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Abstract—In this paper we propose a spatial modulation
(SM) technique with improved energy efficiency (EE) for the
multiple access channel (MAC) with a large number of antennas.
The proposed scheme builds upon compressive sensing (CS)
and accounts for the sparsity and structure of the signals
transmitted via SM in multi-user scenarios to further improve
the performance and reduce the complexity of linear detectors. In
particular, the proposed technique incorporates additional prior
knowledge to conventional CS-based approaches by exploiting
the existence of a maximum number of active antennas per user
when SM transmission is used in the MAC. The results presented
in this paper show that the proposed algorithm offers both a)
reduced complexity and b) improved performance compared to
conventional CS and linear detection strategies and also allow us
to determine the conditions under which the use of SM systems
in the MAC is beneficial from an EE point of view.

Index Terms—Spatial modulation, large-scale MIMO, multiple
access, compressive sensing, energy efficiency.

I. INTRODUCTION

The development of wireless communication strategies to
satisfy the increasingly higher data rate specifications has
been recently focused on the optimization of a metric that
combines both the spectral efficiency and the total power
consumption: the energy efficiency [1], [2]. These are the cases
of massive multiple-input multiple-output (MIMO) and SM
systems, which exploit the benefits of increasing the number of
antennas in the communication [3], [4]. In particular, massive
MIMO proposes to comprise a large amount of antennas at the
base stations (BSs) to facilitate the use of conventional linear
precoding and detection schemes, which become optimal in the
large-scale limit [3]-[5]. However, the high number of radio
frequency (RF) chains necessary in these systems can harm the
EE [6]. For this reason, SM has been posed as an alternative in
which only a subset of antennas are simultaneously active and
the transmit antenna indexes are used as an additional source
of information [7]. This, in turn, penalizes the achievable rates
with respect to conventional spatial multiplexing techniques
and modifies the operation at the receiver because the antennas
used for transmission must also be determined [7].

Numerous works have focused on the development of low-
complexity detectors and precoders for peer-to-peer (P2P) SM
systems (see, e.g., [8]-[11] and references therein). This is the
case of [11], where a normalized CS detection algorithm for
space shift keying (SSK) and generalized space shift keying
(GSSK) systems was proposed. The fundamental idea behind
the approach of [11] is based on exploiting that GSSK systems

only encode information in the active antenna locations and,
therefore, a normalization of the channel matrix before the ap-
plication of greedy compressive detectors can improve perfor-
mance. However, the authors of [11] restrict their study to SSK
and GSSK systems and do not account for the structured spar-
sity of the signals transmitted via SM in the MAC [7], [12].

The possibility of using SM mobile stations (MSs) in
the MAC has attracted considerably less attention although
theoretical [13], [14], and more practical studies [15] have
shown its potential [7]. Specifically, two detection algorithms
for the scenarios considered in this paper are proposed in
[15]: a message passing detection (MPD) algorithm, and a
more complex local search detection. This paper shows that
SM systems can outperform conventional spatially multiplexed
systems with the same spectral efficiency. However, the total
number of operations of the MPD algorithm is conditioned
by the number of messages conveyed between the nodes,
which is inherently high if a massive base station (BS) is used
[16]. In fact, this algorithm can also be used to obtain sparse
reconstructions in CS, albeit with a higher complexity than
most state-of-the-art iterative reconstruction algorithms [16].

Instead, in this paper we focus on offering a low-complexity
alternative based on CS specifically tailored for massive SM
systems in the MAC. Particularly, we exploit the fact that a
small number of antennas are simultaneously active (sparsity)
and that each user can only activate a given number of
antennas determined by the available RF chains (structure) [7].
This allows us to improve the performance and convergence
speed of CS-based algorithms [12]. Moreover, as opposed to
the conventional approaches, here we study the benefits of
using CS-based detection schemes in overdetermined systems
with a large number of receive antennas. We do this by relating
the exploitation of the signal sparsity with the massive MIMO
theory already available for linear detectors [3].

At this point, we remark that the proposed concept can
also be applied to more complex algorithms for sparse signal
reconstruction such as the ones based on MPD [12], [16].
However, in the following we concentrate on low-complexity
greedy CS algorithms since the large system dimensions make
their use more convenient from a complexity standpoint [11].
Additionally, the comparison of SM systems with regular
spatially multiplexed transmission in the massive MAC allows
us to characterize the improvements of the proposed scheme
and determine the conditions under which SM transmission is
more energy efficient than conventional MIMO.



A. Notation

The superscripts ()7, (-)# and (-)! denote transpose, con-
jugate transpose and pseudoinverse respectively. I, represents
the M x M identity matrix and || - ||, represents the ¢, norm.
E[-] is the expectation operator and ~ reads as “distributed
as”. h|y; denotes the entries of the vector given by the indexes
of the set H, Hy is the submatrix obtained by selecting the
columns of H determined by %, and supp (-) represents the
indexes of the non-zero entries. Moreover, | - | denotes the
cardinality of a set, C represents a subset and ® denotes the
Kronecker product.

II. SYSTEM MODEL
A. Multiple Access Channel (MAC)

The general model considered hereafter is a MAC com-
prised of a single BS with IV receive antennas and K < N
MSs with n, transmit antennas per device. Let M = K - n,
denote the total number of antennas allocated at the MSs. In
this setting, the signal received by the BS is given by

y = Hx +w, (1)
where x € CM*! represents the signal conveyed by the
MSs, y € CV¥*1 is the received signal, and w € CNx1 ~
CN(0,021y) is the additive white Gaussian noise with vari-
ance 2. Here, H € CNV*M™ ~ CN(0,Iy ®1,;) characterizes
the channel matrix of a frequency flat channel over Rayleigh
fading, which can represent a subcarrier if orthogonal fre-
quency division multiplexing (OFDM) is used in frequency-
selective channels.

The transmit signal-to-noise ratio (SNR) of the MAC de-
pends on the number of antennas simultaneously active at
the MSs, N, < M, and the transmission power. Hence,
considering that E [z;z] = 1 holds for the active antennas,
the total transmit SNR can be expressed as

E [xfx
pzﬁﬁ}=ﬁ%. 2)
B. Spatial Modulation in the Massive MAC

To increase the uplink rates without significantly complica-
ting the hardware at the mobile stations, SM proposes to acti-
vate a reduced number of antennas per transmitter and encode
information into the spatial position of the active antennas [7].
In the following we consider that MSs only activate a single
antenna for brevity, although extension to transmitters with a
higher number of active antennas is straightforward. In SM
transmission, each MS determines the antenna to activate and
the constellation symbol based on the input bit stream [7].
Formally, the single-RF SM signal conveyed by the k-th user
reads as

; 3)

where p € [1,n] is the index of the active antenna and s?

represents the ¢-th symbol of the transmit constellation Q,

with |Q| = @ being the modulation order. Here we note that
. oo T

the joint transmit signal x = [x{,...,x%]

X = [O,...,sZ,...,O}T

is sparse, i.e.,

there are only a few non-zero components. We also remark that
the hardware reduction experienced by SM also entails a de-
crease of the achievable rates when compared to conventional
spatially multiplexed MIMO transmission [7]. For instance,
while Symmo = K - ny - log,(Q) bits per channel use can
be simultaneously conveyed with regular MIMO transmission,
SM is only able to convey Ssm = K (logy(n:) + log,(Q)) bits
when a single antenna is active per MS.

At the reception side, the BS estimates the conveyed cons-
tellation symbols and the antennas activated during uplink
transmission [7]. However, the optimal maximum likelihood
detector cannot be applied in systems with a high number of
users due to its intractable complexity [8], [9]. Instead, the
performance and low complexity of linear detection in the
massive MAC makes its use appropriate in this setting [3].
The signal obtained after linear detection can be expressed as

g=D Hx+w), 4)

where D € CM*¥ js a linear detection matrix given by
D = (H7H +I,) " HY. (5)
Here, ¢ = 0 and ¢ = M/p for the zero forcing (ZF) and

minimum mean square error (MMSE) detectors respectively.
The transmitted constellation symbol ¢ and the active antenna
index p of the k-th user can be then obtained from (4)
following

p = argmax|g{"], ©)
i=7 (o). ™
Here, giﬁ,}ﬁ} denotes the {p, p}-th entry of the decision vector

g} for the k-th user and P is the demodulation function.

Howeyver, the use of SM transmission in the MAC conven-
tionally increases the total number of antennas at the MSs with
respect to conventional spatially multiplexed MIMO, hence
degrading the average performance of the linear detectors due
to the worse conditioning of H. Accordingly, in this paper
we propose an enhanced CS-based detector to exploit the fact
that only N, < M antennas are active, together with the
knowledge of their distribution in the MAC. In other words,
we look at scenarios where N > M does not necessarily hold
but N > N, brings the massive MIMO effect thanks to the
use of CS.

III. STRUCTURED COMPRESSIVE SENSING DETECTION:
SPATIAL MODULATION MATCHING PURSUIT (SMMP)

CS acquisition systems exploit the fact that the transmitted
signal x is sparse to improve the detection performance [17].
In order to do so, the channel matrix H must satisfy the
restricted isometry property of order N,, which is defined as
(17]

[ Hx|3

I3

(1-dn,) <

< (1+40n,), ®)

where d, € (0,1). Based on the above, the application of CS-
based detection to SM communication systems is a convenient



strategy to improve the performance of conventional detectors
because only a few antennas are simultaneously active [11].
Moreover, the channel matrix that arises in rich scattering
environments with Rayleigh fading satisfies the RIP with
dn, < 0.1 provided that N > ¢N, log (M /N,), with ¢ being a
small constant [11], [17]. Under these conditions, an accurate
reconstruction of x can be obtained by solving [17]

minimize ||x||;
subject to |Hx — yl|2 <7, ©)

where 7 is a constant that bounds the noise power (||w||2 < 7).
Nevertheless, since the ¢ minimization is computationally ex-
pensive, a range of techniques that provide a trade-off between
complexity and performance has been developed [12], [18].
This is the case of the Compressive Sampling Matching Pursuit
(CoSaMP) greedy algorithm, which additionally provides error
guarantees in the detection of noisy sparse signals [18].

However, the trivial application of CS algorithms to the
MAC in SM systems is far from optimal since the resulting
distribution of the active antennas may not have physical sense.
This is because generic CS reconstruction algorithms do not
provide any additional knowledge about the location of the
non-zero entries [12], [18]. This could generate situations in
which multiple active antennas were allocated to the same
user, a circumstance that cannot occur when conventional SM
transmission is used. To overcome this issue, in the following
we study an approach based on the CoSaMP iteration that
accounts for the particularities of SM in the MAC to avoid
this kind of errors and further improve performance [12].

The proposed algorithm is referred to as spatial modulation
matching pursuit (SMMP) and its pseudocode is shown in
Algorithm 1. The algorithm works as follows: Firstly, SMMP
identifies the entries with a largest error in the estimated
received signal as in the conventional CoSaMP [18]. With this
purpose, the residual r € CV*1 is defined as

réy—H)'Ei:H(x—i'ci)—l—w7
(CM><1

(10)

where X! € is the approximation of x generated at
the ¢-th iteration. Once the residual signal has been computed,
the output of a matched filter (MF), p € CM*1, is used to
determine the plausible active antennas as

p=H"r. (11)

At this point, the conventional CoSaMP algorithm simply
selects the entries with highest power to form the set with
the indexes of the plausible active antennas €2 with cardinality
|?] = k > K [18]. Instead, here we exploit the knowledge that
only a given number of antennas per user is simultaneously
active to define €2 [12]. Specifically, w C ) is defined as
the set comprised of the K largest entries of p satisfying
the constraint that one antenna per user must be active. This
definition ensures the selection of one active antenna per user
at the output of the MF, hence reducing the errors in the
active antenna identification. The remaining k — K entries are
selected as the ones with highest energy independently of the
user distribution as in the conventional CoSaMP algorithm.

Algorithm 1 Spatial Modulation Matching Pursuit
Inputs: y, H, K, i,,42-

1: Output: X' 2 K-sparse approximation

20+ 0,%x°« 0

3: while halting criterion false do

4 r<+ y-HxX

5 i< i+1

6 p <+ Hfr {MF to estimate active antenna indexes}
{7-11: Detect indexes with highest energy per user}
w9
for j=1— K do
10: w < M (argmax {|p|m]}) U w
11:  end for

{12-13: Detect remaining k¥ — K highest-energy indexes}
122 p(w)«0
13: Q< argmax,_g) {|p|} Uw
14 T < Q U supp(x~1)
15: b|T — H;—y
16: blyc «+ 0
{17-21: Obtain next signal approximation}

17 X'« 0
18: for j=1— K do
19: M—{G-1)ng...,j-ng—1}
20: X' | M(arg max{[blx}) = max {b|rr}
21:  end for
22: end while

{Initialization }

{Update residual}

® 3

{Merge supports}

{Partial channel inversion}

Once (2 is derived, the set 7 is defined as

T £ QUsupp (X'71). (12)

In plain words, 7 is the set built by combining the active
antennas estimated during the previous iteration and other set
that incorporates antennas that could also have been active but
were not considered in X*~1 due to estimation errors. This set
also determines the columns of the matrix H that will be used
to solve the partial channel inversion

blr = (HEH,)  Hiy = (HYH,) HY (Hx +w).
(13)
After this, X is built by selecting the largest entries of b|r
based on a user-by-user criterion and the next iteration is
started. The algorithm finishes when the maximum number
of iterations ,,4, 1S achieved or the norm of the residual is
sufficiently small. Therefore, it can be seen that the active
antenna identification steps 7-11 and 17-21 in Algorithm 1
have been modified w.r.t. the conventional CoSaMP to exploit
the additional structure of SM in the MAC [12]. Moreover,
these operations, although shown via iterative structures for
simplicity, can be implemented via vector operations with
reduced computational time. Overall, the proposed CS-based
scheme can be interpreted as a hybrid detector in which the
MF is used to determine the active antenna indexes and this
knowledge is used to reduce the dimensions of the ZF detector
to enhance its performance and reduce the global complexity.
At this point we would like to remark the implications



of using a detection matrix with reduced dimensions in (13)
when compared to (5). In particular, since the matrix inversion
dominates the detection complexity with O(NM?) [2], the
dimensionality reduction ensures a low-complexity provided
that the algorithm converges in a few iterations 7,,,, as shown
in Sec. VL. Additionally, since the relationship N > |T|
conventionally holds in (13), the use of Algorithm 1 allows us
to exploit massive MIMO benefits such as the robustness to
noise or imperfect channel state information (CSI) offered by
linear detection strategies. This enables us to further improve
the performance of detection strategies that do not exploit the
structured sparsity of SM transmission in the MAC [3], [12].

IV. CONVERGENCE RATE AND ERROR ANALYSIS OF
CS-BASED DETECTION IN MASSIVE MIMO

Although the error between x and its sparse approximation
%* was characterized in [18], its dependence on the number of
users and receive antennas was not intuitive. For this reason,
in this section we derive a more practical expression by
exploiting the large dimensions of the systems considered in
this paper.

Theorem 1: Let H ~ CN (0,1 ®1,y). Then, the Euclidean
norm of the error between the K -sparse signal generated at
the i-th iteration of the generic and SMMP CS algorithms, X,
and the original transmitted signal, x, is upper bounded by

o= %, < e (N, K) = 27, sl K) 1wl

(14)
In the above, generic CS refers to the conventional CoSaMP
iteration without the proposed optimization and the functions
c1(N, K) and (N, K) only depend on K and N and they
are given by

2+4,/B(4K) 1424/B(4K) 1+24/B(2K)
BK) sary ) T\ —aeER
C1 = 2 + 2 2
1— —-L 1— —-L
V/B(BK) V/B(K)
2+44/B(4K) 9 2
B(4K) \/B(2K)
c2=|2+ p) 3
_ 1 _ 1
<1 \/ﬁ(SK)> VN (1 \/B(2K)>
2
+ (15)
N(1- -2
f( \/msk))

where 5(V) = N/V. Note that the above expressions are only
valid when N > 4K holds. However, although not shown in
this paper for brevity, similar expressions can be obtained for
the more uncommon case of N < 4K.

Sketch of the proof. For reasons of space, in the following we
only show a sketch of the proof. Specifically, to obtain (14)
and (15) we use the results that characterize the maximum
and minimum singular values of Wishart matrices with large
dimensions [3]. In particular, let W = HLHg be a Wishart
matrix with Hy € CV*I£l and satisfying Ay, ,, ~ CN(0,1).
Then, for large N and |£| < N, the maximum and minimum

——— SM generic CS
@ Theoretical large-scale approximation
MMP

o
©

o
®

Maximum Euclidean norm of the error (Ix - Xil,)

0 0.5 1 1.5 2 25 3 35 4
Number of iterations (i)

Fig. 1. Theoretical and empirical evolution of the maximum Euclidean norm
of the error vs. number of iterations (i) for N = 128, K = 16, n; = 4,
imaz = 4, k = 2K, 4-QAM and 105 channel realizations.

eigenvalues of W converge to [3]

2
1
Umi7LW N 1- (16)
W) — ( B(IE)>

2
1
maz (W N 1+ —— (17)
7 (W) = ( 5<|£|>>

These expressions that apply to massive systems allow us to
bound the Euclidean norm of the error at the ¢-th iteration by
following similar arguments to the ones introduced in [18],
but exploiting (16) and (17) where convenient. O

Note that, as opposed to [18], (14) and (15) directly show
the impact of NV and K on the approximation error bound.
This expression has been validated in Fig. 1, where the
maximum empirical Euclidean norm of the error has been
obtained over 10° channel realizations for the proposed and the
generic CS (CoSaMP) algorithms. The theoretical large-scale
approximation (14) is shown for a number of receive antennas
that ensures algorithmic convergence [18]. Fig. 1 allows us to
derive two interesting conclusions regarding the behaviour of
the greedy CS-based algorithms considered in this paper. In
particular, it can be seen that the theoretical approximation
provides a useful upper bound to characterize the evolution
of the error, and that the proposed strategy offers a faster
convergence and improved performance due to the reduced
number of errors in the antenna detection stage.

V. ENERGY EFFICIENCY

The battery lifetime of the MSs is a critical parameter in
the design of current wireless communication systems [1].
Therefore, since the power consumption of the transmission
stage generally dominates the communication-related energy
use [19], in this section we study the benefits that the proposed
strategy offers in the EE. With this goal, we express the EE
as the rate per milliwatt of total consumed power by using the
metric [19], [20]

Se

€ = 74 ,
> vy (Por + Pri)

(18)



where S. accounts for the spectral efficiency in bits per
channel use (bpcu), Prj refers to the power consumption of
the power amplifiers (PAs) of the k-th user, and Py, refers
to the circuit power consumption of the rest of the electronic
components required in the RF chains. Pr; can be further
decomposed as [20]

Pri, =¢- Zpk,j =

J=1

19)

ESHIN

nt
. E Pk,j,
=1

where py ; denotes the power to be transmitted by the j-th
antenna of the k-th user, and ( = % is a coefficient that
determines the total power consumption of the PA depending
on the PA efficiency, 7, and the peak to average power ratio
(PAPR) of the modulation employed, v [19]. Moreover, the

power consumption of the remaining circuitry is given by [20]

P =Py +Y Py,

Jj=1

(20)

where Py refers to the static power consumption, and Py ;
corresponds to the power consumption of the circuitry and the
digital signal processing that depends on the activation of the
j-th antenna. Clearly, P, ; = 0 for the inactive antennas. The
global EE can be therefore expressed as

- K ¢ v Uz
PRy {P‘I’ + Zj:l Py + P Zj:l pk,j}

where, in the following, Py is set to a reference of 5 mW per
MS [20], and 7 is considered to be 0.35 due to the linearity
required to transmit QAM modulated signals [19].

€

;@D

VI. SIMULATION RESULTS

Numerical results have been obtained via Monte Carlo
simulations to evaluate the performance and energy efficiency
improvements of the proposed approach. The simulation setup
is comprised of a BS with N = 128 antennas, a Rayleigh
fading channel as specified in Sec. II-A, and K MSs. The
modulation order () and the number of antennas per transmitter
ny are set to ensure that the systems under comparison have
the same spectral efficiency as conventionally considered in the
literature [15], [21]. In this section, we compare the proposed
CS-based detection schemes with different low-complexity
strategies, namely the linear ZF and MMSE detectors des-
cribed in (5), and conventional spatial multiplexing MIMO
systems without SM.

Fig. 2 shows the bit error rate (BER) of the considered
systems for increasing levels of SNR, imperfect CSI estimation
and K = 48. The estimated channel with imperfect CSI is
modeled as H = v1— 72H + 7Z, where Z € CNXM
CN(0,Iy ®1I,y) is the uncorrelated channel estimation error
and 7 € [0,1] is a parameter that determines the quality of the
CSI estimation ranging from perfect (7 = 0) to only statistical
CSI (tr = 1) [4]. In this figure, SM Generic CS denotes
the conventional CoSaMP algorithm without exploiting the
MAC structure, 7 = 0.1, and the MSs in the SM systems
incorporate n; = 4 antennas each. The results show that

Bit Error Rate (BER)

= H = MIMO ZF. nt=1, 16-QAM.

MIMO ZF. nt=2, 4-QAM.

% SM-MMSE. nt=4, 4-QAM.

= SMMP. nt=4, 4-QAM.

—©— SM Generic CS. nt=4, 4-QAM.

10 = I It i i i
4

6 8 10 12 14 16
SNR (dB)

Fig. 2. BER vs. SNR for N = 128, K = 48, imae = 4, k = K, Se = 192
bpcu and imperfect CSI (7 = 0.1).
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o
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- B = MIMO ZF. nt=1, 16-QAM.
MIMO ZF. nt=2, 4-QAM.

= = = SM Zero-Forcing. nt=4, 4-QAM.

0.061 %+ SM MMSE. nt=4, 4-QAM.

——— SMMP. nt=4, 4-QAM.

—0— SM Generic CS. nt=4, 4-QAM.

0.04 L I I I I I I I I I I
5 10 15 20 25 30 35 40 45 50 55

Number of users (K)

Fig. 3. EE vs. number of users K to achieve BER = 10~3. N = 128 and
Py, = 15 mW per active antenna.

the proposed strategy offers an improved performance w.r.t.
the conventional alternatives for a large set of BERs. In
particular, a performance gain higher than 1.5 dB to achieve an
average BER of 1073 can be observed when compared to the
conventional MIMO system with a higher modulation order.
We remark that this performance difference is maximized
from an EE perspective since the PAPR of a transmitter with
a higher modulation order is also increased, hence directly
reducing the PA efficiency as shown in (21).

The above observation is explicitly shown in Fig. 3, where
the energy efficiency of the systems under study is depicted for
increasing number of users K. In this figure, the transmission
power is varied depending on the number of users so that an
average BER of 1073 is guaranteed, and the noise variance is
set to o2 = 0.01. Moreover, the circuit and signal processing
power consumption that depends on the number of active
antennas is fixed to P, = 15 mW per active antenna in (20)
[19]. From the results of this figure it can be concluded that
SM systems outperform conventional MIMO systems for a
small number of MSs whereas the latter ones are more useful
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Fig. 4. EE vs. dynamic power consumption per active antenna (F,) to achieve
BER = 1073, N = 128, K = 36.

when a large number of users are considered. Intuitively, this
occurs because SM systems require allocating a higher number
of antennas at the MSs to achieve the same spectral efficiency,
hence reducing the system performance for high K due to the
poor conditioning of the channel matrix. Nevertheless, it can
be seen that the proposed algorithm outperforms the rest of
alternatives for a wide range of scenarios, hence validating
the benefits of SM against conventional MIMO transmission
in the MAC.

Fig. 4 shows the EE for increasing values of the dynamic
power consumption per antenna Py and K = 36. It can
be seen that the use of SM is, in general, beneficial in this
scenario. This is because the EE of a single-antenna MIMO
is reduced due to the necessity of using a higher modulation
order, which in this case increases the PAPR factor from 1
(QPSK) to 9/5 (16-QAM). Moreover, this figure also depicts
that increasing the dynamic power consumption harms the EE
of the system with conventional spatial multiplexing and two
antennas per user due to the higher circuit power consumption
required to activate the additional RF chain per user. Overall,
these results characterize the improvements obtained by the
exploitation of the MAC structure in CS-based algorithms.

VII. CONCLUSION

In this paper, a CS-based detection algorithm that exploits
the sparsity and particular signal structure of SM transmission
in the MAC has been presented. The EE analysis of the MAC
with a massive BS has exhibited that there exists a trade-off
in the use of conventional MIMO transmission and SM, being
one more useful than the other depending on parameters such
as the number of users or the dynamic power consumption.
Moreover, it has been shown that the proposed strategy is able
to outperform conventional linear detectors, hence extending
the benefits of SM in the MAC to a wider range of scenarios.
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