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Abstract—A major performance degrading factor in free space
optical communication (FSO) systems is atmospheric turbulence.
Spatial diversity techniques provide a promising approachto
mitigate turbulence-induced fading. In this paper, we study
the error rate performance of FSO links with spatial diversity
over atmospheric turbulence channels described by the Double
Generalized Gamma distribution which is a new generic sta-
tistical model covering all turbulence conditions. We assume
intensity modulation/direct detection with on-off keying and
present the BER performance of single-input multiple-output
(SIMO), multiple-input single-output (MISO) and multiple -input
multiple-output (MIMO) FSO systems over this new channel
model.

Index Terms—Atmospheric turbulence, Double GG distribu-
tion, bit error rate, error rate performance analysis, Free-space
optical systems, spatial diversity, MIMO.

I. I NTRODUCTION

FREE-SPACE optical (FSO) communication enables wire-
less connectivity through atmosphere using laser trans-

mitters at infrared bands. These systems provide high data
rates comparable to fiber optics while they offer much more
flexibility in installation and deployment. Since they operate
in unregulated spectrum, no licensing fee is required leading
to a cost-effective solution [1]–[3].

A major performance limiting factor in FSO systems is
atmospheric turbulence-induced fading (also called as scintil-
lation) [4]. Inhomogenities in the temperature and the pressure
of the atmosphere result in variations of the refractive index
and cause atmospheric turbulence. This manifests itself as
random fluctuations in the received signal. In the literature,
several statistical models have been proposed to model this
random phenomenon. Historically, log-normal distribution has
been the most widely used statistical model for the random
irradiance experienced over atmospheric channels [5]–[10].
This model is however restricted to weak turbulence conditions
and has large deviations from the experimental data when the

strength of turbulence increases.

In an effort to come up with a more general model to cover
a wide range of turbulence conditions, other statistical models
have been proposed in the literature which include the K
[11], I-K [12], log-normal Rician [13], Gamma-Gamma [14],
M [15] and Double Weibull [16] distributions. In our recent
work, we proposed the so-called Double Generalized Gamma
(Double GG) as a unifying distribution for the irradiance
fluctuations [17]. This model is valid under all range of
turbulence conditions and contains most of the existing models
in the literature as special cases.

In our previous work [17], as an initial performance study,
we derived the BER performance of single-input single-
output (SISO) FSO link over Double GG channels. In this
work, we extend our performance analysis to multiple-input
multiple-output (MIMO) FSO systems. MIMO FSO systems
are known to mitigate turbulence-induced fading and sig-
nificantly improve the performance. Some earlier results on
MIMO FSO systems over log-normal, K, negative exponential
and Gamma-Gamma channels can be found in [18]–[22]. In
this paper, we study the error rate performance of single-
input multiple-output (SIMO), multiple-input single-output
(MISO) and MIMO FSO systems employing intensity mod-
ulation/direct detection (IM/DD) with on-off keying (OOK)
over independent and not necessarily identically distributed
(i.n.i.d.) Double GG turbulence channels.

The rest of the paper is organized as follows: In Section II,
we introduce the MIMO FSO system model. In Section III,
we provide the BER expressions for SIMO, MISO and MIMO
FSO links. In Section IV, we present numerical results to con-
firm the accuracy of the derived expressions and demonstrate
the advantages of employing spatial diversity over SISO links.
Finally, Section V concludes the paper.
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II. SYSTEM MODEL

We consider an FSO system employing IM/DD with OOK
where the information signal is transmitted viaM apertures
and received byN apertures over the Double GG channel.
The received signal at thenth receive aperture is then given
by

rn = ηx
M
∑

m=1

Imn + υn, n = 1, . . . , N (1)

wherex represents the information bits and can be either 0 or
1,υn is the Additive White Gaussian noise (AWGN) term with
zero mean and varianceσ2

υ = N0/2 , andη is the optical-to-
electrical conversion coefficient. Here,Imn is the normalized
irradiance from themth transmitter to thenth receiver whose
pdf follows [23, Eq. (1)]

fI (I) =
γ2pp

β2−1/2qβ1−1/2(2π)
1−(p+q)/2

I−1

Γ (β1) Γ (β2)
(2)

×G0,p+q
p+q,0
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Ω2
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)p
ppqqΩq
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|∆(q : 1− β1) ,∆(p : 1− β2)
−
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where Gm,n
p,q [.] is the Meijers G-function defined in [24,

Eq.(9.301)],p andq are positive integer numbers that satisfy
p/q = γ1/γ2 and∆(j;x) , x/j , ..., (x+ j − 1)/j , and
βi ≥ 0.5 is a shaping parameter modeling the severity of
fading. The distribution parametersγi andΩi, i = 1, 2 , of
the Double GG model can be identied using the following
equations

Ωi =

(

Γ (βi)

Γ (βi + 1/γi)

)γi

βi, i = 1, 2 (3)

σ2
x =

Γ (β1 + 2/γ1 ) Γ (β1)

Γ2 (β1 + 1/γ1 )
− 1 (4a)

σ2
y =

Γ (β2 + 2/γ2 ) Γ (β2)

Γ2 (β2 + 1/γ2 )
− 1 (4b)

where σ2
x and σ2

y are respectively normalized variances of
small and large scale irradiance uctuations.

The cumulative distribution function (cdf) of Double GG
distribution can be derived from (2) as [17]

FI (I) =
pβ2−1/2qβ1−1/2(2π)

1−(p+q)/2

Γ (β1) Γ (β2)
(5)
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βq
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| 1
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]

III. BER PERFORMANCE

The optimum decision metric for OOK is given by [20]

P (r|on,Imn)
on
≶
off

P (r|off,Imn) (6)

where r = (r1, r2, ..., rN ) is the received signal vector.
Following the same approach as [19], [20], the conditional
bit error probabilities are given by (see [19] for details of

derivation)

Pe(off |Imn) = Pe(on |Imn)

= Q
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(7)

Therefore, the average error rate can be expressed as

PMIMO =

∫

I

fI (I)Q
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dI (8)

wherefI (I) is the joint pdf of vectorI = (I11, I12, . . . , IMN ).
The factorM in (8) ensures that the total transmitted powers of
diversity system and SISO link are equal for a fair comparison.
On the other hand, the factorN is used to ensure that sum
of the N receive aperture areas is the same as the area of
the receive aperture of the SISO link. The integral expressed
in (8) does not yield a closed-form solution even for simpler
turbulence distributions; however, it can be calculated through
numerical multi-dimensional integration. Similarly, we can
use multidimensional Gaussian quadrature rule (GQR) [25]
techniques to calculate the BER for MISO case, i.e.,

PMISO =

∫

I

fI (I)Q

( √
γ̄

M
√
2

M
∑

m=1

Im

)

dI (9)

which does not yield a closed form expression either.
In the following, we focus on the SIMO case and investi-

gate the BER performance under the assumption of optimal
combining (OC) with perfect CSI where the variance of the
noise in each receiver is given byσ2

n = N0/2N . Therefore,
replacingM = 1 in (8) we obtain

PSIMO,OC =

∫

I

fI (I)Q
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I2n



 dI (10)

Eq. (10) does not yield a closed-form solution and requires
N-dimensional integration. Nevertheless, the Q-functioncan
be well-approximated asQ(x) ≈ e−

x2

2 /12 + e−
2x2

3 /4 [26],
and thus the average BER can be obtained as

PSIMO,OC ≈ 1

12

N
∏

n=1

∫ ∞
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fIn (In) exp
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dIn
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4
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(−γ̄

3N
I2n

)

dIn (11)

The above integral can be evaluated by first expressing the ex-
ponential function in terms of the Meijer G-function presented
in [27, eq. (11)] as

exp (−x) = G1,0
0,1

[

x
∣

∣

−
0

]

(12)

Then, a closed-form expression for (11) is obtained using [27,
Eq. (21)] as

PSIMO,OC ≈ 1

12

N
∏

n=1

Λ (n, 4) +
1

4

N
∏

n=1

Λ (n, 3) (13)



Λ (n, υ) =
αnl
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n

2(2π)
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(14)

whereΛ (n, υ) is defined in (14) at the top of the next page.
In (14), ln andkn are positive integer numbers that satisfy

pnγ2,n/2 = ln/kn , and Jξ (y, x), αn and ωn, n ∈
{1, 2, . . . , N}, are defined as

Jξ (y, x) (15)
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Γ (β1,n) Γ (β2,n)
(16)

ωn =
(

Ω2,npnβ
−1
2,n

)pn
(

qnΩ1,nβ
−1
1,n

)qn (17)

The derived BER expression in (13) for SIMO FSO system
with OC can be seen as a generalization of BER results over
other atmospheric turbulence models. For example, if we insert
γi = 1 andΩi = 1 in (13), we obtain the BER expression over
Gamma-Gamma channel. Settingβi = 1 in (13), we obtain
the BER for Double Weibull channel. On the other hand, for
γi = 1, Ωi = 1 and β2 = 1, (13) reduces to (12) of [19]
reported for the K-channel. Appendix provides the details on
these.

As an alternative to OC, we also consider equal gain com-
bining (EGC) where the receiver adds the receiver branches.
In this case, the average BER can be expressed as

PSIMO,ECG=

∫

I

fI (I)Q

( √
γ̄

N
√
2

N
∑

n=1

In

)

dI (18)

It should be noted that (18) is equivalent to (9) obtained forthe
MISO FSO links. Another method is selection combining (SC)
which is the least complicated of the combining schemes since
it only processes one of the diversity apertures. Specically, the
SC chooses the aperture with the maximum received irradiance
(or electrical SNR). Therefore, the pdf of the output of SC
receiver can be obtained as

fImax
(Imax) =

dFImax
(Imax)

dImax

=

N
∑

n=1

N
∏

k=1,k 6=n

fIn (Imax)FIk (Imax) (19)

The average BER can be then expressed as

PSC =

N
∑

n=1

N
∏

k=1,k 6=n

∫ ∞

0

fIn (Imax)FIk (Imax)

×Q

(

Imax

√

γ̄

2N

)

dImax (20)

which can be efficiently calculated through numerical means.

Fig. 1. Comparison of the average BER between SISO and different diversity
techniques for plane wave assuming i.i.d. turbulent channel defined as channel
b.

Fig. 2. Comparison of the average BER between SISO and different diversity
techniques for plane wave assuming i.i.d. turbulent channel defined as channel
c.

IV. N UMERICAL RESULTS

In this section, we present BER performance results of
SIMO, MISO and MIMO FSO systems over Double GG
channels and quantify the performance improvements over
SISO systems. We consider the following four scenarios of
atmospheric turbulence conditions reported in [17].



• Channel a: Plane wave and moderate irradiance fluc-
tuationswith γ1 = 2.1690, γ2 = 0.8530, m1 = 0.55,
m2 = 2.35, Ω1 = 1.5793, Ω2 = 0.9671, p = 28 and
q = 11

• Channel b: Plane wave and strong irradiance fluctu-
ations with γ1 = 1.8621, γ2 = 0.7638, m1 = 0.5,
m2 = 1.8, Ω1 = 1.5074, Ω2 = 0.9280, p = 17 and
q = 7.

• Channel c: Spherical wave and moderate irradiance
fluctuationswith γ1 = 0.9135, γ2 = 1.4385, m1 = 2.65,
m2 = 0.85, Ω1 = 0.9836 andΩ2 = 1.1745, p = 7 and
q = 11.

• Channel d: Spherical wave and strong irradiance fluc-
tuations with γ1 = 0.4205, γ2 = 0.6643, m1 = 3.2,
m2 = 2.8, Ω1 = 0.8336 andΩ2 = 0.9224, p = 7 and
q = 11.

Figs. 1-2 present the average BER over i.i.d. channels
defined as channelb and channelc respectively. For SIMO
FSO links employing OC receivers, we present approximate
analytical results which have been obtained through (13) along
with the Monte-Carlo simulation of (10). As clearly seen from
Figs. 1-2, our approximate expressions provide an excellent
match to simulation results. As a benchmark, the average
BER of SISO FSO link is also included in these figures. It is
observed that multiple receive aperture deployment signicantly
improves the performance. For instance, at a target bit error
rate of10−5, we observe performance improvements of 47.2
dB and 67.2 dB for SIMO FSO links withN = 2 and 3 receive
apertures employing OC with respect to the SISO transmission
over channelb. Similarly, for channelc, at a BER of10−5,
impressive performance improvements of 51.5 dB and 64.3
dB are achieved for SIMO links withN = 2 and 3 employing
OC compared to the SISO deployment. It is also illustrated
that EGC receivers yield nearly the same performance as OC
receivers. For example, in Fig 2, forN = 2 the performance
difference between OC and EGC receivers is merely 0.4 dB
at a BER of10−5. Also as expected, EGC and OC receivers
outperform SC counterpart.

Figs. 3-4 demonstrate the BER performance of SIMO
FSO links employing OC, EGC and SC receivers over non-
identically distributed (i.n.i.d.) Double GG channels. Similar
to i.i.d. results, our approximate closed-form expressions again
yield nearly identical match to simulation results. We further
compare the performance of i.n.i.d. case with respect to i.i.d.
case presented in Figs1-2. For example, to achieve a BER of
10−5 in SIMO links withN = 2 over i.n.i.d. channelsa andb,
we need 8.2 dB, 8.5 dB and 4.9 dB less in comparison to i.i.d.
case respectively for OC, EGC and SC receivers. Note that in
Fig. 1, we assume that both of the two channels between the
transmitter and receivers are described by channelb. Thus,
since the channela is less severe than the channelb, we need
less SNR in comparison to i.i.d case to obtain the same BER.
On the other hand, to achieve a BER of10−5 for SIMO links
with N = 2 over i.n.i.d. channelsc and d, we need 6.8 dB
more for OC and EGC receivers and 11.6 dB more for SC

Fig. 3. Comparison of the OC, EGC and SC receivers for SIMO FSOlinks
over two i.n.i.d. atmospheric turbulence channels defined as channela and
channelb.

Fig. 4. Comparison of the OC, EGC and SC receivers for SIMO FSOlinks
over two i.n.i.d. atmospheric turbulence channels defined as channelc and
channeld.

receiver in comparison to i.i.d channels. Note that in Fig. 2,
both of the two channels between the transmitter and receivers
are described by channelc. Therefore, as the channeld is more
severe than the channelc, we need more SNR in comparison
to i.i.d case to achieve the same performance.

V. CONCLUSIONS

In this paper, we have investigated the BER performance of
FSO links with spatial diversity over atmospheric turbulence
channels described by the Double GG distribution. We have
obtained an efficient and unified closed-form expression for
the BER of SIMO FSO systems with OC receiver which



generalizes existing results as special cases. For MISO and
MIMO systems, we have presented BER performance based
on numerical calculations of the integral expressions. Our
numerical results have demonstrated that spatial diversity
schemes can significantly improve the system performance
and bring impressive performance gains over SISO systems.
Our comparisons among SIMO FSO links employing OC,
EGC and SC receivers have further demonstrated that EGC
scheme presents a favorable trade-off between complexity and
performance.

APPENDIX

Proposition 1: Insertingγi = 1, Ωi = 1 and β1 = 1 in (13),
the BER of SIMO FSO links using optimal combining over
K-channel is obtained.
Proof: First by replacingγi = Ωi = p = q = β1 = 1 in (16)
and (17), we obtainαn = 1/Γ (β2,n) andωn = β−1

2,n. Then
by plugging all the values in (14), we obtain

ΛKC (n, υ)

=
2β2,n−1

πΓ (β2,n)
G4,1

1,4

[

(υN)β2
2,n

16γ̄
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∣

∣

∣

∣

1
1
2 , 1,

β
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β
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+1

2

]

(21)

=
2β2,n−1

πΓ (β2,n)
G1,4

4,1

[

16γ̄

υNβ2
2,n

∣
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∣
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2 , 0,

2−β
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2 ,
1−β

2,n

2
0

]

Therefore,

PSIMO,OC KC ≈ 1

12

N
∏

n=1

ΛKC (n, 4) +
1

4

N
∏

n=1

ΛKC (n, 3)

(22)
which coincides with (21) of [19].
Proposition 2: Inserting γi = 1, Ωi = 1 in (13), the BER
of SIMO FSO links using optimal combining over Gamma-
Gamma channel is obtained.
Proof: First by replacingγi = Ωi = p = q = 1 in (16) and
(17), we obtainαn = 1/Γ (β1,n) Γ (β2,n) andωn = β−1

1,nβ
−1
2,n.

Then by inserting all the values as well asl = 1 andk = 2
in (14), we obtain

ΛGG (n, υ) =
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πΓ (β1,n) Γ (β2,n)
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(23)

Therefore,

PSIMO,OC GG ≈ 1

12

N
∏

n=1

ΛGG (n, 4) +
1

4

N
∏

n=1

ΛGG (n, 3)

(24)
Proposition 3: Insertingβi = 1 in (13), the BER of SIMO FSO
links using optimal combining over Double-Weibull channelis
obtained.
Proof: Insertingβi = 1in (16) and (17), we obtain

αn = γ2,np
3/2
n q1/2n (2π)

1−(pn+qn)/2 (25)

ωn = (Ω2,npn)
pn(qnΩ1,n)

qn (26)

Then by plugging all the values in (14), we obtain

ΛDW (n, υ) =
γ2,np

3/2
n q

1/2
n l−0.5

n k2n

2(2π)
0.5(ln−3+kn(pn+qn))

×G
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ln,kn(pn+qn)
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(Ω2,npnkn)
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(

γ̄−1ln
)ln
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∣
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∣
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(27)

Thus,

PSIMO,OC DW ≈ 1

12

N
∏

n=1

ΛDW (n, 4) +
1

4

N
∏

n=1

ΛDW (n, 3)

(28)
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