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Abstract— Accurate wireless timing synchronization has been 

an extremely important topic in wireless sensor networks, 

required in applications ranging from distributed beam forming 

to precision localization and navigation. However, it is very 

challenging to realize, in particular when the required accuracy 

should be better than the runtime between the nodes. This work 

presents, to our knowledge for the first time, an experimental 

timing synchronization scheme that achieves a timing accuracy  

better than 5-ns rms in a network with 4 nodes. The experimental 

hardware is built from commercially available components and 

based on software-defined ultra-wideband transceivers. The 

protocol for establishing the synchronization is based on our 

recently developed “blink” protocol that can scale from the small 

network demonstrated here to larger networks of hundreds or 

thousands of nodes.  

 
Index Terms—cooperative synchronization, network timing, 

ultra wide band, software defined radio. 

 

I. INTRODUCTION 

 Time synchronization in distributed wireless networks has 

been studied for the past two decades, as it is an essential 

component of many applications. The required accuracy, and 

the resulting algorithms, differ according to the application. In 

many cases, such as multiple-access protocols, timing 

synchronization within less than one packet duration (on the 

order of a millisecond) is sufficient. In other applications such 

as diversity transmission, timing synchronization within one 

symbol duration (on the order of microseconds) is desired. For 

these applications, the IEEE 1588 standard is widely accepted 

as a solution [1].  Comparable algorithms that have been 

explored include Reference Broadcast Synchronization (RBS) 

[2], Timing Sync Protocol for Sensor Networks (TPSN) [3] 

and Flooding Time Synchronization Protocols (FTSP) [4]. In 

general, these timing synchronization algorithms are based on 

packet exchange, where the accuracy is related to the symbol 

or preamble length and the propagation delay between the 

nodes is neglected [5]. 
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There are, however, also a variety of applications that 

require much better timing synchronization accuracy, in 

particular better than the runtime of the signal between the 

nodes. Such applications, such as coordinated jamming, 

distributed beam forming, fine grain localization, tracking, and 

navigation, require timing synchronization with nanosecond 

precision or even better. In the absence of differential GPS 

(which is often the case in many military and civilian 

scenarios), maintaining such accurate timing synchronization 

in large wireless networks is challenging; because, the timer in 

each node is derived from an independent oscillator that is 

affected by random drifts and jitter [6]. To maintain 

nanosecond-level timing synchronization in a network (1) 

timing deviation between pairs of nodes must be measured 

accurately with nanosecond precision, and (2) fast correction 

algorithms must be applied across the entire network [9, 16]. 

This paper offers solutions and experimental demonstrations 

for both of these components. 

Ultra-Wide Band (UWB) signals are used to precisely 

extract the timing information between the nodes due to their 

accurate distance measurement capability as well as superior 

resiliency to multi-path effects [7]. UWB systems have been 

used previously to demonstrate high-precision timing 

synchronization between two nodes. In [8], a commercial 

IEEE 802.14.5 radio was employed to obtain an accurate Time 

of Arrival (TOA) detection algorithm; the authors also 

proposed an Adder-Based Clock (ABC) approach for timing 

synchronization and implemented a prototype to show the 

accuracy of the synchronization block with nanoseconds 

precision. However, no network experiments were carried out. 

As a matter of fact, to the best of our knowledge, there are no 

previous prototypes that demonstrate network synchronization 

with nanosecond accuracy. 

The challenge in achieving timing synchronization in a 

wireless network lies in the required high speed of the node-

to-node timing inaccurate measurements and fast corrections 

across the entire network. In this work, a recently developed 

algorithm [9, 16], called "Blink" that enables network timing 

synchronization without requiring an external broadcast signal 

from a coordinator is implemented. The blink algorithm uses a 

consensus approach such that timing information propagates 

through the network, while timing errors are averaged, and 

exploits the path diversity present in the network. Simulations 

demonstrate excellent scalability, such that the obtained 

timing precision in large (hundreds of nodes) networks is only 
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Fig. 1.  a) Simplified node-node time exchange scheme; b) TVN topology 

after Phase I. 

marginally worse than those in two-node setups [9].  

The current paper demonstrates and validates through a set 

of experiments the very accurate network synchronization that 

was predicted in simulations and shows that it is possible to 

achieve this on a prototype using commercial components, 

i.e., without requiring custom Integrated Circuits (IC). The 

main components of this work are (1) a software defined ultra 

wideband transceiver node implemented with Commercial-

Off-The-Shelf (COTS) components, capable of high accurate 

synchronization, (2) a fast re-timing algorithm implementation 

on a Field Programmable Gate Array (FPGA), and (3) a test 

bed network consisting of three slave nodes and one master 

that facilitates the validation of this algorithm and future 

improved versions. 

The remainder of the paper is organized as follows. Section 

II presents a formulation for network timing synchronization. 

Section III presents summary of the previously-published [9] 

blink algorithm. Sections IV and V describe the implemented 

node prototype and the hardware implementation on FPGA of 

the blink algorithm, respectively. Section VI presents the 

simulation and experimental results that prove the stability and 

accuracy of the network timing synchronization. Finally, some 

conclusions are presented. 

II. PROBLEM OVERVIEW 

Consider a large network with    slaves nodes with 

inaccurate internal oscillators, and    master nodes with 

accurate internal oscillators, which will serve as timing 

references and initiators in the distributed algorithm. Let 

    
   denote the current local timer value of a particular node 

k at a given absolute time instance   . The network timing 

problem consists of maintaining, at all times, the offset 

between nodes below a predefined threshold     
  as 

        
       

          
 ,     . (1) 

A major challenge lies in the fact that due to the random 

deployment, the network topology is unknown. Furthermore, 

in order to be scalable and robust to changes, the solution 

should be distributed. Finally, in a large network, broadcast 

transmission of timing information from a master to all other 

nodes in the network is not possible. Therefore, the timing 

information propagates through the network aggregating 

errors. 

III. BLINK ALGORITHM DESCRIPTION 

A brief review of the blink algorithm is presented in this 

section. More details and comparison with other distributed 

timing synchronization schemes are given in [9] and 

implementation is discussed in [16]. 

Inside the physical network, a virtual network called Timing 

Virtual Network (TVN) is defined. The TVN consist of nodes, 

links and the fast re-sync algorithm that maintains the timing 

in the network. Different physical layers may be used for 

timing and communications. The current work focuses on the 

timing physical layer; the implementation of the 

communication layer with a certain packet structure (e.g., 

using commercial IEEE 802.15.4 transceivers) is beyond the 

scope of this paper, but has been considered in the blink 

protocol definition. The topology of the network is defined by 

the link matrix L as follows: 

         
                      

                               
 , (2) 

where     defines the Signal to Noise Ratio (SNR) between 

nodes and     is the minimum SNR needed to establish a 

connection. Each node is assigned to a tier    (Fig. 1.) and by 

default masters are in tier 0. The blink algorithm consists of 

two phases. In Phase I, the TVN is created and initialized and 

in Phase II, the network timing is maintained through 

continuous consensus-based corrections.  

A. Phase I 

All nodes (slaves and masters) learn the propagation delays 

(pseudo-ranges) from their neighbors and record the values. In 

a fresh deployment scenario, the network topology and the tier 

structure is unknown. Therefore, propagation delays are 

acquired in a distributed fashion, using a modified version of 

Carrier Sense Multiple Access Collision Avoidance 

(CSMA/CA). In this phase, the slave nodes also get assigned 

to different tiers. Tier 1 consist of nodes that can derive timing 

directly from the master; the size of this tier can be limited by 

the number of slave nodes that have an acceptable SNR to the 

master or the number of slave nodes that can communicate 

with the master with acceptable time constraints (this is 

important for scalability of the system). Other tiers are also 

defined consecutively in a similar fashion (Fig. 1). 

In this paper, the main objective is to experimentally 

demonstrate the stability and accuracy of the network timing 

synchronization. Therefore, it is assumed that nodes in tier 1 

have already acquired timing from the master, and the focus is 

on demonstration of slave-slave timing propagation and 

synchronization. 

B. Phase II 

The master initializes the blink cycles transmitting a timing 
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Fig. 2. The (a) architecture block diagram and (b) photo of the prototype 

hardware for each node.  

 
 

signal; in this implementation, a length 31 m-sequence is used 

for the timing signal. Slave nodes receive this sequence, 

perform correlation and peak detection to extract the timing 

information, use the result to correct their internal timers, and 

transmit the same sequence according to their tier associations. 

The blink algorithm proposes that nodes on odd (or even) tiers 

transmit simultaneously. In the current hardware 

implementation, in order to guarantee orthogonality of the 

nodes’ signals, a TDMA approach was implemented. In the 

case of large networks, and to preserve the distributed 

characteristics of the algorithm, random slots can be assigned 

to different tiers. In this work, each node transmits on the slot 

time associated with its tier. If the number of adjacent nodes 

with established connection between tiers is denoted by    

and the slot time is      , then the blinking cycle will take a 

total time of            . 

During the blinking cycles the slave nodes, after receiving 

the timing signals from their neighbors, measure the TOA 

relative to their own local timers,        
  , where    is the 

measured TOA of node k. Using the learned propagations 

delays from phase I,         
  , each node compares the two 

values and compute its own offset related to all its neighbors 

as            
  . The nodes then use a consensus algorithm 

where each neighbor node can be weighted with a different 

factor to provide a timing correction value as 

               
  
   , (3) 

where   , represent the weighting factor for each link. The 

blinking cycles continue indefinitely. Reference signals from 

the master “pull” the timing in the network to agree with the 

master timing. Timers on tier one nodes are influenced by 

master reference signals as well as neighbors and the timing 

information from there propagates through the network. 

Figure 1.b depicts the working of the algorithm. At the 

beginning, in TDMA slot 1, nodes on Tier 1 are in 

transmitting mode and nodes on Tier 2 and Tier 3 are on 

receiving mode. Due to     restrictions, the nodes on Tier 3 do 

not detect the signals from Tier1 and therefore do not correct 

their timers. During the next timeslot, the nodes on Tier 2 

transmit and the others nodes listen. The nodes on Tier 2, after 

receiving all the diversity information from their neighbors, 

correct their internal timers based on the timing correction 

value calculated from (3). This process is repeated every 

blinking cycle on each tier accordingly with the TDMA slots.  

IV. PROTOTYPE NODE HARDWARE 

As a proof of concept, to demonstrate the algorithm 

capabilities in real time, custom nodes using UWB as physical 

layer signals are implemented. UWB signals are selected for 

timing purpose due to the inverse relation between the TOA 

estimation error and signal bandwidth. The hardware nodes 

are software programmable to provide flexibility and rapid 

prototyping given that the timing synchronization algorithm is 

implemented completely on digital hardware. The downside of 

this approach is that timing accuracy will be limited to the 

performance of available commercial hardware (to be 

discussed later). Future custom realization of the node 

hardware enables more accurate network timing 

synchronization. 

Each node is composed of two principal elements: a high 

speed Analog to Digital Converter (ADC) board from Texas 

Instruments and a Xilinx Kintex Field Programmable Gate 

Array (FPGA) evaluation board (Fig. 2). 

The receiver is implemented using the ADC07D1520 board 

that can run at a maximum sampling rate of 3 GSps with 7 bits 

of resolution. The available FPGA Virtex 4 in this ADC board 

is used as a simple pass-through buffer (no computation). In 

order to reduce the frequency of the digital signals, the ADC 

output provides four interleaved buses running at a quarter of 

the sampling frequency. In the current implementation, due to 

internal FPGA clock manager restrictions, the sampling 

frequency is set to 2.5 GSps. This reference clock is provided 

by the Kintex board to the ADC thought a PCI-SMA 

connection. The ADC samples the incoming signals at RF, 

after amplification with a Low Noise Amplifier (LNA), 

without any frequency down-conversion. While flexible and 

consistent with the vision of a true Software Defined Radio 

(SDR), the limited speed and resolution of available 

commercial ADCs dictates the achievable timing accuracy. 

The transmitter is implemented digitally using the Gigabit 

Transceivers (GTX) embedded in the FPGA without using 

frequency up-converters. A simple Binary Phase Shift Keying 

(BPSK) modulation is implemented using two GTXs with 

opposite polarity that will feed a power combiner. The GTX 

provide great flexibility to design monocycle signals changing 

the pulse width accordingly with the clock reference. In order 

to meet the Nyquist theorem and relaxing the sampling rate, 

the implemented monocycle pulses have a 1.2 ns width, 

providing approximately 800 MHz signal bandwidth. After the 

power combiner, the BPSK signal passes through a Power 

Amplifier (PA) and connects to a discone antenna [10], 



#1570035263 

 

4 

through an RF switch.  

The developed node is clocked from a low-cost 25 MHz 

crystal oscillator with 50 ppm (part per million) accuracy that 

is located on the KC705 FPGA board. All the clocks that are 

internally used in the FPGA and the reference clock that feeds 

the ADC are created from the same crystal reference. The 

implemented UWB node, shown on Fig. 2, is fully digital, 

modular and easy to modify since all transmitter/receiver 

blocks are controlled by the Kintex FPGA. 

V. FPGA IMPLEMENTATION OF THE BLINK ALGORITHM 

 The accuracy of the blink algorithm is intrinsically 

related with the TOA estimation error. A well-known and 

simple method to estimate the signal TOA consists of peak 

detection after cross correlation [11]. It is also known that 

peak detection will not provide the right time under non-Line-

Of-Sight (LOS) conditions; but, can be used as a starting point 

for further processing [12, 13]; however this is not 

implemented in our hardware yet. The blink algorithm 

proposes that nodes learn the channel multipath signatures, 

and use that information to create proper reference templates. 

In this implementation, in order to simplify the algorithm, the 

same template for all nodes in the network is used. Better 

results can be obtained if the nodes continuously update their 

reference templates as a function of propagation channels 

variations.  

 The timing signal used for the TOA estimation must 

provide a high ratio for the autocorrelation peak to the side-

lobe peak. An m-sequence of length 31 was selected for the 

timing signals since it meets the minimum requirements. The 

length of the sequence is constrained by the correlator size 

feasible with the existing hardware. Longer sequences give 

higher peaks; but, increase the complexity of logic hardware. 

The sequence transmission is controlled by the TX Logic 

block as shown in Fig. 3. As previously explained, a TDMA 

scheme was implemented where each node transmit on 

different slots according to the node identification and tier 

association to achieve better peak detection and reduce the 

interference between nodes on the same tier. 

 The most logic-consuming and timing-constrained 

algorithm to be implemented in the FPGA is the parallel 

correlator, because it has to run in real time and its size 

increases with the sequence length and the ADC resolution. 

Hence, to meet the timing constraints imposed by the FPGA 

logic, a dual data rate input is implemented, which transforms 

the 4 buses coming from the ADC at 625 MHz into 8 buses 

running at 312.5 MHz. Furthermore, to reduce complexity and 

satisfy real time operation, 4 bits (sign plus 3 bits magnitude) 

are taken from each bus. The correlator was implemented in 

parallel following an architecture called PTT (Parallel 

samples, Parallel Coefficients, Time division multiplexing). 

This architecture is highly efficient for an FPGA 

implementation and works as follows. On each clock cycle, a  

    array, where   is the number of samples in parallel and   

is the number of correlation points calculated simultaneously, 

is processed by the PPT correlator. On the next clock, another 

array is processed and after     cycles, where   is the 

template length, the correlation is completed [14]. In the 

current implementation, considering the sampling rate of 2.5 

GHz and the sequence length of 62 ns, the template length will 

be  =160; therefore, the correlator has 20 arrays as those 

described in Fig. 4.  In the implemented design, s=8, k=8, and 

each sample and coefficient has a 4-bit width; therefore, in 

each clock cycle, 64 multiplication have to run in parallel for 

every array. The major challenge in this design is satisfying 

the zero latency restriction for samples propagation (vertical 

arrows in Fig. 4) between multipliers in the same array given 

the high sampling rate. Finally, the outputs of the parallel 

correlator feed the peak detector block.  

  The peak detector compares each branch at the correlator 

output against the     threshold. In the current proof-of-

concept experiments, static or quasi-stationary channel 

conditions are assumed; but, this detector can be easily 

updated to handle channel variation implementing a dynamic 

threshold algorithm like that one proposed in [15]. The peak 

detector determines the time and corresponding branch at 

which a correlation peak happens. This information offers two 

resolution levels corresponding to (1) the coarse correction, 

that will be applied to the master timer and (2) the fine 

correction that will be used to adjust the transmission time. 

The resolution of coarse correction is limited by the system 

clock at which the correlator is running, in our case 312 MHz 

or 3.2ns. The resolution of the fine correction is limited by the 

rate of the GTX that is 0.2 ns in this design. The current 

 
Fig. 3. Blink algorithm block diagram. The dash line shows the boundary 

between the analog hardware and the digital algorithm implementation 

inside the FPGA. 
 

 
Fig.4. Parallel correlator array. 
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experiments were conducted without controlling the fine error; 

this will be included in further implementation. 

 During the learning process in Phase I, the nodes estimate 

the propagation delay,         
  , between their neighbors. This 

phase of the algorithm is implemented by averaging the 

roundtrip measurements between the nodes. The roundtrip 

measurement works as follow: (1) node A resets its timer and 

transmit a sequence, (2) node B uses the correlator and peak 

detectors  to determine the TOA and immediately resets its 

timer and triggers the TX Logic, (3) node A captures its timer 

value after peak detection. The process is repeated 16 times to 

reduce errors in the TOA estimation and the average value is 

stored at the "Diversity Mem" block. The hardware 

implementation of the roundtrip procedure is shown in Fig. 3 

as "RT Logic". 

 During the blinking cycles, when a peak is detected, the 

master timer captures its current value that represent the 

estimated    . Depending on their tier location, the node waits 

for the timing diversity update from its neighbors, as shown on 

Fig. 1,  and then (3) is computed using the previously learned 

values    , that are stored on the diversity memory block. As a 

result, the offset coarse error,   , is obtained and the master 

timer is corrected. Lastly, the fine error will be applied to the 

"TX Logic" as a shift in the sequence to be transmitted (not 

implemented yet). The node will transmit again, once the 

offset correction is done and following the TDMA scheme. 

 Finally, the "Broad Sync Logic" block implements the 

initialization procedure of blinking cycles described in Section 

III B, and the "Control State Machine" block controls all the 

phases involved in the blink algorithm. 

VI. SIMULATION AND EXPERIMENT RESULTS 

 The blink algorithm was fully implemented using the 

Matlab System Generator, a tool that allows running real-time 

hardware simulations in a Simulink environment. Simulations 

indicate the anticipated performance prior to actual hardware 

experiments. Current setup consists of three slave nodes and 

one master node. In order to consider the channel multipath 

signature, a received signal was recorded and used in the 

simulations. The distance between the nodes is simulated by 

the channel propagation delays. In the presented simulations, 

Node 0 belongs to tier 1, Node 2 belongs to tier 2 and Node 1 

belongs to tier 3. Simulations show that synchronization 

convergence time is very fast (25.6   ). This time is measured 

from the beginning of Phase II of the blink algorithm until the 

time that offset error between nodes reach the best system 

resolution, which in our implementation is one period of the 

master timer clock. The fast convergence is reasonable as the 

described network is simple with only one node per tier and 

one master node.  

 Actual hardware experiments were conducted in three 

different environments, indoor office with LOS and NLOS, 

and outdoor environments. For the NLOS experiment, node 0 

has direct LOS link with node 2 while the direct LOS link 

between nodes 1 and 2 is obstructed by a metal shelf (Fig. 6). 

In order to compare the simulations results against experiment, 

the network topology was the same as described in the 

simulation setup and the distance between the nodes are 

expressed in Table 1. 

TABLE I 

DISTANCE BETWEEN NODES IN METERS 

 Master-N0 N0-N2 N2-N1 

Indoor (LOS) 1 1.8 2.4 

Indoor (NLOS) 0.9 1.6 1.7 

Outdoor 1.9 3.7 4.5 

Simulation 3 5.4 7.5 

  

 In order to measure the relative time offset between the 

synchronized nodes, an additional timeslot was introduced in 

our TDMA scheme where all the nodes transmit 

simultaneously accordingly with their internal timer. On this 

additional slot, each node transmits the timing sequence and a 

short pulse that will be used for measurement. If the slave 

nodes are synchronized, all these pulses should be aligned. 

This extra slot does not affect the blink algorithm since is can 

be consider as an additional tier in the network. The three 

pulses coming from the slave nodes are measured by 

connecting the nodes through identical coaxial cables to a 

high-speed four-channel real-time oscilloscope, Tektronix 

DPO71254B (Fig. 5.b). The oscilloscope is equipped with a 

statistical analysis tool that allows measuring the mean (offset) 

and standard deviation (jitter) of the signals received at its 

different channels. Node 2 is considered as reference to trigger 

the scope since it is the node that has the most timing 

diversity. Therefore, the statistics measured are carried out 

considering node 2 as the time reference. In Fig.5.a, the pulses 

captured buy the scope are shown with their time offsets.   

 

The results on Table 2, show the mean values and standard 

deviation over four thousand captured pulses confirming that 

timing jitter values agree with the simulation predictions and 

equal to approximately one clock period (3.2 ns).   

 

TABLE II 

STATISTICAL ANALYSIS  

 Indoor(LOS) Indoor(NLOS) Outdoor 

 Node 

0 

Node 1 Node 

0 

Node 

1 

Node 

0 

Node 

1 

Mean (ns)  0.118 0.886 0.820 2.812 1.554 2.822 

Std. dev. (ns) 3.316 3.358 3.412 3.211 3.011 3.002 

  

 

  
      a)           b) 
Fig. 5. a) Measured timing offset of the synchronized network. 

b) Experimental setup. 
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 Evaluating the mean value results, indoor LOS experiment 

has the best performance due to high SNR, achieving sub-

nanosecond offset accuracy. In the case of indoor NLOS 

experiment, the mean error of node 0 is better than node 1, 

since the NLOS condition reduces the TOA estimation 

accuracy.  

 For outdoor experiments, the timing offset increases due to 

degradation in TOA estimation directly related to lower SNR. 

The standard deviation in this case, representing the timing 

synchronization jitter, is in line with the implemented coarse 

timing accuracy of the implemented system clock (3.2 ns). 

Therefore, it is expected that implementing fine timing 

correction and increasing the master timer clock will push the 

jitter under the sub-nanosecond range.  

 Finally, the self-synchronized wireless sensor network is 

setup to provide coherent waveforms for distributed beam-

forming applications. An additional receiving antenna was 

positioned at an equal distance from all nodes and connected 

to the scope. Coherent addition of signals wirelessly received 

from different nodes (Fig. 7) is a nice demonstration of the 

benefits of the nanosecond network timing synchronization 

scheme. 

VII. CONCLUSION AND FUTURE WORK 

 This work demonstrates experimentally that wireless 

network nodes can all synchronize in a cooperative and 

distributed manner with a timing accuracy that is markedly 

lower than the propagation delay between them. Under good 

SNR conditions, the network can attain sub-nanosecond 

accuracy as was demonstrated in the indoor experiments. The 

timing jitter in the synchronized network is limited primarily 

by the coarse correction applied in the master timer. The jitter 

can be reduced in future work by adopting optimal correlation 

architectures, increasing the frequency of the master timer and 

applying post signal processing. In the current 

implementation, the timing offset in the synchronized network 

is constrained by the resolution of the TOA estimation 

algorithm. In the future, offline signal processing to improve 

the detection capabilities and improve the synchronization 

under non-LOS conditions can be implemented. Finally, future 

hardware realizations can benefit from monolithic low-cost 

low-energy realization of the sensor nodes. 
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Fig. 7. Measured beam forming experimental results.  

 
 

 
 
Fig. 6. Experiments setup: Top Left, indoor with LOS. Top Right, indoor 

with NLOS. Bottom, outdoor with LOS.  


