
Cooperative Fault-Tolerant Target Tracking in

Camera Sensor Networks

C. Laoudias, P. Tsangaridis, M. Polycarpou, C. Panayiotou, C. Kyrkou, T. G. Theocharides

KIOS Research Center for Intelligent Systems and Networks

Department of Electrical and Computer Engineering, University of Cyprus

Abstract—Camera Sensor Networks (CSN) are becoming in-
creasingly popular in a variety of security and safety-critical
applications including public space surveillance, monitoring of
attack-sensitive facilities, and critical infrastructure protection.
Cameras in such networks are equipped with high-resolution
visual sensors and on-board processors, while featuring wireless
communication capabilities. These features enable the execution
of various tasks, such as area coverage, activity recognition
and target tracking, in a cooperative fashion. However, the
performance of CSN may be compromised when faults occur,
either due to unintentional software and hardware faults or
as the result of a malicious attack. Paving the way for fault
tolerance in CSN-based target tracking, we introduce a flexible
fault model that can be used to generate different types of
erroneous behaviour, thus simulating realistic faults in CSN. We
also propose a fault-tolerant decentralized solution for tracking a
target that passes through the area monitored by the CSN. Our
simulation results indicate that the proposed solution is able to
track the target reliably despite the presence of faults.

I. INTRODUCTION

Target tracking is a popular application in Wireless Sensor

Networks (WSN) owing to the ease of deploying a large

number of cheap sensor nodes inside the monitoring area.

Due to the requirement for uninterrupted and reliable net-

work operation, even in hostile environments or in case of

unpredictable events, fault tolerance is of utmost importance.

Therefore, decentralized or distributed tracking approaches are

usually preferred, instead of centralized solutions, because they

avoid the use of a central processing unit (sink) that introduces

a single point of failure to the system.

Distributed approaches [1] are robust to faults because target

tracking information is maintained in several nodes across the

network. However, they usually require more powerful nodes

in terms of processing power and communication capabilities

due to the consensus algorithms that ensure agreement among

neighbouring nodes. Hence, decentralized solutions [2], [3]

may be preferred for some application scenarios because they

provide a good trade-off between resources and resilience to

faults. In such approaches, a cluster is formed when a target

is detected and all nodes in the vicinity of the target forward

their observations to the elected leader (i.e., cluster head) that

is responsible for the tracking task.

Recently, emerging Camera Sensor Networks (CSN) offer

advanced sensing (i.e., high-resolution visual information) and

collaboration capabilities that facilitate the development of

cooperative tracking solutions [4]. However, existing decen-

tralized approaches and underlying leader election protocols

assume an omnidirectional sensing model, i.e., the target can

be detected within a circular disc with radius equal to the

node’s sensing range. Thus, they are not directly applicable to

CSN tracking due to the directional sensing and limitations in

the coverage area (i.e., camera field of view). This necessitates

the development of appropriate leader election protocols for

CSN tracking applications.

With respect to fault tolerance, still in decentralized solu-

tions individual nodes are likely to suffer faults because of

harsh environmental conditions (e.g., high temperatures) or

exhibit erroneous behaviour due to a malicious attack. For

example, if a camera fails to detect and identify a specific

target, due to software errors, miscalculations in the detection

and data association modules or hardware faults in the lens or

mechanical parts, then that camera would falsely report that

the target is not present, while it moves inside its field of view.

This scenario highlights that fault tolerance is a highly

desirable property, however, only a few works including [5],

have addressed this issue in CSN applications. Motivated by

the key importance of fault tolerance, our contribution in this

work is twofold. First, we propose a flexible fault model

to generate noisy observations and inject different types of

realistic faults, which affect camera sensing capabilities and

may degrade tracking accuracy. To our knowledge, this is

the first attempt to develop a model for CSN faults. Second,

we design a decentralized tracking solution featuring a novel

distributed leader election protocol, which is suitable for the

directional sensing nature of CSN. This protocol is combined

with a robust voting-based target localization algorithm, and

a location smoothing component based on Kalman filter.

The rest of this paper is structured as follows. Section II

briefly overviews related works. In Section III we formulate

the problem of target tracking in CSN and introduce our

network, sensing and fault models. Section IV presents the

details of our decentralized tracking solution. In Section V

we evaluate the fault tolerance of the proposed solution.

Finally, Section VI provides concluding remarks and discusses

directions for future work.

II. RELATED WORK

Decentralized tracking solutions involve a cooperative

leader election protocol for dynamically electing a new leader

node, while the target moves or new targets enter the field.

Such solutions have been applied successfully to WSN, in-

cluding binary networks [3], [6] where sensor nodes report

whether they detect a target or not.

The deployment of CSN enables a wide variety of coop-

erative applications, including area coverage [7] and activity

recognition [8]. Regarding tracking applications, authors in [4]

discuss distributed and decentralized multicamera solutions,

while an online approach to control camera parameters for

distributed tracking is presented in [9]. However, most existing

CSN systems assume fault-free conditions and do not take

into account possible malfunctions or software errors that may

disrupt normal operation. For instance, authors in [5] focus

on errors in the horizontal orientation (i.e., pan) of cameras

during target tracking, due to initial calibration inaccuracies

(modelled as Gaussian noise) and external effects that cause

the camera orientation to take arbitrary values, i.e., Byzantine

faults (modelled as random orientation bias).

III. MODELLING AND PROBLEM FORMULATION

For our target tracking application in CSN we define the

following environment and models.

A. Camera Network Model

1) A square field A that is discretized using grid G of

Ng grid points with coordinates gn = (xn, yn), n =
1, . . . , Ng, while the grid resolution is Gs.

2) A network of Nc static cameras C = {c1, . . . , cNc
} that

are spread over A. Their positions pi = (xi, yi) and

orientations θi, i = 1, . . . , Nc are known1.

3) All cameras have the same limited communication

range2. This range, denoted Rc, defines the set of

neighbours Ni of camera ci such that Ni = {cn :
d(i, n) ≤ Rc}, where d(i, n) = ||pi − pn|| is the

Euclidean distance between cameras ci and cn.

4) A set of Nt targets T = {t1, . . . , tNt} moving inside

A. At time step k each target is located at pj(k) =
(xj(k), yj(k)), j = 1, . . . , Nt, while the number of

targets may change over time.

B. Camera Sensing Model

All cameras have the same sensing range Rs that depends

on the imaging capabilities of the hardware. In the following

we define different areas of interest that depend on Rs.

The Field of View of camera ci, denoted Fi ⊆ G, is the

subset of grid points gn ∈ G where ci can sense the presence

of a target. Typically, by projecting the 3D visual sensing cone

of camera ci onto the 2D field A, Fi can be approximated by

a triangle with height equal to Rs and the angle of Fi is 2α;

see the illustration in Fig. 1.

However, camera ci may not be able to determine the exact

location of a target inside Fi. This is typically the case with

cheap cameras, which may suffer manufacturing impairments

in the visual sensor or inaccuracies in the image processing

algorithms that introduce uncertainty (noise) in target location.

1For example, they can be computed shortly after network deployment by
using a distributed camera calibration algorithm [10].

2This assumption can be relaxed without compromising the validity of the
model because it would only affect the cardinality of Ni.

θ1

α
α

Fig. 1. Three cameras ci, i = 1, . . . , 3 are deployed inside A (Gs = 2.5
units) and Fi is equilateral triangle (i.e., α = 30

◦) with height Rs = 40 units
(shaded area). The zones of camera c3 (Nz = 4) are shown with different
shades of gray.

Hence, such cameras usually report a subregion (zone) inside

Fi where the target resides, rather than a single location.

The Zone of View of camera ci, denoted Zi,m ⊆ Fi, where

m = 1, . . . , Nz , is the subset of grid points gn ∈ Fi where

ci can sense the presence of a target. In this sense, Fi is

divided into a number of non-overlapping sensing zones such

that Fi =
⋃Nz

m=1
Zi,m. The notion of zones is depicted in

Fig. 1 for camera c3.

We assume that camera ci can consistently identify each

target within Fi by employing appropriate distributed data

association mechanisms; see [11] and references therein. Sub-

sequently, it indicates the corresponding Zi,m where target tj

lies. In this sense, the detection status Aj
i,m(k) of camera ci

pertaining to target tj at time step k is given by

Aj
i,m(k) =

{

1 if pj(k) ∈ Zi,m

0 otherwise
. (1)

If camera ci detects target tj inside Zi,m then Aj
i,m(k) = 1

and sends a message to all neighbouring cameras cn ∈ Ni;

otherwise, it remains silent. The detection statuses Aj
i,m are

forwarded to a camera in the vicinity of the target acting as

leader; see Section IV-A for the details of our distributed direc-

tional leader election protocol. The leader combines relevant

information from its set of neighbours to estimate the current

location of target tj , as discussed in Section IV-B.

In real-life applications, however, camera ci may not always

be able to reliably determine the correct zone where a target

resides. For instance, it may report that the target is located

inside a neighbouring zone due to faults in the target detection

module. In another case, camera ci may falsely report that

a target is not present, e.g., when the target passes behind

an obstacle while the target is actually there, or a detection

message may be dropped due to network operation reasons.

Alternatively, camera ci may wrongly report that a target is

present inside Fi, e.g., by confusing one target with another

one due to errors in the image processing algorithms.

All such scenarios degrade sensing accuracy and may intro-

duce faults in camera observations, which affect the decisions

that are made based on these observations.

C. Fault Model

We employ a probabilistic fault model to capture and simu-

late the undesired effects described above. Our model disturbs

the ideal measurements of camera ci pertaining to target tj ,

i.e., the detection statuses Aj
i,m, according to probability vector

Pij = [P c
ij Pw

ij P fn
ij P r

ij P fp
ij].

In case target tj is located inside Zi,m, then we have the

following possibilities:

• P c
ij : P[ci senses tj in the correct zone m]. In this event

Aj
i,m = 1.

• Pw
ij : P[ci senses tj in the wrong zone m′]. In this event

Aj
i,m = 0 and Aj

i,m′ = 1 for another zone m′ 6= m.

• P fn
ij : P[ci falsely does not sense tj]. In this event Aj

i,m =
0, ∀m, i.e., false negative observation.

Alternatively, in case target tj is located outside Fi, then

we have the following possibilities:

• P r
ij : P[ci correctly does not sense tj]. In this event

Aj
i,m = 0, ∀m.

• P fp
ij : P[ci falsely senses tj]. In this event Aj

i,m = 1 for a

randomly selected zone m, i.e., false positive observation.

In this model, P[] denotes the probability of the correspond-

ing event, while P c
ij + Pw

ij + P fn
ij = 1 and P r

ij + P fp
ij = 1.

During normal operation, when no faults have occurred, P c
ij

and P r
ij will be equal to 1, while Pw

ij , P fn
ij , and P fp

ij will be

equal to 0.

Our sensing model has low computational cost and is able

to simulate different types of faulty behaviour. For instance,

increasing P fn
ij , while decreasing P c

ij accordingly, generates

random temporary faults where the faulty cameras do not

report the presence of a target. Note that such behaviour can

be also attributed to random failures in the communication

links, which lead to dropped detection messages.

Setting P fn
ij = 1 for a subset of cameras in the field

would simulate permanent faults of this type, e.g., in case

target detection or data association modules do not work

properly and the identification of some or all targets fails

permanently. Alternatively, this behaviour can be caused by a

malicious attacker who might place a decoy picture of a target-

free environment in front of the camera to prevent intruder

detection. In addition, we can simulate the same erroneous

behaviour for neighbouring cameras, thus generating spatially

correlated faults. For instance, in case there is a fire in a part of

the field and smoke degrades the target detection capabilities

of the cameras in the immediate vicinity.

Similarly, we may adjust Pw
ij , e.g., to simulate the perfor-

mance degradation of the target detection module owing to

harsh environmental conditions, optical calibration errors, or

due to prolonged operation time. In another scenario, by con-

trolling P fp
ij we can generate false detections across the field,

e.g., due to errors in the target detection and identification

modules (a target is detected when it is not actually within the

field of view or target tj is mistaken for another target tj
′

) or in

case an opponent unleashes a malign attack by releasing decoy

targets around the field. As another example, the orientation

fault considered in [5] can be simulated by increasing both

P fn
ij and P fp

ij for that camera.

The above scenarios demonstrate the effectiveness of the

proposed camera sensing and fault models to simulate di-

verse erroneous behaviours. Note that the evaluation of real

scenarios would require realistic probabilities. These can be

determined by offline analysis of publicly available video

tracking datasets or by allowing the CSN system to run for

some time and comparing the camera readings against the

ground truth (i.e., human operator).

IV. DECENTRALIZED TARGET TRACKING

Our decentralized target tracking solution integrates three

components, namely a directional leader camera election pro-

tocol, a target localization algorithm and a location smoothing

algorithm. Next, we present these components in detail.

A. Directional Leader Camera Election Protocol

When target tj traverses the monitored area a subset of

cameras in proximity detect it. The objective of our directional

Leader Camera Election Protocol (LCEP) is to elect a leader

cl among those cameras in a distributed fashion that will be

responsible for handling the localization and tracking tasks.

Note that LCEP is invoked occasionally to elect a new

leader dynamically as the target moves inside the field.

Moreover, to reduce leadership changes or possible leader

oscillations and prevent unnecessary computations, current

leader cl maintains leadership while tj is within its field

of view Fl. When tj is about to leave Fl, cl notifies its

neighbours to invoke LCEP again for electing a new leader.

For convenience, before proceeding with the description of

LCEP, we define the effective neighbours of a camera.

Definition 1: Camera cn is an effective neighbour of camera

ci that detects target tj (Aj
i,m = 1), if the following two

conditions hold: (i) cn is a neighbour of ci, i.e., cn ∈ Ni,

and (ii) the field of view of cn overlaps with the detection

zone of ci, i.e., Fn ∩ Zi,m 6= ∅.

The above definition introduces the notion of effective set

of neighbours of camera ci, denoted N ′
i , which is the subset

of cameras cn ∈ Ni that sense target tj , including camera

ci itself. For instance, if camera cn is within communication

range Rc from ci, but orientation θn does not allow camera

cn to sense target tj , i.e., Aj
n,m = 0, ∀m, then cn /∈ N ′

i . In

this sense, LCEP incorporates the inherent directional sensing

of CSN in the leader election process. Obviously, N ′
i ⊆ Ni.

We assume that during CSN deployment, every camera ci
shares with its neighbours cn ∈ Ni information about the area

that it covers, i.e., the grid points that belong to its zones. This

is accomplished by broadcasting an initialization message init-

msg{i,pi, θi,Zi,1, . . . ,Zi,Nz
}. Note that these information are

shared across the network once in a single round prior to

target tracking. In this fashion, camera ci also receives similar

messages and checks for overlapping grid points between Zi,m

and Zn,m, ∀m, ∀cn ∈ Ni. This information in conveniently

stored locally in a look-up table to facilitate the identification

of effective set of neighbours during LCEP execution.

Initially, camera ci that senses target tj broadcasts a de-

tection message det-msg{i, j,m} to all neighbouring cameras

cn ∈ Ni; see Algorithm 1. In the same way, based on the re-

ceived messages, ci is able to determine N ′
i . Next, ci computes

the number of effective neighbours, denoted Neff
i ≡ |N ′

i |, and

the number of effective neighbours detecting target tj , denoted

Ndet
i , where Ndet

i ≤ Neff
i . Note that if ci does not receive a

detection message from a neighbour this implies that the latter

did not sense tj .

Subsequently, ci broadcasts a candidate leader message

cand-msg{i, j, Ndet
i , Neff

i } and waits for a period of time

Tw = f(1/Ndet
i), where f(x) is a strictly increasing function.

During this time, ci receives candidate leader messages from

neighbouring cameras and compares the corresponding values

with its own local value. If Ndet
i > Ndet

n , ∀cn ∈ N ′
i then

it becomes leader (cl ≡ ci) and broadcasts a leader message

ldr-msg{l, j} to its neighbours. If Ndet
i = Ndet

n , cn ∈ N ′
i ,

then to resolve the tie ci checks whether Neff
i > Neff

n . If

this is the case, then it undertakes leadership (cl ≡ ci) and

broadcasts a leader message ldr-msg{l, j} to its neighbours.

If camera ci receives a candidate leader message from camera

cn with Ndet
i < Ndet

n or alternatively Ndet
i = Ndet

n and

Neff
i < Neff

n , then ci pauses the leader election process and

cannot become leader until the protocol runs again.

Current leader cl maintains leadership while tj moves

within Fl by periodically retransmitting ldr-msg{l, j}. When

tj is about to leave Fl, cl broadcasts ldr-msg{null, j} so that

all neighbouring cameras can invoke LCEP again for electing a

new leader cl 6= ci to continue tracking. In case target tj leaves

Fl but goes into an area that is not covered by any cameras,

then our system terminates the associated track. Later on, when

tj moves into a covered area, another subset of cameras will

detect it and invoke LCEP for starting a new track.

B. Voting-based Localization and Tracking

For localization, we employ a voting-based scheme where

current leader cl aggregates the decisions of its effective

neighbours to determine target location.

In particular, camera cl maintains a |S|×|N ′
l | voting matrix

Vj for target tj to store the decisions of cameras cn ∈ N ′
l ,

where | · | denotes the cardinality of the corresponding set and

S =
⋃

cn∈N ′

l
Fn is the subset of the grid points gq that are

covered by all effective neighbours. The elements of the voting

matrix Vj(q, n) are formally given by

Vj(q, n) =







+1 gq ∈ Zn,m AND Aj
n,m = 1

−1 ∀m′, gq ∈ Zn,m′ AND Aj
n,m′ = 0

0 gq /∈ Fn

,

(2)

Algorithm 1: Leader Camera Election Protocol (LCEP)

Input: Set of cameras detecting a target.

Output: Elected leader camera cl.
1: Broadcast det-msg{i, j,m} to all cameras cn ∈ Ni.

2: Use the received det-msg{n, j,m}, ∀cn ∈ Ni to deter-

mine N ′
i and compute Neff

i and Ndet
i .

3: Broadcast cand-msg{i, j, Ndet
i , Neff

i }.

4: Wait for time Tw = f(1/Ndet
i), while receiving cand-

msg{n, j,Ndet
n , Neff

n }, ∀cn ∈ N ′
i .

5: If Ndet
i > Ndet

n , ∀cn ∈ N ′
i then assume leadership (cl ≡

ci) and broadcast ldr-msg{l, j} to neighbours.

6: ElseIf Ndet
i < Ndet

n , ∀cn ∈ N ′
i then STOP until ldr-

msg{null, j} is received.

7: Else // Ndet
i = Ndet

n for some camera cn
8: If Neff

i > Neff
n then cl ≡ ci and broadcast ldr-

msg{l, j} to neighbours.

9: Else STOP until ldr-msg{null, j} is received.

10: EndIf

11: EndIf

where q is the index of associated grid points and n is the

index of related neighbouring cameras.

The main idea is that if camera cn senses target tj , then it

is certain about its presence inside Fn. Thus, cn upvotes (+1)

the grid points that fall inside its detection zone Zn,m, while

it downvotes (−1) the grid points of other zones. Similarly,

if camera cn does not sense a target, then it downvotes all

the grid points inside Fn because Aj
n,m′ = 0, ∀m′. Finally,

camera cn is uncertain about the presence of a target outside

Fn, thus contributing 0 to the corresponding grid points. Using

±1 values in such voting scheme was shown to be effective in

target localization and tracking applications, while tolerating

a large number of faulty binary sensor observations [12].

Note that while tj moves inside Fl, current leader cl still re-

ceives det-msg{n, j,m} from neighbouring cameras and may

need to update N ′
l according to definition 1. Consequently,

the voting matrix Vj may need to be updated in case tj is

sensed in a different zone. However, such an update can be

implemented quickly by employing the local look-up table.

Subsequently, for each grid point gq, cl sums the contribu-

tions of cameras cn ∈ N ′
l pertaining to target tj to obtain the

voting result V j
q as

V j
q =

∑

cn∈N ′

l

Vj(q, n). (3)

Target tj is localized at the grid point with the maximum

voting value given by

p̂j = argmax
gq

V j
q , (4)

or at the centroid of the maximum value grid points.

Subsequently, the leader runs a Kalman filter algorithm that

first predicts future target location according to a mobility

model (e.g., random force) and then updates this prediction by

leveraging the output of the localization algorithm to get the

refined location estimate; see [6] for the iterative Kalman filter

algorithm. When a new leader is to be elected, as discussed

previously, current leader passes on to the next leader the

required information to continue computations within the

Kalman filter, thus ensuring uninterrupted target tracking.

V. SIMULATION RESULTS

In our simulation setup, A is a 100 × 100 square CSN

field with grid resolution Gs = 2 units. There are Nc = 150
randomly deployed cameras for tracking a single target t1 that

traverses the field with constant speed by following a staircase

path, where (10, 50) is the start point and (90, 50) is the end

point3. Cameras have the same hardware characteristics and

their field of view is equilateral triangle, as shown in Fig. 1,

with height equal to the sensing range Rs = 30 units. When a

camera detects t1 it reports its presence inside a specific zone

with Nz = 5. This information is shared with neighbouring

cameras located within communication range Rc = 45 units

for collaboratively tracking the target.

We employ the fault model discussed in Section III-C, and

assume that it is the same for all cameras4, i.e., Pij = P =
[P c Pw P fn P r P fp]. We start with P = [1 0 0 1 0] to

simulate fault-free conditions and then investigate the fault

tolerance of the proposed target tracking solution by varying

one of the probabilities Pw, P fn and P fp, while keeping

others constant. In particular, we report the mean tracking

error pertaining to the target path when faults are present.

Essentially, a tracking solution is considered fault-tolerant if

it exhibits smooth performance degradation as the probability

of camera faults increases. Results are averaged 20 runs, where

each run uses a random camera deployment.

To gain some insight about the properties of our decen-

tralized target tracking solution we start by investigating

the performance of the proposed directional leader election

protocol. In particular, we compare the following solutions:

1) Centralized tracking, referred to as CEN, where all

camera observations are forwarded to the sink that runs

the localization and tracking algorithms.

2) Decentralized tracking, referred to as LCEP, which em-

ploys the proposed LCEP discussed in Section IV-A

for electing a leader camera close to the target that

undertakes the localization and tracking tasks.

3) Decentralized tracking, referred to as RLEP, which em-

ploys a Random Leader Election Protocol (RLEP). The

main difference from LCEP is that RLEP elects a leader

randomly among cameras that detect the target, i.e.,

without taking into consideration the number of effective

neighbours for each candidate leader.

3Relative performance of various solutions does not vary much with more
or less cameras and the results are omitted due to space limitations, however
tracking multiple targets is not trivial and is part of our ongoing work.

4For brevity we also drop subscript j because only target t1 is considered.

The tracking error in the presence of false positive faults

is depicted in Fig. 2a. Results indicate that when our LCEP

election protocol is employed, accuracy degrades smoothly

and the tracking error is considerably lower compared to the

case of RLEP, as the number of faulty cameras is increased.

Importantly, the accuracy achieved by our decentralized track-

ing solution is close to the accuracy of CEN, which has a

global view of the field.

Next, we study the fault tolerance of the proposed tracking

system and compare it against alternative solutions that rely

on LCEP for leader election, but employ different localization

algorithms instead of our voting-based algorithm. Note that

these algorithms were originally introduced for target tracking

in binary WSN. Thus, to provide a fair comparison with our

solution, we have properly adapted them to the CSN setup

by taking into account the directional sensing of cameras.

Specifically, we consider the following counterparts:

1) The Centroid Estimator (CE) [13], which localizes the

target at the centroid of the grid points that fall into the

detection zones of those cameras that detect the target

in the neighbourhood of the current leader.

2) The Closest Point Approach (CPA) [2], which localizes

the target at the centroid of the grid points that fall into

the detection zone of the current leader.

3) The Maximum Likelihood (ML) estimator [14].

The tracking error for increasing probability of detecting

the target in the wrong zone (Pw) is depicted in Fig. 2b. We

observe that in the fault-free case (i.e., Pw = 0) the proposed

solution and ML achieve the lowest tracking error, which is

considerably better than CE and CPA. As Pw is increased the

tracking error of our system increases gradually, but it still

outperforms CE that is resilient to this type of fault.

The system that employs ML for localization is severely

affected in case faulty cameras do not to report the presence of

t1 even though it is actually there, as shown in Fig. 2c. This is

attributed to the fact that the likelihood of a target to reside in a

specific area is greatly reduced even if a single camera reports

that it does not detect the target there. In contrast, the proposed

solution degrades smoothly as P fn increases. Notably, the

tracking error remains well below CE and CPA, which are

both not affected by this type of fault because they consider

only those cameras that detect the target. On the other hand,

CE and CPA are extremely sensitive to cameras that falsely

report that they have detected the target, as shown in Fig. 2d.

We observe, however, that the proposed solution can handle

this type of fault and is able to tolerate a significant number

of false positive detections as probability P fp increases.

To summarize, combining LCEP with voting-based local-

ization seems to be a promising solution for target tracking in

CSN when faulty cameras are considered. Our findings suggest

that it can tolerate different types of faults, thus keeping

tracking error low as more cameras become faulty.

VI. CONCLUSIONS

In this work, we have introduced a flexible fault model that

is capable to simulate different types of faults that may com-

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

Probability of false positive detection

M
e

a
n

 t
ra

c
k
in

g
 e

rr
o

r

CEN

RLEP

LCEP

(a) Performance of LCEP for varying probability P fp.

0 0.1 0.2 0.3 0.4 0.5
1

2

3

4

5

6

7

8

9

Probability of wrong zone detection

M
e

a
n

 t
ra

c
k
in

g
 e

rr
o

r

CE

CPA

ML

Proposed

(b) Sensing the target in the wrong zone with probability
Pw .

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

18

Probability of false negative detection

M
e

a
n

 t
ra

c
k
in

g
 e

rr
o

r

CE

CPA

ML

Proposed

(c) Falsely not sensing the target with probability P fn.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Probability of false positive detection

M
e

a
n

 t
ra

c
k
in

g
 e

rr
o

r

CE

CPA

ML

Proposed

(d) Falsely sensing the target with probability P fp.

Fig. 2. Tracking error of the decentralized target tracking solution in the presence of different types of camera faults.

promise tracking accuracy in CSN. This model was employed

to assess the fault tolerance of the proposed decentralized

target tracking system. Simulation results indicate that our

solution can mitigate the effect of erroneous observations and

is resilient to faulty camera behaviours. As part of future work,

we also plan to explore fault detection mechanisms to identify

and isolate faulty cameras, thus further enhancing the fault

accommodation capabilities of our target tracking system.

ACKNOWLEDGEMENT

This research has been funded by the European Research

Council under the ERC Advanced Grant ERC-2011-ADG-

291508 “Fault-Adaptive Monitoring and Control of Complex

Distributed Dynamical System” (FAULT-ADAPTIVE).

REFERENCES

[1] H. Chen and K. Sezaki, “Distributed target tracking algorithm for
wireless sensor networks,” in IEEE International Conference on Com-

munications (ICC), 2011, pp. 1–5.
[2] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed group

management in sensor networks: Algorithms and applications to local-
ization and tracking,” Telecommunication Systems, vol. 26, no. 2-4, pp.
235–251, 2004.

[3] J. Teng, H. Snoussi, and C. Richard, “Decentralized variational filtering
for target tracking in binary sensor networks,” IEEE Transactions on

Mobile Computing, vol. 9, no. 10, pp. 1465–1477, 2010.
[4] M. Taj and A. Cavallaro, “Distributed and decentralized multicamera

tracking,” IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 46–58,
2011.

[5] M. Karakaya and H. Qi, “Collaborative localization in visual sensor
networks,” ACM Transactions on Sensor Networks, vol. 10, no. 2, pp.
1–24, 2014.

[6] M. Michaelides, C. Laoudias, and C. Panayiotou, “Fault tolerant local-
ization and tracking of multiple sources in WSNs using binary data,”
IEEE Transactions on Mobile Computing, vol. 13, no. 6, pp. 1213–1227,
June 2014.

[7] P. Zhou, J. Wu, and C. Long, “Probability-based optimal coverage of
PTZ camera networks,” in IEEE International Conference on Commu-

nications (ICC), 2012, pp. 218–222.
[8] B. Song, A. Kamal, C. Soto, C. Ding, J. Farrell, and A. Roy-Chowdhury,

“Tracking and activity recognition through consensus in distributed
camera networks,” IEEE Transactions on Image Processing, vol. 19,
no. 10, pp. 2564–2579, 2010.

[9] A. Kamal, J. Farrell, and A. Roy-Chowdhury, “Information weighted
consensus filters and their application in distributed camera networks,”
IEEE Transactions on Automatic Control, vol. 58, no. 12, pp. 3112–
3125, 2013.

[10] D. Devarajan and R. J. Radke, “Calibrating distributed camera networks
using belief propagation,” EURASIP Journal on Advances in Signal

Processing, vol. 2007, no. 1, pp. 221–231, 2007.
[11] J. Wan and L. Liu, “Distributed data association in smart camera net-

works using belief propagation,” ACM Transactions on Sensor Networks,
vol. 10, no. 2, pp. 1–24, 2014.

[12] M. P. Michaelides and C. G. Panayiotou, “SNAP: Fault tolerant event
location estimation in sensor networks using binary data,” IEEE Trans-

actions on Computers, vol. 58, no. 9, pp. 1185–1197, 2009.
[13] M. Ding, F. Liu, A. Thaeler, D. Chen, and X. Cheng, “Fault-tolerant

target localization in sensor networks,” EURASIP Journal on Wireless

Communications and Networking, vol. 2007, no. 1, pp. 19–19, 2007.
[14] R. Niu and P. Varshney, “Target location estimation in sensor networks

with quantized data,” IEEE Transactions on Signal Processing, vol. 54,
no. 12, pp. 4519–4528, 2006.

