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Abstract—Green Small Cell Networks aim at achieving high
rates and low powers by offloading users with low signal-to-noise-
ratios from macrocell to the pico base station. In this work, we
propose to jointly optimise energy efficiency (EE) and spectrum
efficiency (SE) such that the network providers can dynamically
tune the trade-off parameter for different design requirements.
This paper formulates the EE-SE trade-off as a multi-objective
optimisation problem (MOP) in the uplink of multi-user two-
tier Orthogonal Frequency Division Multiplexing Heterogeneous
Networks. Using the weighted sum method, the MOP can be
transformed into a single-objective optimisation problem (SOP).
The proposed EE and SE trade-off optimisation problem is strictly
quasi-concave. Hence, using Dual Decomposition approach, we
derive the unique optimal solution. Numerical results demonstrate
the effectiveness of the proposed approach and illustrate the
fundamental tradeoff between EE and SE for different tradeoff
parameters such as maximum transmission power and circuit
power.

Index Terms—HetNets, Green Communications, Energy and
Spectrum Efficiency, Resource Allocation, Small Cells.

I. INTRODUCTION

O
NE of the emerging technologies towards enabling Fifth

Generation (5G) is heterogeneous networks (HetNets)

which include Green Small Cell Networks consisting of low-

power base station (BS), (e.g., microcells, picocells, and femto-

cells), overlaid within the macrocell geographical area, deployed

by either users or network operators who share the same

spectrum with the macrocells [1]. The purpose of HetNets is to

allow user equipments (UEs) to access small cells even though

the UEs are within the coverage of macrocell. The deployment

of small cells has a great potential to improve the spatial reuse

of radio resources and also to enhance the energy efficiency

(EE) of the network [2] [3].

In traditional networks, the spectrum efficiency (SE) metric is

considered the main performance indicator which measures how

efficiently the frequency resources are utilized regardless of the

efficient power consumption. On the other hand, EE is emerging

as one of the key performance indicators for the next generation

wireless communications systems. The motivation behind EE

arises due to the current energy cost payable by operators for

running their access networks as a significant factor of their

operational expenditures (OPEX). Hence, green networking

paradigm, which focuses on reducing energy consumption by

bringing the BS closer to the UEs [4], motivates using HetNets

for higher EE.
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Currently, most of EE gains in HetNets are achieved with

sacrificing SE [4]. We note that the user lying within the

coverage area of heterogeneous network can efficiently utilise its

resources in order to either improve its achievable EE or SE. In

this trend, the EE-maximisation problem in an uplink of HetNets

is analytically solved for a single user case under minimum

target rate and maximum transmission power constraints in

[5]. A joint bandwidth and power allocation scheme to optimise

EE for a set of users within the heterogeneous networks is

proposed in [6]. This scheme is implemented for the multi-user

system in a distributed manner in [6]. A joint BS association and

power control scheme which intent to satisfy the user’s target

signal-to-interference-plus-noise ratio (SINR) for the uplink of

a large-scale HetNets is proposed in [7]. An efficient power

allocation scheme to investigate the power consumption and

EE without degrading the network throughput in Long Term

Evolution (LTE) HetNets is proposed in [8]. In [9], a distributed

non-cooperative game is proposed to improve the system EE

in the downlink transmission of HetNets. In this work, the BSs

autonomously choose their optimal transmission strategies while

balancing the load among themselves and satisfying the users’

quality-of-service requirements.

Considering that simply maximising either EE or SE does not

utilise the resources efficiently, there is an increasing attention

for 5G networks to jointly optimise the two conflicting objec-

tives, i.e., EE and SE. However, most of the current literature

mainly focus on the EE-SE tradeoff in the downlink trans-

mission scheme of traditional Orthogonal Frequency Division

Modulation Access (OFDMA) based macrocell only systems

(for example, [10] and [11]).

According to the best of our knowledge, there is no work

on joint EE-SE tradeoff in the HetNets considering multi-

user multi-carrier systems. In this work, we address an EE-

SE tradeoff resource allocation technique in an uplink HetNet

as a multi-objective optimization problem (MOP) to simultane-

ously maximise both EE and SE considering maximum input

power constraint. We transform the formulated MOP into a

single-objective optimization problem (SOP) using weighted

sum method. Proving that the EE-SE tradeoff SOP is strictly

quasi-concave with respect to the transmit power, we derive

the optimal solution. By exploiting the fractional program-

ming concept, the formulated SOP can be transformed into

an equivalent subtractive form which is tractable. Numerical

results demonstrate the impact of maximum transmit power,

the channel-to-noise ratio, the circuit power and the tradeoff

parameter on EE-SE tradeoff.



II. SYSTEM MODEL

We consider an uplink two-tier HetNet composed of one

macrocell overlaid with one pico BS with total number of users

N and total number of subacrriers K. We denote the index set

of all subcarriers as k = {1, · · · ,K} , the set of all users as

n = {1, · · · , N} and the set of networks as m = {1, · · · ,M}.

We further assume that the channel state information (CSI)

corresponding to each subcarrier is perfectly known to the

UEs transmitters. Further, we consider an orthogonal subcarrier

selection scheme which assigns each subcarrier exclusively to

either pico BS (PB) or macrocell (Mc) at any time such that

KPB

⋂

KMc = ∅ where KMc and KPB indicate the set of

subcarriers assigned to the macrocell and pico BS, respectively.

Assume σ
(PB)
k,n and σ

(Mc)
k,n denote the subcarrier allocation indices

for pico BS and macrocell, and the assignment of subcarriers

to the users as well. Particularly, when subcarrier k ∈ KPB, for

k = {1, · · · ,K}, is allocated to user n, for n = {1, · · · , N},

then σ
(PB)
k,n = 1, and otherwise, σ

(PB)
k,n = 0. Similarly, if the

subcarrier k ∈ KMc is allocated to user n, σ
(Mc)
k,n = 1, and

otherwise, σ
(Mc)
k,n = 0.

The instantaneous rate achieved on each subcarrier k by user

n for macrocell and pico BS can be hence written as:

r(Mc)
k,n = σ

(Mc)
k,n B

(Mc)
k log2

(

1 + γ
(Mc)
k,n × p

(Mc)
k,n

)

, ∀k ∈ KMc, (1a)

r(PB)
k,n = σ

(PB)
k,n B

(PB)
k log2

(

1 + γ
(PB)
k,n × p

(PB)
k,n

)

, ∀k ∈ KPB, (1b)

where p
(PB)
k,n and p

(Mc)
k,n indicate the power allocated to the sub-

carrier k for user n in the pico BS and macrocell, respectively.

Similarly, the rate of user n using subcarrier k choosing macro-

cell or pico BS is represented by r
(Mc)
k,n and r

(PB)
k,n , respectively.

Each network m ∈ {Mc, PB} has its own bandwidth equally

divided among its subcarriers. B
(Mc)
k and B

(PB)
k represent the

subcarrier spacing in macrocell and pico BS, respectively. γ
(Mc)
k,n

and γ
(PB)
k,n represent the channel-to-noise-ratio (CNR) of user n

on subcarrier k in the macrocell and pico BS, respectively, and

can be defined as:

γ
(Mc)
k,n =

|h(Mc)
k,n |2

σ
(Mc)
k,n ρ2McPL(Mc)

, (2a)

γ
(PB)
k,n =

|h(PB)
k,n |2

σ
(PB)
k,n ρ2PBPL(PB)

, (2b)

where h
(Mc)
k,n and h

(PB)
k,n represent the channel amplitude gain for

user n on subcarrier k ∈ KMc and k ∈ KPB, respectively. The

distance-based path loss in macrocell and pico BS are denoted

by PL(Mc) and PL(PB). The noise power in subcarrier k for

macrocell and pico BS are respectively given by ρ2Mc = B
(Mc)
k N0

and ρ2PB = B
(PB)
k N0, where N0 is the noise spectrum density.

For simplicity, we assume that a set of available networks are

known in two-tier HetNets. In practice, the transmission power

available at user n, Pn, is limited to a maximum threshold, i.e.,

Pmax
n which can be formulated as:

Pn ≤ Pmax
n , ∀n = {1, · · · , N}, (3a)

Pn =
∑

k∈K

p
(m)
k,n , ∀m. (3b)

In an uplink transmission scenario, multiple users transmit

data towards a BS so each communication link between user

and BS introduces an individual circuit power PC. Since the

circuit power is related to the UE handsets, we assume PMc
C =

PPB
C = PC. Hence, the overall power consumption model and

the transmission power in an uplink of HetNets are modelled

as below:

P = ǫ0
∑

m∈M

∑

k∈K

∑

n∈N

p
(m)
k,n +N × PC, (4)

where N represents the total number of active users and ǫ0 is

an inverse of power amplifier efficiency.

Energy Efficiency (ηEE) is defined as the amount of data

transferred per unit energy consumed by the system (usually

measured in (b/J) and is defined as:

ηEE =
R

P
=

∑

m∈M

∑

k∈K

∑

n∈N

r
(m)
k,n

ǫ0

(

∑

m∈M

∑

k∈K

∑

n∈N

p
(m)
k,n

)

+N × PC

, (5)

where R denotes the total achievable data rate. ηEE is strictly

quasi-concave with respect to transmission power PT [11].

Hence, there exists one and only one optimal solution that

maximises ηEE which strictly increases with PT ∈
[

0, P ∗
ηEE

]

while strictly decreases with PT ∈
[

P ∗
ηEE

,∞
]

. SE (ηSE), on the

other hand, is a measure that reflects the efficient utilization

of the available spectrum in terms of throughput and it is

commonly expressed in units of b/s/Hz. ηSE is strictly increasing

with transmission power PT, is concave in PT, and can be

defined as:

ηSE =
R

B
=

∑

m∈M

∑

k∈K

∑

n∈N

r
(m)
k,n

Ka

K × ∑

m∈M

∑

k∈Km

B
(m)
k

, (6)

where B denotes the total occupied bandwidth and Ka is the

number of active subcarriers. It is usually not always possible to

maximise both EE and SE simultaneously. It is also worthwhile

to mention that in most of the power regions, the power

allocation strategies to increase these metrics are conflicting

approaches. In detail, EE and SE both increase with transmission

power PT until it reaches the energy-efficient transmission

power PT = P ∗
ηEE

. After this point, EE decreases with an

increase in SE. These fact motivate us to dynamically tune the

EE and SE trade-off dependent on the available resources, in

terms of bandwidth and the transmission power.

In the following sections, we propose an energy-efficient user

association scheme in which the user associates to the BS with

the maximum achievable EE. Unique association of users with

the macrocell or pico BS is assumed [1]. Specifically, each user

can only be associated with one BS. More detail can be found

in Section IV.

III. PROBLEM FORMULATION OF EE-SE TRADEOFF

Our goal is to optimise EE and SE simultaneously. In this

section, we formulate EE and SE trade-off with the maximum

input power constraint in an uplink transmission scheme of Two-

Tier HetNets. We formulate the EE-SE trade-off as an MOP

according to

max
σ
(m)

k,n
,p

(m)

k,n

ηEE and max
σ
(m)

k,n
,p

(m)

k,n

ηSE. (7)



In order to maintain the balance between EE and SE in the

considered MOP, we transform the optimisation problem using

normalised factors θEE and θSE such that EE and SE are in the

similar scale. Using the weighted sum method [12], we convert

the MOP in (7) into an SOP defined by η, yielding

max
σ
(m)

k,n
,p

(m)

k,n

αθEEηEE + (1− α)θSEηSE (8a)

s.t.

0 ≤ α ≤ 1 (8b)

M
∑

m=1

K
∑

k=1

p
(m)
k,n ≤ Pmax

n , ∀n. (8c)

M
∑

m=1

σ
(m)
k,n ≤ 1, ∀k, ∀n. (8d)

p
(m)
k,n ≥ 0, σ

(m)
k,n ∈ {0, 1} , ∀n, ∀k, ∀m. (8e)

Here, (8a) represents the EE-SE tradeoff optimisation problem

and α is the tradeoff parameter such that 0 ≤ α ≤ 1. (8a) can

further be simplified to

η = max
σ
(m)

k,n
,p

(m)

k,n

θEEηEE +

(

1− α

α

)

θSEηSE. (9)

In (9), we replace

(

1− α

α

)

with β which can be from 0 to ∞.

We further simplify (9) as

η =
η

θEE

= max
σ
(m)

k,n
,p

(m)

k,n

ηEE + β

(

θSEηSE

θEE

)

. (10)

The maximisation problem (8a) − (8e) is an integer combi-

natorial fractional programming problem and is generally NP-

hard. For better tractability, we first relax the integer variables,

σ
(m)
k,n ∈ {0, 1} into continuous variables, σ̃

(m)
k,n ∈ [0, 1]. After

some mathematical manipulations, the modified optimisation

problem for (8a) − (8e) can be written as

η = max
σ̃
(m)

k,n
,p

(m)

k,n

ηEE

(

1 + β
θSEP

θEEB

)

, (11a)

s.t.

M
∑

m=1

K
∑

k=1

p
(m)
k,n ≤ Pmax

n , ∀n. (11b)

M
∑

m=1

N
∑

n=1

σ̃
(m)
k,n ≤ 1, ∀k. (11c)

β ≥ 0, p
(m)
k,n ≥ 0, σ̃

(m)
k,n ∈ [0, 1], ∀n, ∀k, ∀m. (11d)

Note, the unit of η is (b/J). ηEE is quasi-concave in PT and R is

strictly concave in PT . Hence, η is continuously differentiable

and quasi-concave with respect to the transmission power PT.1

As mentioned in [13], any optimisation problem in frac-

tional form can be transformed into an equivalent optimisation

problem in subtractive form. Hence, the non-linear fractional

optimization problem in (11a) can be transformed into the

parameterized function as shown in (12). The constraints in

1Due to the space limitation, the proof is omitted.

(11c)−(11d) are later considered by dual decomposition method

such that each subcarrier can be exclusively assigned to a single

user and the non-negative optimal powers are computed. The

optimal solution can be determined by finding the root to the

U(η) as shown in (12) using various root finding methods [14].

U (η) = max
σ̃
(m)

k,n
,p

(m)

k,n

(

M
∑

m=1

N
∑

n=1

K
∑

k=1

r
(m)
k,n

(

1 + β
θSEP

θEEB

)

−η

(

N × PC + ǫ0

M
∑

m=1

N
∑

n=1

K
∑

k=1

p
(m)
k,n

))

(12)

From (12), it implies that U (η) strictly decreases with respect

to η. It also imply that η → −∞, U (η) > 0 and η →
∞, U (η) < 0. From (12), it is quite obvious that U(η) > 0,

when η ≤ 0. In this work, we will solve (12) for η > 0.

IV. EE AND SE TRADE-OFF RESOURCE ALLOCATION

SCHEME

The solution to EE-SE tradeoff optimisation problem is for-

mulated as an iterative two-layer solution combining Dinkelbach

type method (outer layer) and Lagrangian dual decomposition

approach (inner layer). This process is repeated until both

procedures converge to an optimum value. We have proposed

an iterative Dinkelbach type method as an outer layer solution

to find an optimal solution to (12) by determining a root to

U (η) = 0. At an iteration i−1, the value of η is initialised and

the U (η) is solved for a given value of η, i.e., ηi−1, and the

optimal power p∗i−1 is computed using dual decomposition ap-

proach (i.e., inner layer solution). The optimal power computed

in iteration i−1 can be used to update the value of η for iteration

i. This process is repeated until convergence. The pseudo code

for the Dikenlbach method is shown in Algorithm-I.

We utilise the dual decomposition approach [15] to solve

U (η) = 0 in each iteration of Dinkelbach type method.

It is shown that the dual-composition approach has lower

computational complexity and the duality gap for non-convex

optimisation approaches to zero for sufficiently large number of

subcarriers [14]. In order to apply dual decomposition method,

we first need to find the Lagrangian function of (12). Using

standard optimisation methods proposed in [14], the Lagrangian

function of (12) can be written as:

L(p
(m)
k,n , µ) =

M
∑

m=1

N
∑

n=1

K
∑

k=1

r
(m)
k,n

(

1 + β
τEE

τSE

)

−η

(

ε0

M
∑

m=1

N
∑

n=1

K
∑

k=1

p
(m)
k,n +N × PC

)

+

N
∑

n=1

µn

(

Pmax
n −

M
∑

m=1

K
∑

k=1

p
(m)
k,n

)

, (13)

where τEE = P
θEE

and τSE = B
θSE

. Following (13), the Lagrangian

dual function corresponding to problem (12) is

g(µ) = max
σ̃
(m)

k,n
,p

(m)

k,n

L(p
(m)
k,n , µ). (14)

The corresponding dual problem to (12) is

min
µ

g(µ)

s.t. µ ≥ 0, (15)



where g(µ) is the dual function given as

g(µ) =

K
∑

k=1

gk(µ)− ηNPC +

N
∑

n=1

µnP
max
n , (16)

and gk(µ) is defined by

gk(µ) = max
σ̃,p

( M
∑

m=1

N
∑

n=1

r
(m)
k,n

(

1 + β
τEE

τSE

)

−ηε0

M
∑

m=1

N
∑

n=1

p
(m)
k,n −

M
∑

m=1

N
∑

n=1

µnp
(m)
k,n

)

. (17)

The dual problem can be given by:

min
µ≥0

max
σ̃
(m)

k,n
,p

(m)

k,n

L(p
(m)
k,n , µ).

The dual problem can be decomposed into two layers namely as

lower layer and master layer. In the lower layer, K subproblems

are solved in parallel to compute the power and subcarrier

allocation on each subcarrier k ∈ K for the given values of

µ and η. In the master layer, the Lagrangian multipliers are

updated using subgradient method. For fixed set of Lagrange

multipliers and a given parameter η, the power for user n on

subcarrier k can be computed by taking the derivative of (17)

with respect to p
(m)
k,n as follows:

∂gk(µ)

∂p
(m)
k,n

=
B

(m)
k

(

1 + β τEE

τSE

)

× γ
(m)
k,n

ln(2)
(

1 + γ
(m)
k,n p

(m)
k,n

) − (µn + ηε0) (18)

Algorithm-I: Iterative EE and SE Tradeoff Algorithm:-

Initialize

iter = max number of iterations = 10,

△= maximum acceptable tolerance = 10−3,

Set i=1 and η(i) = 0,
While (|U (η) | < △) || (i < iter) do

Solve (12) for a given value of η (i) using Algorithm-II.

Update η (i+ 1) =

(
∑

M

m=1

∑

N

n=1

∑

K

k=1
r
(m)

k,n

(

1+β
τEE
τSE

))

(

N×PC+ǫ0
∑

M

m=1

∑

N

n=1

∑

K

k=1
p
(m)

k,n

)

Update i = i+ 1
end While

Output: [η]

By applying the KKT conditions, we get

∂L(p
(m)
k,n , µ)

∂p
(m)
k,n

=











> 0, p
(m)
k,n = pmax

n

= 0, 0 < p
(m)
k,n < pmax

n

< 0, p
(m)
k,n = 0

Hence,

p
(m)
k,n =











(

B
(m)

k

(

1+β
τEE
τSE

)

ln 2(µn+ηε0)
− 1

γ
(m)

k,n

)+

, if σ̃
(m)
k,n = 1.

0, otherwise.

(19)

where (x)
+

= max (0, x). The optimal solution of (11a) can

then be expressed as

p
(m)
k,n

∗
= min

(

p
(m)
k,n , P

max
n

)

.

The dual variable µ must satisfy the KKT conditions in order to

be optimal. Each subcarrier k is allocated to the corresponding

user n which maximises (20). Therefore, a feasible subcarrier

assignment matrix is given as:

σ̃
(m)
k,n =

{

1, if (k,m∗, n∗) = argmaxm,n η
(m)
k,n ,

0, otherwise.
(20)

where σ̃
(m)
k,n = 1 indicates that the subcarrier k is as-

signed to user n associated with network m and η
(m)
k,n =

B
(m)

k
log2

(

1+γ
(m)

k,n
p
(m)

k,n

)

ǫ0p
(m)

k,n
+PC

. To minimise the dual function g(µ), the

subgradient method [14] can be used to update the dual variable

µ. Then, we can update the Lagrange multiplier µ according to

µn(i+ 1) =

(

µn(i)−
si√
i

(

Pmax
n −

M
∑

m=1

K
∑

k=1

p
(m)
k,n

))+

. (21)

Here, i is the iteration number and si is the constant size of the

step. The Lagrangian multipliers are updated accordingly until

the convergence is achieved indicating that the dual optimal

point is achieved. The subgradient update is guaranteed to

converge to optimal µ as long as si is chosen to be sufficiently

small [14]. A common practice is to choose square summable

step sizes in contrast to absolute step sizes [15]. In this paper,

we have used si = 0.1√
i

as a step size.

V. SIMULATION RESULTS

We consider a two-tier HetNets environment with a single

macrocell with 500 m radius overlaid with a pico BS with a

radius of 50 m. The bandwidth of each subcarrier is 30 kHz.

The maximum transmission power of users considered in the

simulation vary from 200 mW to 500 mW, respectively, whereas

the value of circuit power of users is set fixed to PC =100 mW.

We assume that the users are uniformly distributed within the

simulated scenario. The path-loss model for macrocell and pico

BS are given as PL(dB) = 34 + 40 log10(dn) and PL(dB) =
37 + 30 log10(dn) [1], where dn is the distance of user n

from the BS in km, and therefore, PL(Mc)
n = 10(PL(Mc)

n (dB)/10)

and PL(PB)
n = 10(PL(PB)

n (dB)/10). The noise spectrum density is

assumed to be N0 = −174dBm/Hz. In this work, the power

amplifier efficiency is assumed as 38%, i.e., ǫ0 = 1
0.38 . The

maximum transmission power for all users are same, hence,

Pmax
n will be referred to as Pmax. The normalization factors

used in our work are assumed to be θEE = ǫ0P
max + PC and

θSE =
∑

m∈M

∑

k∈Km

B
(m)
k . All the simulation results presented are

averaged over 10,000 channel realizations.

The convergence of Algorithm I and II for a given maximum

uplink transmission power of Pmax = 0.2 W is given in Fig. 1a

and Fig. 1b which show that Algorithms I and II converge to

optimal values within 4 and 83 iterations, respectively.

Fig. 2 analyses the maximum achievable η versus varying

Pmax for different values of β. Fig. 2 reveals that η increases

with an increase in β, whereas η first increases with Pmax.

Then after particular value of Pmax, it starts decreasing due

to the considered ratio, i.e.,
(

τEE = P
θEE

)

, in the optimisation

problem. For smaller values of Pmax, the achievable η increases

when Pmax increases. Furthermore, for higher values of Pmax,

the achievable η decreases with Pmax.



Algorithm-II: Joint User association, Subcarrier and

Power Allocation

Input: [η, β, ǫ0, γ
(m)
k,n ]

Step 1: Initialize

i = 0, p
(m)
k,n = 0,µ

(i)
n = 0.01, for n = 1, · · · , N,

k = 1, · · · ,K,m = 1, · · · ,M.

Step 2:

For k = 1 : K
For n = 1 : N

Calculate p
(m)
k,n according to (19).

end For

Obtain the user association and sub-carrier assignment

according to (20) respectively.

end For

Step 3:

i=i+1

Update µ
(i+1)
n according to (21).

Step 4:

Repeat steps 2 and 3 until µ
(i+1)
n are converged.

Output:
[

p
(m)
k,n , σ̃

(m)
k,n

]
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Fig. 1: Convergence of Proposed Algorithms I & II.

Fig. 3 shows the plots for ratio of optimal average transmit

power and Pmax versus weighted coefficient β. In Fig. 3, P ∗
ηEE

denotes the optimal transmit power that maximises EE (or η)

at β = 0, whereas P ∗
η denotes the proposed optimal transmit

power level that maximises η at any given value of β > 0.2 It

can be seen that the optimal transmit power P ∗
η monotonically

increases with β. Fig. 3 shows that at β close to 8.8, P ∗
η

converges to the maximum transmission power Pmax = 0.2 W,

whereas specifically when Pmax = 0.5 W, P ∗
η converges to the

maximum transmission power at β close to 12. This happens

due to the fact that when Pmax increases, the normalising factor
(

θSE

θEE

)

decreases, which in turn results in reducing the impact

of the tradeoff parameter β. This is an important observation

indicating that to achieve maximum SE for higher values of

2For clarity purpose, it is mentioned that η =
η

θEE
.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
50

100

150

200

250

300

350

400

450

P
max

 (W)

η
 (

b
/J

/H
z
)

β=0

β=1

β=3

β=5

× θ
EE

Fig. 2: η versus Pmax for different values of β.

Pmax, a higher value of β needs to be chosen when compared

to a smaller value of Pmax.

Fig. 4 shows the plots for maximum achievable EE and SE at

the optimal tradeoff transmit power values (as previously shown

in Fig. 3) versus β. It shows that SE is non-decreasing with

respect to β, whereas EE is non-increasing with β. When β is

small, i.e., β = 0, the tradeoff solution maximise EE, whereas

SE is maximised when β is large, i.e., β → ∞. Furthermore,

both EE and SE become constant as the transmission power ap-

proaches to Pmax when β is close to 8.8 (in case of Pmax = 0.2
W) and β ≈ 12.6 (in case of Pmax = 0.5 W). This phenomena

justifies the fact that increasing β gives more weightage to

SE, and therefore, more transmit power is consumed, and in

turn, higher SE can be achieved. For example, for the case of

Pmax = 0.2 W and required EE level of 120 b/J/Hz, the optimal

β = 3, which results in achievable SE of 15 b/s/Hz. Similalry,

for the requirement to achieve average SE of 18 b/s/Hz, then the

optimal β = 10, which results in achievable EE of 61 b/J/Hz.

Intuitionally, we can say that EE is always maximised at β = 0
whereas SE is maximised at different values of β, which depend

on the maximum transmission power. We also study the impact

of transmission power budget ratio to the maximum available

transmission power on the EE and SE tradeoff. For example, the

minimum achievable EE is 61 b/J/Hz for Pmax = 0.2 W and

drops to 34 b/J/Hz for Pmax = 0.5 W. Similarly, the maximum

SE is 18.1 b/s/Hz for Pmax = 0.2 W and increases to 19.5

b/s/Hz for Pmax = 0.5 W. This indicates that more power can

be saved by lowering the maximum transmission power which

provides a good metric for green communications.

The tradeoff between EE and SE for various normalised

circuit power consumption values, i.e., w = PC

Pmax at β = 10,

is shown in Fig. 5. We observe that EE and SE contradicts each

other when the transmit power is higher than P ∗
ηEE

. A small loss

in EE can result in a significant gain in SE. On the other hand,

both EE and SE increase when the transmit power is lower

than P ∗
ηEE

. For w = 0, the EE-SE tradeoff curve is linear and

an increase in w causes reduction in the EE. From Fig. 5, it is

evident that for Pη > P ∗
ηEE

, there is always a tradeoff between

EE and SE no matter how the parameter w changes. The lower

the value of w, the flatter is the EE-SE tradeoff curve.
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Fig. 3: Optimal transmit power versus weighted coefficient β with

Pmax
= 0.5 W, PC = 0.1 W, and B

(m)
k = 30 kHz.
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VI. CONCLUSIONS

In this paper, the multi objective problem of simultaneously

maximizing EE and SE of an uplink of a two-tier OFDMA-

based HetNets with maximum input power constraint is solved.

At first, the problem is converted into an SOP and then is solved

using a two layer optimisation approach in which the outer

layer is solved by Dikelbach method (as shown in Algorithm-

I) whereas the inner layer is solved using LDD approach (as

shown in Algorithm-II). Due to the quasi-concavity nature of

the proposed approach, the global optimal solution is derived

using LDD. From the simulation results, we can obtain two

main observations. Firstly, SE is maximised at different values

of tradeoff factor β depending on the maximum transmission

power. Secondly, the proposed tradeoff factor β can help saving

power by lowering the operational power. The tradeoff perfor-

mance, η, is an increasing function of transmission power for

smaller values of Pmax, whereas η is a decreasing function of

transmission power for higher values of Pmax.
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