generalization of ttonventional scalar LNC, such that the
data unit transmitted on every edge is ladlimensional vector of data symbols over a base fieldgJsF(
Vector LNC enriches the choices of coding operations atrimégliate nodes, and there is a popular
conjecture on the benefit of vector LNC over scalar LNC in ®whalphabet size of data units: there
exist (single-source) multicast networks that are vedtmdrly solvable of dimensioh over GFg) but
not scalar linearly solvable over any field of sige< ¢”. This paper introduces a systematic way to
construct such multicast networks, and subsequently lestadxplicit instances to affirm the positive
answer of this conjecture fdanfinitely manyalphabet sizeg” with respect to ararbitrary prime p.
On the other hand, this paper also presents explicit ineandth the special property that they do not
have a vector linear solution of dimensiénover GF(2) but have scalar linear solutions over gor
someq’ < 2%, whereq’ can be odd or even. This discovery also unveils that over engbase field, a
multicast network that has a vector linear solution of disien L does not necessarily have a vector

linear solution of dimensiod.” > L.

Index Terms

Vector network coding, scalar network coding, multicastwmeks, alphabet size, direct sum.
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I. INTRODUCTION

In the conventional theory of linear network coding (LNC]J[&l, the data unit transmitted
along every edge of unit capacity in a network consists ofhglsidata symbol belonging to a
base field GF{). Every outgoing edge of a nodetransmits a data symbol that is a GJ-(inear
combination of the incoming data symbols #o Such a coding mechanism is referred to as
scalar LNC

A generalization of scalar LNC igector LNC[3] or block LNC[4], which models the data
unit transmitted along every edge of unit capacity aslatimensional vector of data symbols
over a base field GEk|, and concomitantly defines the coding operations perfdriateevery
intermediate node as GHflinear combinations of all data symbols in incoming daté uectors,

as illustrated in Figl]1.
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Fig. 1. Consider an intermediate nodevith 1 outgoing edge and incoming edges in a network. In vector LNCreceives two
vectors(mai, - -+ ,mair) and(maa, - -+ ,mar) Of L data symbols belonging to a base field @F{The data unit transmitted on
the outgoing edge of is also a vector of. data symbols over GE), in which each data symbol is a Gf{linear combination

of all 2L incoming data symbols to.

The introduction of the concept of vector LNC stems from itéemtial to enrich the choices
of coding operations at intermediate nodes in a network. gdtential of vector LNC has been
considered from several different aspects (See for exaf8p[&3]). In particular, the work in[[3]
demonstrated a classic multi-source multicast networlcivhias a simple vector linear solution

of dimension2 over GF(2) but does not have a scalar linear solution overbase field. It was
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also noted in[[B] that the network constructedin|[14] whisbt scalar linearly solvable over
any field has a vector linear solution. There is another eXéimy network proposed in[[5]
which does not have a scalar linear solution over any fieldhast a vector linear solution of
dimension3 over GF(2). These exemplifying networks manifest the sSopigy of vector LNC
over scalar LNC in terms of enabling a linear solution.

Up to now, most studies on vector LNC have been in the contegeneral (non-multicast)
networks. Specific to a (single-source) multicast netwtinkugh it is well known that there is
a scalar linear solution over a field with size no smaller ttr@nnumber of receivers [15], there
are still benefits to consider vector LNC, as summarized 1. [h particular, the alphabet size
of data units is a key factor that affects the linear solvgbdf a multicast network. Under the
same alphabet sizg’, in which case the transmission delay of a data unit alonglge & same,
vector LNC of dimension. over GF) provides much more choices for coding operations than
scalar LNC over GFR("), and every scalar linear code over G¥( can be transformed into a
vector linear code of dimensioh over GF(), so that the scalar linear code is a solution if and
only if its corresponding vector linear code is a solutioa.tdhus, a network has a scalar linear
solution over GR{") only if it has a vector linear solution of dimensidnover GFg). It would
be natural to conceive the following benefit of vecor LNC, asjectured in[[111]:

« There exists a multicast network that is vector linearlywable of dimensiorl. over GF(),

but not scalar linearly solvable over GH(for any ¢’ < ¢*.
If proven true, this conjecture will imply practical benegitvector LNC in terms of reducing the
alphabet size to yield a solution on a multicast network,clvhis a fundamental research topic
in the network coding literature. However, even though tlekwin [11] indicated the possible
correctness of this conjecture from the perspective of iwarlite determinant polynomials of
transfer matrices, it failed to provide explicit multicasttworks to verify its correctness.

In the first part of the paper, we propose a systematic way mstoact a multicast network

vector linearly solvable over Gi) at dimension. but not scalar linearly solvable over GH(for
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anyq < ¢*. Explicit multicast networks are also subsequently carcsed based on this method
so that the aforementioned conjecture is proven to be dofwednfinitely manyalphabet sizes
pP with respect to ararbitrary prime p. Moreover, some of the illustrated multicast networks
vector linearly solvable at dimensioh over GFfp) do not have a scalar linear solution over
GF(¢), not only for all thoseq < p, but also for some/ > p~. This affirms that in some
multicast networks, vector LNC can indeed be superior téasdaNC, in a stronger sense than
as conjectured, in terms of alphabet size of data units tlul ydesolution. The vector coding

techniques we propose to beat scalar codes have severaatipis:

« Scalar linear solutions over respective alphalé&gq™), - - - , GF(¢') do not necessarily
imply another scalar linear solution oveif' (g% +*1m), but they guarantee a vector linear
solution of dimension; + - -- + L,, over GFg).

. For scalar linear codes over respective alphab#tg;’*), - GF(¢"™), even in the case
that none of them has a solution, it is still possible to cameltheir corresponding vector
linear codes, by direct sum, to form a vector linear solutbdérdimensionZ; + --- + L,,

over GF().

In the second part of the paper, we compare the alphabet etperements for scalar and
vector linear solvability of multicast networks from anethdirection. Specifically, now that the
non-existence of a vector linear solution of dimensiover GF) implies the non-existence
of a scalar linear solution over Gf), a natural question is whether it can further imply the
non-existence of a scalar linear solution over every@@Rgith ¢ < ¢*. At a first glance, one
might be inclined to believe its correctness. However, asknadl demonstrate, the answer to this
guestion isnegative Another contribution of this paper is to show explicit nicdist networks,
for the first time in the literature, which do not have a vedinear solution of dimensiori.
over GFQ) but have a scalar linear solution over Gffor someq’ < 2£, whereq’ can be odd

or a power of2. This discovery suggests that it is also possible for sdaN{€ to outperform
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vector LNC (of dimension, > 2) in multicast networks, in terms of using a smaller alphabet
to yield a solution. More importantly, it further disclostmat

. over a given base field, a multicast network vector lineadlyable of dimension. is not

necessarily vector linearly solvable of dimensidiiswith L' > L.
This discovery is intriguing in the sense that it appearsaotradict the folklore on multicast
networks: the larger the alphabet block length, the moreila linear solution exists.

Recently, a few multicast networks were discovered_in [L8hwhe intriguing property that
they are scalar linearly solvable over a small field but natesearily scalar linearly solvable
over a larger field. They share a common topological strectand can thus be subsumed in a
particular class of multicast networks, whose scalar lisedvability is completely characterized
in [17]. One of the fundamental building blocks for the reéswlbtained in this paper is the further
analysis of the vector linear solvability of this speciahsd of multicast networks, which was
not dealt with in [16] and[[17].

The remainder of this paper is organized as follows. In $actil, we establish the
mathematical notations to be adopted and review some usgidimental results of vector
and scalar LNC. In Section Ill, we present a general way tstant multicast networks vector
linearly solvable over Gk{ of dimensionL but not scalar linearly solvable over GH(for any
¢ < ¢%, and present instances for an arbitrary primand infinitely many alphabet sizeg.

In Section IV, we verify that on multicast networks smallépheabets can be better than larger

ones for yielding a vector linear solution. Section V sumaes the paper.

[I. PRELIMINARIES
A. Mathematical Model for Vector Linear Codes

This work focuses on a single-source multicast networkctviie modeled as a finite directed
acyclic multigraph, with a unique source nosl@nd a sefl” of receivers. For a node in the

network, denote byn(v) andOut(v), respectively, the set of its incoming and outgoing edges.
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Every edge has unit capacity and every outgoing edge fronsdheces transmits a data unit
generated by. Write |Out(s)| = w, which will be referred to as the source dimension of the
network. Then there are totally source data units to be transmitted across the network. A
topological order is assumed on the set of edges led by onésuifis). For every receiver

t € T, based on the data units received from edgesrift), its goal is to recover the source
data units generated from The maximum flow for every receiverc |T'|, which is defined to

be the maximum number of edge-disjoint paths leading frota ¢, is assumed to be.

In the conventional scalar LNC, the data unit transmitteshglevery edge merely consists
of a single data symbol belonging to a symbol alphabet whscmathematically modeled as a
finite field GFg). A scalar linear codds an assignment of lacal encoding kernet,; . € GF(q)
to every pair(d, e) of edges such that; . = 0 when(d, e) is not an adjacent pair of edges. Every
scalar linear code uniquely determines a global encodimgeké., which is anw-dimensional
column vector over G, for each edge in the network. On a multicast network, a scalar linear
code is called acalar linear solutionif for every receivert € T', the juxtapositionf,|cc, ) of

the global encoding kernels for edges incoming teas full rankw.

As a generalization of scalar LNC, vector LNC models the datia transmitted along every
edgee to be anL-dimensionalrow vectorm, of data symbols over a base field G} (Thus,
the mathematical model for the data unit alphabet in vec€lis a vector space G&{ rather
than a finite field. Under the new mathematical structure ¢ daits, the model of scalar LNC

can be naturally extended to vector LNC as follows.

A vector linear code of dimensioh over GF(g), or a vector linear code oveGF(g)" for
short, is an assignment oflacal encoding kerneK, ., which is anL x L matrix overGF(q),
to every pair(d, e) of edges such thdk, . is the zero matriX0 when (d, e) is not an adjacent

pair. Then, for every edge outgoing from a non-source node the data unit vector of data
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symbols transmitted on is

Furthermore, every vector linear code uniquely determagdobal encoding kerndl',, which

is anwL x L matrix over GF(), for every edge: such that

« The columnwise juxtapositiofF.].cou(s) Of F. for e € Out(s) forms anwL x wL identity

matrix I;

« For every outgoing edge from a non-source node, F, = Zdeln(v) F.Kg..

Correspondingly, the data unit vector transmitted alorgryeedgee can also be represented as

me = [md] deOut(s) F..

A vector linear code over GE)* is called avector linear solutiorif for every receivert ¢ T,
the juxtapositionF . |.c () of the global encoding kernels for edges incoming taas full rank
wL. Correspondingly, there is al In(t)| x L|Out(s)| decoding matrixD; over GF() for every

receivert such that the source data units can be recoverediat
[mc]eern@Ds = (IMalacout(s)[Feleemn)) D
= [malacour(s) ([FelecrDt)
= [Ma]icou(s)] = [Malacour(s)-
A scalar linear code can be regarded as a vector linear codetfvo different facets. On one
hand, it is straightforward to see that every scalar lin@alecover GR(") is naturally a vector

linear code of dimension 1 over Gf#). On the other hand, leb be a mapping from Gk()

into the ring of L x L matrices over Gk via

®(0) = 0,
1)
D(F)=Ck 0<k <q¢" -2,
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where C, is the L x L companion matrix of a primitive polynomial(z) of degreeL over
GF(g), and~ is a fixed root ofp(z), that is, a primitive element of GE{). As a consequence of
the Cayley-Hamilton theorem, this mapping is a homomomh&nd{0, C°, - - - ,C‘IL‘Q} forms

a matrix representation of the finite field GFf (See, for example/[[18]). Then, every scalar
linear code over GR() with local encoding kernelék,.) corresponds to a vector linear code

over GF()” with local encoding kernels prescribed as
Kd,e = q)(kd,e)u (2)

and moreover, based on the homomorphic propert$,oive can derive the following result.

Proposition 1. Given a (not necessarily multicast) network, a scalar liremale over GR(")
with local encoding kernel&:, ) is a solution if and only if the corresponding vector lineade
over GF(¢)* with local encoding kernelK, . = ®(k,.) qualifies as a solution too. Moreover, if
D, is a decoding matrix of the scalar linear solution for reeeiy then®(D,) is also a decoding
matrix of the corresponding vector linear solution tpmwhere® is applied componentwise for

the entries inD;,.

In summary, Tablé] | compares the mathematical structuresafir and vector LNC.

B. A Special Class of Multicast Networks

Recently, the first few known multicast networks that ardasciinearly solvable over Glgj
but not necessarily over a larger GH(were discovered i [16]. They share a similar topology
and can be generalized into a class of multicast netwdrkg, as replotted in Figl]2, with
topological parameters andd = (dy, ds, - - - ,d,,). The networkN,, 4 has source dimensian,
and consists of nodes on five layers. The sourée the unique node in the first layer. There
arew layer-2 nodes:;, 1 < j <w, each of which is connected fromby an edge. There ate

layer-3 nodes;, 1 < j < w, each of which is connected from two upstream layer-2 nages
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TABLE |
COMPARISON OF SCALAR AND VECTORLNC WHEN THE ALPHABET SIZE OF DATA UNITS IS FIXED TOqL WITH g EQUAL TO

A PRIME POWER

Scalar LNC Vector LNC

Data unit alphabet Base field GR{") Vector space Ghj”

Local encoding kernel Element in GR¢") | L x L matrix over GF{)

# of candidates for
local encoding kernels q q

(for adjacent pairs of edges)

andu;.+1 (u,+1 represents:;) by a respective edge. For each layer-3 nodethere ared; > 1
outgoing edges, each of which leads to a different downstriager-4 (grey) node. Thus, the
w-tupled = (dy, - - - , d,,) controls the number of layer-4 nodes. There is a non-deplmdétom-
layer node connected from every s¥t of w layer-4 nodes withnax flow(N) = w, that is,
with w edge-disjoint paths starting from and ending at nodes iv. All bottom-layer nodes
are receivers.

The following is a concise formula for the scalar linear sbiNity of A/, 4 derived in [17].

Theorem 2. Consider a networkV,, 4 with parameterss andd = (dy, ds, - - - ,d,,). It is linearly

solvable over GF) if and only if there is positive divisod of ¢ — 1 subject to

qu([%—‘+~-~+[%}-‘—w+1)+2 (3)

Corollary 3. The network\,, 4 with parametersv andd = (2,2,---,2) is called theSwirl

Network[16]. As a consequence of Theorém 2, it is scalar linearlyadwe over GR) if and
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Fig. 2. The network\, 4 consists of nodes on 5 layers. Layer-1 consists of the soades only, and layer-4 nodes are depicted
in grey. There is a non-depicted bottom-layer node condefttem every setV of w layer-4 nodes withnaz flow(N) = w.

All bottom-layer nodes are receivers.

only if ¢ >w+2 or ¢ — 1 is not a prime.

The analysis of the vector linear solvability &f, 4 will be one of the building blocks for the

main discoveries of this paper.

[1l. M ULTICAST NETWORKS WITHVECTORLNC SUPERIOR TOSCALAR LNC

In this section, we shall first introduce a general methodtwstruct multicast networks vector
linearly solvable over GRj” but not scalar linearly solvable over any GHwith ¢ < ¢*. Then,
we make use of this method to design infinitely many instanceserify that vector LNC can
indeed outperform scalar LNC for multicast networks in teraf the required alphabet size to

yield a solution. The main results to be established in thitisn are outlined in Fid.]3.
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Scalar linearly solvable Vector linearly solvable Scalar linearly solvable
over GF(p") Q#] over GF(p)* ; é . over some GF(q'), ¢’ < p*

Proposition 6, 9 Corollary 7

Theorem 10 Corollary 11

Fig. 3. The main results to be established in Section lll.eifep is an arbitrary prime.

A. A General Construction Method

Under the same alphabet size of data units, which is coresiderbe a prime power throughout
the paper, the number of candidates to which the local engddirnels can be assigned increases
exponentiallyfrom ¢* to ¢~*. Consequently, it is natural to conceive that vector LNCpetforms
scalar LNC on a multicast network in the sense that the mimnailphabet size to yield a vector
linear solution might be smaller than the minimum require@iscalar solution. However, to the
best of our knowledge, no explicit demonstration of thisadage for vector LNC on multicast
networks has ever been given, and this advantage was ortigliyaconfirmed in [11]. In the
work of [11], an algebraic framework is established to chtmaze the vector linear solvability of
a multicast network, which can be regarded as a generalizafithe classic algebraic framework
in [2] that concentrates on scalar linear solvability. Sieally, the framework associates every
receiver in a multicast network with a transfer matrix wheséries are multivariate polynomials.
Correspondingly, it associates a multicast network withudtinariate polynomial obtained by the
product of the determinants of all transfer matrices. lhisnt shown that a multicast network is
vector linearly solvable over GE)(" if and only if there is an assignment éfx L matrices over
GF(g) to the variables in the associated polynomial under whiehetvaluation of this polynomial
is an invertible matrix over Glgj. Meanwhile, a multivariate polynomial was discoveredid]
which does not have such an assignment oveg3B( anyq < 2'°, but has a feasible assignment
over GFQ)!°. However, that work did not show the existence of a multicasttvork that can be

associated with this particular polynomial, and hence twiethere exists a multicast network
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with the desired advantage of vector LNC remains elusive.

We next propose a general construction method, based orhwinéc design of a multicast
network vector linearly solvable over GF{ but not scalar linearly solvable over GH( for
everyq < q¢" reduces to the design of a multicast network vector linesolyable over Gy~

but not scalar linearly solvable over GFj.

Algorithm 1. Let N; be a multicast network with source dimensionthat is vector linearly
solvable overGF(q)* but not scalar linearly solvable over Gfj. Setn = ¢. Construct a
multicast network\" of source dimensiow as follows:
« Create the unique source nodleand another node, as well asw edges starting from’
and ending at.
o Add N, as a subnetwork al. Createw edges froms to the original source node, of
M.
« Add an(n + 1,2)-combination network\; (See, e.g.,[[19][20]), as depicted in Fig. 4, to
be another subnetwork df. Create 2 edges fromto the original source node, of A%.
« For every original receivet of N,, createw — 2 edges froms to t.

In this way, every node that is originally a receiverAf or N, is also a receiver V. [ |

Theorem 4. Let \V; be a multicast network that is vector linearly solvable o@ét(¢)” but not
scalar linearly solvable over G§#(). The network\ constructed by Algorithm 1 withh = ¢
has a vector linear solution over Gf{. However, it is not scalar linearly solvable over Gf¥(
for any ¢’ < ¢*, and not vector linearly solvable over GH{' for any ¢*" < ¢*.
Proof: The network\ is vector linearly solvable over G#f~" or scalar linearly solvable

over GF(/) if and only if so are the subnetworks; and 5.

It is well known that thgn+ 1, 2)-combination network is scalar linearly solvable over &) (
if and only if ¢ > n. In a similar argument to characterize its scalar lineavaality, one can

deduce that afin + 1, 2)-combination network is vector linear solvable over @ if and only
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Fig. 4. An (n + 1,2)-combination network\>. It is well known to be scalar linearly solvable over GFY if and only if

¢ > n. It can also be shown to be vector linearly solvable over¢BF(f and only if ¢© > n.

if there areL’ x L’ invertible matricesA, --- , A,,_; over GF¢) such that
rank(A; —A;) =L, Y1<i<j<n-—1, (4)
Thus,{A4,---, A, 1}, together with0 form an L’-dimensional rank-metric code of distante

over GF(’). According to the Singleton bound for the rank-metric co@@ee([211] for example),
there are at mosy”'(¥'~L'+1) = ¢’L' codewords for such a rank-metric code. Thus, if there are
L' x L invertible matricesA,---,A,_; over GF{/) subject to [(#), them — 1 < ¢* —1,
i.e. Y > n. On the other hand, whegi“’ > n, a scalar linear solution can be constructed for
the (n + 1, 2)-combination network over GF("), which in turn induces a vector linear solution
over GF¢')*" according to Propositionl 1. We can now conclude that/an- 1, 2)-combination
network is vector linearly solvable over GB{' if and only if ¢* > n.

In consequence, the subnetwadvk of A" has a vector linear solution over Gff{, but neither
a scalar nor a vector linear solution when the alphabet dizlat units is smaller thap”. On
the other hand, the subnetwat of A/ is vector linearly solvable over G but not scalar
linearly solvable over GR{). We can see when the alphabet size is no greater ghathe
network A/ does not have any scalar linear solution, and has a vecarlisolution only over

GF()*~. [ |
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B. The First Explicit Network Construction

In order to apply Algorithm 1 to construct a multicast netiweector linearly solvable over
GF(q)* but not scalar linearly solvable ovéiF (¢') for anyq’ < ¢*, a key step that has not been
explicated is to provide a multicast network that is vecitoearly solvable ovetF(q)~ but not
scalar linearly solvable oveBF(¢%). We next show that the Swirl Network with appropriate
source dimensiow is actually the first known one with such a property.

Assume that the alphabet size of data unit®“isWhen2” —1 is a prime, the Swirl Network
with dimensionw > 2% — 2 does not have a scalar linear solution over &f( Recall that a
prime in the form of2” —1 is called a Mersenne prime. After examining the list of albwm 48
Mersenne primes in the ascending order [22], we found theafthone,2'3 — 1, can be written
as2t-2% — 1 but neither2* — 1 nor 2 — 1 is a Mersenne prime. Thus, the Swirl Network turns
out to be the first exemplifying multicast network scalaehnly solvable over both GE{*) and
GF(g*2) but not over GR{*'*%2). This has been noticed ih [16].

Now consider a (possibly non-multicast) network and a sdalaar solution of it, with local
encoding kernels denoted I¥,. ), over GF¢™) for all 1 < j < m. We can define a vector
linear code of dimensiol := L, + L, + --- + L,, over GFg) with local encoding kernels

prescribed by

D (kger) 0 e 0
0 D (kge2)
Kd,e = ) (5)
0
0 0 0 O(kgem)

where® is the homomorphism from GE/) into the ring of L x L matrix over GF§) defined in
(D). In the same way as to prove Proposifidn 1, one can pratetis vector code over GE{

gualifies as a solution too. We thus obtained the following.

Proposition 5. If a (possibly non-multicast) network is scalar linearlyvatble over GF¢*+) for
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all 1 < j < m, then it is not necessarily scalar linearly solvable ove(qGJF but must be vector

linearly solvable over GR{*, whereL = L + Ly + -+ L,,.

As a consequence of the above analysis, the Swirl Netwoitk suitirce dimension > 213 —2
has a vector linear solution over GF(2put no scalar linear solution over GEf). This satisfies

our desired property. Next result can be further obtained.

Proposition 6. Let 2 — 1 be an arbitrary Mersenne prime no smaller tRah— 1. The Swirl
Network with source dimension > 2 — 2 is vector linearly solvable over GE}" for every
¢'™ > 2%, but not scalar linearly solvable over GR(for any ¢’ with 2 < ¢ < w+2 and¢ —1
being a prime.

Proof: Corollary[3 characterizes the scalar linear solvabilityhef considered Swirl network.
It remains to show its vector linear solvability. Assuigieis odd. The Swirl Network is scalar
linearly solvable over GR(*) for every L’ > 1, and hence vector linearly solvable over GF(
by Propositiorill. Assumeg = 2. The casel/ = 13 has been discussed in the analysis prior to
the present proposition. Consider the cd$e> 13. Since2” — 1 a Mersenne primel is an
(odd) prime too. ThusL' — 13 is even and henc&”'~'®> — 1 must be a composite. Consequently,
the considered Swirl Network is scalar linearly solvablernGFQ?*), GFQ?) and GFRL'~13)
respectively. Consequently, it is vector linearly soheabler GF¢) L’ according to Proposition

B. ]

Corollary 7. Let 2¢ —1 be a Mersenne prime no smaller thizid— 1, and.A; represent the Swirl
Network with source dimension > 2% —2. The multicast network/" constructed by Algorithm

1 with n = 2© has a vector linear solution over Gfff, but does not have a scalar linear solution
over GF(/) for any ¢’ < 2-. Moreover, it is vector linearly solvable over GH{ for every¢'"
larger than2”, but not scalar linearly solvable over GA(for any ¢’ with 2 < ¢ <w + 2 and

¢ — 1 being a prime.
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Proof: It follows from Theoreni ¥4 together with Propositibh 6. u

We have now affirmed the correctness of the conjecture rars¢til] by explicit examples
that vector linear coding can indeed be superior to scalariorierms of the required alphabet
size in a linear network coding solution. Furthermore, ¢hiast exemplifying networks suggest
that there are cases where vector linear coding are sugergmalar linear coding in a stronger

sense than as conjectured inl[11]:

« It is possible for a multicast network vector linearly sdil@over GF{')"’ for every prime
powerq™ > ¢, but not scalar linearly solvable not only over any @Fith ¢ < ¢, but

also over some GE() with ¢ > ¢”, which can be extremely large compared wjth

C. Construction of Infinitely Many Network Instances

In the previous subsection, the key to proving the Swirl Netto be vector linearly solvable
over GFQ)" but not scalar linearly solvable over GFj is the observation that scalar linear
solutions over respective alphabetd(¢1),- -, GF(¢*) do not necessarily imply another
scalar linear solution oveGF(¢“*™X=) but they guarantee a vector linear solution over
GF(g)"*+E=_ At this moment, it only brings us a few alphabet sizZswith the property
that there is a multicast network vector linearly solvableroGFQ)" but not scalar linearly
solvable over GFX). In this subsection, we shall identifpfinitely manyalphabet sizes with
this property. Towards this goal, we first characterize thetar linear solvability of the network

N.,.a described in Section II.B.

Lemma 8. The network\,, 4 with parameterss andd = (dy, - - - , d,,) has a vector linear solu-

tion over GF()* if and only if there exist invertible matrice&;, -+, Ayg,, -+, Aut, -+, Aua,
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of size L x L over GF() such that
rank (Ajg, —Ajp,) =L V1<j<w, 1<k <ky<d,, (6)
rank (T+ (=1 '"M,M,_;---M,;) = L
VM; € {Aj, -, Ajg,},1<j<w. (7)
The technical proof of this lemma is provided in Appendix Aid worthwhile to note that

whenL = 1, the lemma degenerates to a scalar linear solvability ckeniaation of\,, 4, which

coincides with the one derived ih [17] as a preliminary tater obtain Theorerl 2.

Proposition 9. Let [ be an arbitrary integer larger than 2. Set > 484 and d =

26l+1_1 26l+1_1 26l+1_1 . . 1+1
q 5 W , [ 5 1 R [ 5 D Then, \,, 4 is vector linearly solvable over GE('*™

but not scalar linearly solvable over GE("1).
Proof: We first show that the network/, 4 is not scalar linearly solvable over GFE("!).
Observe that the smallest for 2" = 1 mod p for p = 3,5,7,11,13,17,19 is, respectively,

2,4,3,10,12,8,18. Thus, it can be seen that the smallest positive integerpgbssibly divides

. .. 26l+1_1 26l+1_1
20041 —1 is 23, and for every proper divisarof 2¢*! —1, d < =1 < 2—=1. Consequently,
|—26l+1_1—| |—26l+1_1—|
d 22 . L2 1) 1 2
{ p + d w + +
26l+1 -1 26l+1 -1
>d - - ... R 1 2
= [ 22d % Jﬂ 224 W i
26l+1 -1
>w | —m —d d+ 2
w ( 7 ) +d+
604+1 1 26l+1 -1
2484T — 483T +2 =26+

and hence conditioi(3) does not hold. Theofém 2 then affihrasAt, 4 is not scalar linearly

solvable over GRC*1).
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We next establish a vector linear solution faf, 4 over GF)%'. Write d = P&“‘ﬂ,

22

L=6l+1, L, =9 andL, = 6l — 8. Let G; be theL; x L; invertible matrix over GF(2)
representing a primitive element in @&(), and G, be the L, x L, invertible matrix over
GF(2) representing a primitive element in GF) according to the homomorphism presented
in @) in Section Il.LA. Thenrank(G}' — G7?) = L, for all 1 < j, < j, < 2l — 1, and
rank(G3 — GP?) = Ly for all 1 < j; < j, < 2F2 — 1.

Write m; = 22~ andm, = 22=1. Note that bothn, andm, are integers. Fot < j < m,

1 <k < may, defineBj; to be theL x L matrix over GF(2) as

G7 0
Bjk -
0 G
Thus,rank (Bj,x, — Bjk,) = rank (G* — G1?) +rank (G5 — G3%) = Lforall 1 < j, <

Jo<mq,1 < ki1 < ko < ms. Since

99 _ 1960-8 _ 1 96l+1 _ q
mimy — 4=~ 3 { 22 W
- 26l+1 _29+26l—8_1_1>0
21-22 21 '
where the last inequality holds @ds assumed larger thaty we can setA,,,---, A, to be

arbitrary d distinct matrices i{B, : 1 < j < my,1 <k < my} for 1 <n <w —1, and set
A =AoA 1, Ay = AgAy, - [ ALg = AgAyy, Where
G, 0

Ay =
0 G,

In this way,rank (A, —Aj,) =Lforalll <j<wandl <k <ky<d, and
I¢{A0Bw"‘B2B12Bn€ {Bjk,l S] §m1,1 SkSmQ}}
D) {Mwa_l"'MliMj - {Ajla"' ,Ajd},]_ S]Suj}

This means that the designéthy, -+, Ay, -+, Aur, -+, Ayg satisfy [6) and[([7), soV, 4 is

vector linearly solvable over GEY* according to Lemmaé]8. [ |
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In the proof of\,, 4 to be vector linearly solvable over GB{'*! in Theorenid, we essentially
constructed a scalar linear code over @l@and another scalar linear code Gf¢®), none of
which qualifies as a solution according to Theorlegm 2. Thencwmabine their corresponding
vector linear codes by direct sum and form a vector lineartgwoi. This provides a new approach
to design vector linear codes which scalar codes cannotigttbsBy a similar but more elaborate

argument, we are able to obtain the following generaliratio

Theorem 10. Let p be an arbitrary prime. There exists a positive integesuch that for every
p™*1 1 > 1, an instance\V,, 4 can be found to be vector linearly solvable over GF(™ but
not scalar linearly solvable over GP(*!).

Proof: Please refer to Appendix] B. [

If we let \V; represent the netwotk/,, 4 established in Theorem110, then the multicast network
N constructed by Algorithm 1 witlh = p™*! has a vector linear solution over Gi(‘*!, but
does not have a scalar linear solution over @Ffor any ¢’ < p™*!. The conjectured benefit

of vector linear codes raised in_|11] is thus proven in théofeing more general sense.

Corollary 11. For every primep, there are infinitely many alphabet sizgs each of which
corresponds to a multicast network vector linearly soleadbler GFf)” but not scalar linearly

solvable over any Gkg() with ¢’ < p~.

IV. VECTORLNC WITH SMALLER ALPHABETS BETTER THAN LARGER ONES

In this section, we shall investigate the vector linear ability of multicast networks from
another direction, in which the main results to be estabtisare outlined in Fid.]5. According
to Propositiori 1L, we have known that if a multicast networkas vector linearly solvable over
GF(g)*, then it is not scalar linearly solvable over GF) either. A natural subsequent question

is: when a multicast network is not vector linearly solvableer GFg)*, is it scalar linearly
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unsolvable over Gk() for any ¢’ < ¢? It is tempting to think of a ‘yes’ answer, since vector
LNC offers a much larger set for local encoding kernel chaidéowever, we next prove the

negativeanswer to this question, through further study of the Swigtwbrk.

Scalar linearly solvable Vector linearly solvable 1 ; g Vector linearly solvable
over some GF(¢'), ¢' < ¢* ; é C over GF(¢)" over some GF(g)", 1 <L <L

Proposition 13 Proposition 14

Fig. 5. The main results to be established in Section IV.

Consider the Swirl NetworlV;, ¢ with w > 6 andd = (2,---,2) again. As a consequence
of Corollary[3, it is scalar linearly solvable over both GFéhd GF(7), no matter how large

is selected. We shall next investigate its vector lineavadaility.

Our first goal is to check whether the Swirl Network has a vetitear solution over GF(2)
whenw = 6. Based on Lemmal 8, a straightforward way to do so is to exivalysienumerate
all invertible 3 x 3 matrices over GF(2) foA 1, Ao, - - - , Ag1, Ago t0 See whether conditions
@) and [7) hold. However, because there are t@tal- 2°)(23 — 2')(2% — 22) = 168 invertible
3 x 3 matrices over GF(2), the raw exhaustive enumeration wilblve 1682 combinations,
and such computational complexity is too high to realizeolder to reduce the computational
complexity in exhaustive enumeration, we are able to furtefine the equivalent conditions
in Lemma[B for the Swirl Network as follows. Similar refinememan also be conducted for a

generalN,, 4 but we shall not address it in this paper.

Lemma 12. The Swirl Network has a vector linear solution over @FE(if and only if there
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exist invertible matrice®8,, - -- ,B,,, B,.1 of size L x L over GF{) such that

rank(I-B;)=L V1<j<uw, (8)
rank (Bw+1 + Mwa—l tee Ml) =L

VM; e{[[B;} 1<j<w. 9)
Proof: Please refer to Appendix|C. [ |

Consider the case that= 2 and L. = 3. There are total 48 invertible matricé& over GF(2)
of size3 x 3 satisfyingrank(I—B) = 3 by computer search. Thus, the number of combinations
to search for invertible matriceB, - - - , B; subject to[[(B) and{9), when is set to 6, is487,
which becomes more manipulable. By a divide-and-conquénogeonw, we first find that there
are 2304 sets of invertible matric8s, - - - , B, subject to[(B) and{9) when is set to 3. Based
on this finding, further exhaustive enumeration verified tia invertible matrice83,,--- , B,
can be found to maké&](8) anld (9) hold. It can also be readilifiedrthat there are not invertible
matricesB,, - - - , B; over GF(2) of siz&2 x 2 to make conditiond (8) andl(9) hold, so the Swirl
Network is not vector linearly solvable over GH{®jther. In addition, the Swirl Network is not
scalar (and thus not vector) linearly solvable over GF()c& the Swirl Network withw > 6
has a vector linear solution over Gff{ only if so is the Swirl Network withv = 6, we conclude

the following.

Proposition 13. Forw > 6, the Swirl Network is scalar linearly solvable over GF(5p&BF(7),

but does not have a vector linear solution over B¥for any L < 3.

The Swirl Network affirms that even though the choice of loeatoding kernels in scalar
LNC is more restricted than in vector LNC, scalar LNC canl stiltperform vector LNC (of
dimension larger than 1) in terms of enabling a linear sotutising a smaller alphabet. Since

every scalar solution can be regarded as a vector solutiagin@énsion 1, this finding suggests
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that the alphabet size for vector LNC is not always the latberbetter for yielding a solution

on a multicast network.

Next, we present a more surprising result that over the samse beld, a higher dimension

of vector LNC isnot always more likely to enable a linear multicast solution.

Proposition 14. The Swirl Network, which has a scalar linear solution over(@Fand thus
a vector linear solution over GEY, is not vector linearly solvable over GE° when source

dimensionw is large enough.

Proof: According to Corollary{ B and Propositidd 1, it is straightfard to see that the
Swirl Network is scalar linearly solvable over GF( and then vector linearly solvable over
GF@)*. In order to show that the Swirl Network is not vector lingasblvable over GR)®, by
Lemmal12, it is equivalent to show the non-existence of tilvier matricesB,,--- , B, of
size5 x 5 over GF(2) to make conditionE](8) arld (9) hold. Howeveryads large and there are
(2°—1)(2°—2)---(2° —2%) = 9999360 invertible matrices of sizé x 5 over GF@), which form
the general linear grou@'Ls(2), it is hard to directly check this by exhaustive enumerat®y
analyzing the group structure 6fL5(2), which is provided in[[2B], we shall first greatly reduce

the cases to the degree that exhaustively enumeration igpubaiple.

Assume that there is a vector linear solution for the Swirkvibek over GF)°, and let
B,,---,B.,.1 beb5 x 5 matrices over GR) satisfying conditions[{8) and(9).

Recall that the conjugacy class of an elemeirt a groupG refers to the sefgag™ : g € G}.
The elements in a group can be partitioned into conjugacyseks and elements in the same
conjugacy class have the same order. Singe:i(I- ABA ') = rank(A(I-B)A™!) for every
A € GL;5(2), rank(I — B) =5 for a matrixB € GLs(2) if and only if rank(I — B") = L for
every matrixB’ in the conjugacy class dB in GL;(2). After examining the representative of
every conjugacy class itiLs(2), as listed in[[23], we found that there are only 8 conjugacy

classes inGL5(2) in which the matriceB satisfy rank(I — B) = 5. Two of the 8 conjugacy
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classes comprise matrices of order 21di,(5), and the other 6 conjugacy classes comprise
matrices of order 31 irGLy(5). Thus,By,---,B,.; are contained in the union of these
conjugacy classes.

Next, asw is assumed large enough,
{I,Bl, e 7B§1} g {Mwa—l © 'Ml . Mj € {I,Bj}, 1 S ] S (.U},

and thusrank(B,1 + BJ) = 5 for all 1 < j < 31. Let B/, be the representative listed in [23]
for the conjugacy class whicB; belongs to. ThenB/ can be written asAB;A~! for some

A € GLs(2). Also write B/, | = AB,,.;A™'. Then,
rank(B, ; — BY) = rank(A(B,;, —B)A™) =5 V1< j <3l

It can be observed that the sgB/, B?,--- B3} is identical no matter which conjugacy
class of ordeB1 matricesB is in. It can further be checked thatnk(BY — B/*) = 5 for all
1 < j < k < 31. Thus, the33 matrices0, By, - - - , B! B, form a5-dimensional rank-metric
code of distancé over GFQ). However, this contradicts the fact that the number of eantds
of such a code is at mo&t = 32 according to the Singleton bound of rank-metric codes.

ConsequentlyB can only be the representative for either of the two conjugdasses of
order 21 matrices. It can be observed that the §B;,--- ,B’2'} is identical for both cases.
Then, exhaustive enumeration can be readily conductedlguossibleB’,,; € GL5(2) with
rank(I—B',1) = 5 to verify that there does not exi®',,; such thatrank(B’ .1 — B’{) =5
for all 1 < ;5 < 21. We can now conclude that there does not exist a vector ligglation over

GF(@)°> whenw is large enough. [ |

Remark. It has been proven in_[24] that the classical network progdse[3] which is not
scalar linearly solvable over any field has a vector lineéutim over GF§)” if and only if L is
even. However, the discovery in Propositlon 14 is more ssimgy in the sense that a multicast

network is considered, which always has a linear solutioer @v sufficiently larger alphabet.
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In comparison, a solvable (non-multicast) network is narevector linearly solvable over any

GF(@)* [25].

[16] [16]
Scalar linearly solvable over Scalar linearly solvable ¢ ’; g Scalar linearly solvable
both GF(¢") and GF(¢* ) =X over GF(¢*) over GF(¢")
Well-known Proposition 6, 9
(Proposition 1) Theorem 10

: Well-known : ;
Vector linearly solvable over Vector linearly solvable j ; g Vector linearly solvable

both GF(q)" and GF(g)* * | = over GF(g)* over GF(g)*

(Proposition 5) Proposition 14
Corollary 7
ororary Proposition 13
Corollary 11

Scalar linearly solvable
over some GF(¢'), ¢’ < ¢*

Fig. 6. The relationship established between scalar angvéeear solvability on a multicast network. Herein< hL < L'.

V. SUMMARY

In this paper, several new results are established for wéictear network coding (LNC)
on multicast networks. A systematic way is first introducedcbnstruct a multicast network
that has a vector linear solution over GF{, but does not have a scalar linear solution over
any GF¢') with ¢ < p*, for anarbitrary prime p and infinitely manyalphabet sizeg”. This
affirms a conjectured benefit of vector LNC over scalar onéli.[In addition, the technique to
construct a vector linear solution is new: a vector linedntson over GF§)” can be constructed
by direct sum of different scalar linear codes, which ao¢ necessarilyscalar linear solutions,
over GF¢™), - - -, GF@g*) with L, +- - - L,, = L. This is demonstrated to be useful and cannot
be substituted by scalar LNC because a multicast networkhwimas scalar linear solutions over
GF(g"), - - -, GF(g"™) is not even scalar linearly solvable over GR(-+£=). In the second part

of the paper, explicit multicast networks are presented @wogen to have the special property
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that they do not have a vector linear solution of dimensioaver GFQ) but have scalar linear
solutions over GR() for someq’ < 2L, whereq’ can be odd or even. This discovery unveils a
surprising result for vector LNC on multicast networks: #hstence of a vector linear solution
over GFQ)" does not imply the existence of a vector linear solution &&EQ)" with L’ > L.
Fig. [ summarizes the relationship between scalar and védd€ on a multicast network

established so far in the literature.

APPENDIX
A. Proof of Lemm&l8
Denote bye;, - - - , ;4 thed; outgoing edges of layer-3 node for eachl < j < w. Consider
a vector linear code over GH{. For 1 < j < w, denote byU;q, - - , Ujq, the local encoding

kernels for adjacent pair&l;,e) with e € In(v;) ande € In(v;_;), respectively, where
stands forv,,. Note that by left multiplyingU;; to the local encoding kernels for downstream
adjacent pairge, ¢;1), - - - , (¢, €jq4,), and resettindJ;; to be thel x L identity matrixI, the global
encoding kernels for edges,, - - -, e;4, remain unchanged. Hence, without loss of generality,
forall 1 <j<wandl <k <d;, wecan assum&J;, = I and letK;;, K, denote the local

encoding kernels fofe, e;;,), e € In(v;). Then, the juxtaposition of global encoding kernels for

edgese;;, is equal to

F

€41 :

- Fe, hicjcw =

Ko

/
Kll

0 -

0

Kiq,
K,
1dy

0

0

0

K(wfl)l
K/(wfl)l

0

K(Wfl)dwfl

/
K(Wfl)dwfl

Kwdl

0

0
Kin

Ku.;dw T

0

0
Kl

wdyy

Since there is a receiver connected from every/$atf w grey nodes withnax flow(N) and

eache,, is the unique incoming edge to a grey node, the vector linede ¢s a solution if and

only if for every setE of w edges in{ej; : 1 < j <w,1 <k <d;} with maz flow(E) = w,

wheremax flow(E) means the number edge-disjoint paths starting from thececamd ending

at edges in¥, the matrix|F.|.cx is of full rank wL.
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To prove the necessity part of the lemma, assume that thedewved code is a vector linear

solution. First observe thatax flow(E) = w WhenE = {e1,, -+, €(w-2)ky_s»> E(w-1)1, Ew-1)2}»
Kij, 0 0
Kflkl . .
wherel < k; < d;. Then the matriXF.|ecp = | © =~ Ke-2rn 0 0 has full rank
Kl o,y Kw-n1 Kw-1)2
0 0 szfl)l Kl(wfl)Q

wlL. Because

0 7& det([Fe]eeE)

Klkl 0 0 T
K/ K K
1k (w—1)1 (w—1)2
= det ! det
K(“’ffi)ku/73 0 szfl)l Kl(wfl)Q
’
0 K(W73)kw73 K(W*2)kw72 a

= det(K,) et (K ooy, ) et ([177 " 1677 ]).

| Klw-1 Koy
the local encoding kerneK;, , - - - , K2, _, are invertible matrices. By similar arguments on
the set{eir,, -, ew—2)ky_os€ul, €2}, {€11,€12, €305, €, o AN {€21, €22, €35, -, €, }
wherel < k; < d;, we can deduce that all local encoding kernls. and K, for 1 < j < w,
1 < k < d;, are invertible matrices.

Write Aj, = K, K5/ for 1 < j <w—1,1 <k <dj, andA,;, = KiK' for 1 <k <d,.
We need show these invertible matrices satisfy conditi@sa0d [7). Define another vector

linear code of dimensioih. over GF() prescribed by the following global encoding kernels

I I 0 0 Awl Awdw
A Aggy 0 0
/ /

[Feﬂ'” ejdj]lfjf“’ - 0 - 0 . o - 0 Do (10)

: : I I 0 0

0 0 Aw-11  Aw-1ya, , 1 I
Since [F/ejl"'F/e,-dj]lngw = [Feﬂ...Fejdj]lgjngiag(*), where Diag(x) stands for
the square block diagonal matrix with diagonal blocks eqtml K, --- ,Kl‘dll,

Ko 0 Ko na, o K& KL, we have, for any seE of w edges withmaz flow(E) = w,
rank ([Feleer) = rank ([F.leer) -

ConsiderE = {eix,; €irys €215 -+ s €w—1)1} Subject tomaz flow(E) = w, wherel < k; <
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]{52 < dl- Then,

I I 0 0
Ay Agg, 1

0 7é det ([F/e]eeE) = det 0 0 Aoy - (I)
0 0 0 Ag

Ao 0 0
= det ([Allk1 Aka ]) det ([ 9 Aoy 1 ]) .

0 0 A(w,1)1

This implies tha) # det ([ ay,, a1, |) = det ([ary, Au,2as, |), i-€0 rank(Ag, — Ayy,) = L.
By similar arguments o = {e;,, €ji,, €js1)1, " 5 €(j+w—1)1), Wherel < j <w, 1 <k <
ko < d;, ande;; refers toe;_.)1 whenever > w, we can verify that conditiori {6) holds for the

consideredA j;, .

Consider E = {ek,,€ony, "+ s €0k, SUbject to maxflow(E) = w, where 1 <
I 0 0 Ak,
Ay, I 0
ki < d;. Then, [Flleepg = 0 Agy, tI) : has full rank wL.
0 0 A(w—1)kw 1 I
I 0 _Awkw I o AwkwA(wfl)kwil 0
0 0 01 0
Set M, = [ ...... 0 - ],Mw—l = [ 0 - 0 s My =
I o | ... I 0
0 0 I 00 0 I
I (—)* 'ApryAw—1)k, A2y 00
9 5 ..o = |. Obviouslydet(My) = - - - = det(M,,_;) = det(M,) =
I0
0 0 . . 01
1. A careful calculation yields
I+(-1)“ ‘A k, Ak, O 0 0
, Auc1 1 0
My - My [Fleer = 0 Az 0
I 0
0 0 A1y, 4 1

This implies det(I + (—1)“7'A g, - - Aw,) = det([Flleeg) # 0, and hencerank(I +
(=1)“ 1Ak, -~ A1) = L. Condition [T) thus holds for the consideréd;,. The necessity
part of the lemma is proved.

For the sufficiency part, leA ;, 1 < j <w, 1 <k < d;, be invertible matrices of sizé x L
over GF() subject to conditiond{6) andl(7). Assume that the conseitieector linear code has
local encoding kernel¥;, = I and K;k =Aj,whenl <j<w-1, andK;.k =L K;s=Aj

when j = w, wherel < k < d;. In this way, the juxtapositiofiF., - --F. , Ji<j<. of global

ejdj]

encoding kernels for edgegj, : 1 < j < w,1 < k < d;} is identical to [(ID). It can then

be shown, by similar classified discussion followingl(1®attfor every sett’ of w edges in
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{ejr 11 <j<w, 1<k <d;} with mazflow(E) = w, thewL x wL matrix [F.|.cx is of full

rankwL. The considered code thus qualifies as a solution\fog.

B. Proof of Theoreri 10

The casep = 2 has been considered in Propositidn 9.

Assume thap is odd and is an arbitrary positive integer. Write= p*+p+1 andb = 2(p—1).
Note thata dividesp® — 1 but does not divide®+! — 1, andb dividesp? — 1 but does not divide
p?*t1 — 1. Label all odd primes smaller tharb asp,, - -- ,p, for somen. For eachl < j < n,
denote byg, the smallest power gf; that does not divide — 1, and bym, the smallest positive
integer subject tp™ = 1 mod ¢;. Definem to be the least common multiplier a2 and
mq,- - ,my. In this manner, each aof, b, ¢, - - - , g, dividesp™ — 1, but none of them divides
p™+1 — 1. Moreover, as}‘% < p — 1, the largest divisor of™*+! — 1 that is smaller thamb

isb/2=p—1.

Write L = ml+1, which is no smaller than 13. Deno@% by dy, which is always an
integer asu dividesp® — 1 andb dividesp™~ — 1. Consider the network/,, 4 with w sufficiently

large andd = (dy,--- ,do, (a — 1)(b — 1)dp). It suffices to show that it is not scalar linearly
——

w—1

solvable over GR(*) but vector linearly solvable over Gp)¢.

Let d be a proper divisor of” — 1. In the casel < dj, it is obvious to observe that condition

(3) does not hold for thes-tuple d whenw is sufficiently large. Consider the cade> d,. As

L > 13 andab = 2(p® — 1), it can be readily checked th&g_l)g’bkg_l) > f;z;ll sod > %:11

and thus can be written dg” — 1)/d’ for some divisord’ of p* — 1 that is smaller thamb. As
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argued previouslyd’ < b/2 =p—1, so

L
—1
(a—1)(b—1)dy — (d — )2 ~
1)L 1) b—2
Sa—1)p-nP T HETED bz,
ab b
a—b+1, ab—a—-b+1 4 ;4 b—2
pr— —_— —1 —_—
b P e )+
2
I A R )
ab
This implies [ww — d'. Consequently,
do d() (a - 1)(b - 1)d0 o pL —1 , L
d [d}r +LJ+[ - w1 |+2=P 2>,
wtl

so condition [(B) does not hold for the cade> d, either. Theoreni]2 then asserts that the
considered networl;, 4 is not scalar linearly solvable over G&.

We next establish a vector linear solution faf, 4 over GFp)~. Let G; be the9 x 9
invertible matrix over GR{) representing a primitive element in G&, and G, be the
(L —9) x (L —9) invertible matrix over GRf) representing a primitive element in GFE(?)
according to the homomorphism presentedin (1) in Sectigh Then,rank(GJ' — GJ*) =9

forall 1 < j; < jo <p®—1, andrank(G) —G#) =L —9forall 1 < j, < jo < p+ ™ —1.

Forl < j < ”17‘1 1 <k< pobg‘l, define B, to be theL x L matrix G over GFg) as

GY o . . o o

Bj, = . Then,rank(Bj,x, —Bj,k,) = rank(G{"' —G}?) +rank(Gy" —G3™?) = L
0 G

forall 1 < ji < jo < 221 <k < by < B2 SetA,, -, A, to be the

- a

dy distinct matrices in{B;;, : 1 < j < 11 < k < ”Lfbg‘l} forall 1 < n <

w— 1, and setA,, -, Ay(a-1)(b-1)dy) 10 be the(a — 1)(b — 1)d, distinct matrices in
{(—1)“ {Go(f Cfb,} Bj:1<d <a 1<t <bl1<j<Pl1<k< ”ng‘l}. Condition [®)
2

naturally holds for thus defined ;.. Moreover, asG‘f”“' # I and ng“" # I, rank(l —

G99t = 9 andrank(I — GY") = L —9forall j > 0,1 <d <aandl < b < V.
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Consequently, conditior](7) holds for the defindd, too. According to Lemma&l8N,, 4 is

vector linearly solvable over GF)".

C. Proof of Lemm&12

Given invertible matrice\ 11, A1a, - -, A1, Ao over GF() of size L x L, define invertible
L x L matricesB;, 1 < j <w+ 1 in the following way:
B, = (Al_ll) Ay,
By = (A/Ay)) Ay (Ay),

(11)
B, = (Aﬁl i 'A;ll) Ao (A(w—l)l - ‘An) ;
By = (1) AL - AL
Conversely, given invertiblé x L matricesB;, 1 < j <w + 1, defineA1, Ao, - -+, Aut, Auo

to be arbitrary matrices satisfying (11). Such a selectibvaygs exists because we can set
A117 s aA(w—l)l =1, Awl = (—]_)w_lBQ_Jil, and Ajg = (Ajl .- 'All)Bj(Al_ll .- A(_jl—l)l) for
I<j<w.

It can be readily checked that the two sets of matrices
{Mwa_l cee Ml . Mj € {Ajlu Ajg} y 1 S j S w}

and

{Awl"'AlleMw—l"‘Ml Y PS {IaBj}ul <7< W}
are identical. Then,

{T+(-1)*"'M,,---M; : M € {Aj1,Ap},1<j<w}

= {B;—}—l(Bw+1+Mw"'M1>IMJ’ S {I,Bj},l S] Sw}
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Hence, condition[{7) holds foA, A, -+, A1, A, if and only if condition [9) holds for

B4, -+ ,B.,B..1. Moreover, because for evety< j < w,
rank(I — B;)
= rank (A7} AL (Aji - Ay — ApAg_ - Ay))
= rank (Aﬁ1 o 'Aj_ll (Aji — Ajo) A - 'All)
=rank (Aj;1 — Ajs),

condition [8) holds for By,---,B,,B,,; if and only if condition [6) holds for
A117A127‘ o 7Aw1>Aw2-
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