
Distributed Object Recognition in

Visual Sensor Networks

Stefano Paris

Mathematical and Algorithmic Sciences Lab

France Research Center - Huawei Technologies Co. Ltd.

LIPADE - Université Paris Descartes
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Abstract—This work focuses on Visual Sensor Networks
(VSNs) which perform visual analysis tasks such as object
recognition. There, the goal is to find the image in a reference
database which is the closest match to the image captured by
camera sensor nodes. Recognition is performed by relying on
visual features extracted from the acquired image, which are
matched against a database of labeled features in order to find
the closest image match. The matching functionalities are often
implemented at a central controller outside the VSN. In contrast,
we study the performance trade-offs involved in distributing
the matching functionalities inside the VSN by letting sensor
nodes performing parts of the matching process. We propose
an optimization framework to optimally distribute the matching
task to in-network sensor nodes with the goal of minimizing the
overall completion time of the recognition task. The proposed
optimization framework is then used to assess the performance
of distributed matching, comparing it to a traditional, centralized
approach in realistic VSN scenarios.

Index Terms—Cache Placement, Object Recognition, Visual
Sensor Networks

I. INTRODUCTION

Visual Sensor Networks (VSNs) extend the application

fields of traditional wireless sensor networks by including

sensing nodes capable of acquiring and processing visual

signals such as still images or videos. VSNs may have a

significant impact in all application scenarios where capillary

visual analysis tasks are needed at large scales. As an example,

in the context of smart cities, the availability of battery-

operated visual nodes may provide a much more complete

coverage of the urban landscape, reaching a wider area and

limiting the costs of the required infrastructure to support

applications for traffic monitoring, smart parking metering,

environmental monitoring, disasters management, etc. [1].

Such application scenarios require the implementation of

different visual tasks in VSNs, including object recognition,

face recognition, image retrieval, classification and tracking.

In this work, we mainly focus on those visual analysis

tasks based on image retrieval such as object recognition.

There, the goal is to find the object image in a reference

database which is the closest match to the image captured

by camera nodes. Recognition is performed by relying on

visual features extracted from the acquired image, which are

matched against a database of labeled features in order to

find the closest image match. The common approach is to

implement the matching functionalities at the very boundaries

of the VSN at one or multiple central controller which feature

high processing power, and null energy limitations. Roughly

speaking, the completion time of the visual task depends on

the time taken for processing visual features (at the cameras

and at the servers) and on the transmission time to deliver

such features to the central server(s).

We claim here that in case of bandwidth-limited multi-hop

VSNs, the transmission time may become predominant, thus

calling for effective solutions to move the matching functional-

ities closer to the camera nodes. To this extent, we study in this

paper the performance trade-offs involved in distributing the

features matching inside the VSN by letting network nodes

performing parts of the matching process, as illustrated in

Figure 1. For the task at hand, first we throughly characterize

the processing time on low-power sensor nodes required for

running nearest neighbors search, which is at the very heart

of the matching process for image retrieval tasks. Then we

propose a mathematical formulation for the Distributed Object

Recognition (DOR) problem, in which the matching task is

distributed to in-network sensor nodes, by splitting and moving

parts of the reference database to particular sensor nodes in

the VSN. Numerical results on sample VSNs show that a

significant reduction of the completion time can be achieved

by distributing object recognition tasks.

The rest of this paper is organized as follows. Section II

comments on related work in the field highlighting the main

contributions of the current work. Section III provides a

qualitative description of the reference pipeline for object

recognition tasks in VSNs, while Section IV introduces the

network model and the assumptions considered in this work.

Section V gives a mathematical programming formulation for

the DOR problem. Section VI illustrates and analyzes numer-

ical results that show the validity of the proposed approach

to improve the efficiency of distributed visual tasks in VSNs.

Concluding remarks are discussed in Section VII.

II. RELATED WORK

Broadly speaking, our work is naturally related to resource

placement problems in communication networks. The common

objective is to decide where to place specific resources at

network nodes while meeting network- and end-user-related
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Fig. 1: Centralized and distributed VSN scenarios. Black circles
represents cameras, while white circles identify sensor nodes, which
can be selected to host portions of the database.

quality constraints. In [2], the focus is on the optimal place-

ment of database replicas to minimize the cost of accessing a

database while accounting for replication and replicas update

costs. Along the same lines, the problem of placing servers

and proxies in the Internet has been extensively studied in

the literature [3]. More recently, under the push of novel

networking paradigms like Content Centric Networking (CCN)

and Information Centric Networking (ICN), the focus has

slightly moved from where to place servers and proxies to

where to place contents. Tang et al. investigate in [4] the

problem of placing the object replicas in content distribution

systems with the goal of minimizing the replication cost while

meeting QoS requirement for the end users accessing the

contents. In [5], a content placement approach is proposed

to support video on demand applications on top of peer-to-

peer systems. Although our modeling approach bears some

similarities with classical frameworks for resource placement,

the aforementioned related work generally refers to traditional

communication networks ranging from the Internet to mobile

ad hoc networks, whereas we focus here on VSNs, which

have distinctive features in terms of bandwidth/hardware lim-

itations. Moreover, we are not (only) concerned in placing

contents, servers or gateways at sensor nodes as in [6], but

we also target the distribution of matching tasks based on

algorithms to find the nearest neighbors in multi-dimensional

spaces. In this last field, recent work has addressed the

performance evaluation and improvement of algorithms to

compute the nearest neighbors in multi-dimensional spaces.

Aly et al. [7] introduce a distributed k-d tree implementation

where they place a root k-d tree on top of all the other

trees (leaf trees) with the role of selecting a subset of trees

for searching purposes, showing the higher throughout with

respect to using independent trees. Muja and Lowe propose

a through performance evaluation of different approximate

alternatives to compute the nearest neighbors further assessing

the speed-up in case distributed versions of the algorithms

are executed on parallel machines with multiple cores[8].

In [9], authors present a distributed system for matching

high-dimensional multimedia objects (DIMO), which provides

multimedia applications with the basic function of computing

the K nearest neighbors on large-scale datasets. In [10], two

schemes for parallelizing the KD-tree search method are

proposed: in the Independent KD-tree scheme, each node store

a portion of the original dataset and computes an independent

and local KD-tree. On the other side, in the Distributed KD-

tree version, one single KD-tree is centrally computed, a

central node keeps the upper part of the tree locally whereas

subbranches of the search tree are offloaded to other nodes.

To summarize, our work is, to the best of our knowledge, one

of the first attempt to study distributed matching solutions to

support visual task of image retrieval in VSNs.

III. OBJECT RECOGNITION PIPELINE

Generally, an image retrieval system is based on a two-steps

process. First, the input image is processed in order to extract

local or global features, which concisely represent the content

of the image itself. Such features are then matched against a

database of labeled features in order to find the closest image

match. The process can be customized by properly choosing

(i) the particular algorithms used to extract image features and

(ii) how the matching process is performed.

In this work, we consider the Bag of Visual Words (BoW)

approach [11], in which local features of an image (each one

corresponding to a salient point in the image) are quantized

into visual words, which are defined by a fixed-size dictionary

(generally computed by a k-means clustering performed on

the features of a number of training images). For each image,

a signature is produced, in the form of a histogram, which

counts the number of times a particular visual word occurred

in the image. Image matching is then accomplished using these

signatures (i.e., comparing histograms), instead of matching

every single local feature, providing very fast retrieval.

Even though the BoW model allows to represent one image

with a single histogram, linear search may be still costly

in the case of large databases. However, it is possible to

use approximate nearest-neighbor search algorithm in order

to speed up the search process, still retrieving the nearest

neighbor with high probability. As an example, Locality Sen-

sitive Hashing has been shown to be very effective for fast

matching of BoW histograms. However, it is worthy analyzing

the performance of such fast nearest neighbors algorithm when

executed on low-power sensor nodes. For the task at hand,

we implemented a BoW search engine based on multi-probe

LSH [12], by relying on the OpenCV FLANN library [13].

The search engine accepts an image as input, extracts its

BoW representation and search the nearest BoW histogram

in a known dataset. The reference hardware is composed of

an ARM-based BeagleBone Linux computer equipped with

a 500 MHz ARM Cortex A8 CPU and 256 MB of RAM.

This device can be used to implement a visual sensor node

by connecting a camera and a low-power radio transceiver

[14]. Figure 2 shows the time needed to retrieve the BoW

nearest neighbor using multi-probe LSH on a BeagleBone

(Figure 2(a)) operating at 500 MHz and on a MacBook Pro

(Intel Core Duo, 2.3 GHz) (Figure 2(b)) when varying (i) the

dimension of the search database and (ii) the dimension of the

BoW histogram (i.e., the number of visual words in the BoW

dictionary). As one can see the search time grows linearly with
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Fig. 2:

Processing time of the BoW algorithm as a function of the

DataBase and the dimension of the BoW histogram using a

(a) BeagleBone and a (b) MacBook Pro.

the database size: we model this relation as τ = p·d+o, where
τ is the search time, p the search speed, d the database size

and o a processing overhead. Moreover, the search procedure

on a resource-constrained platform such as the BeagleBone is

one order of magnitude slower than on a powerful machine.

However, as we shall see in the next sections, it is still possible

to reduce the total latency by properly distributing the database

in the network.

IV. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a visual sensor network composed of a set N
of wireless nodes divided in cameras (the subset S) and relay

nodes (the subset R = N \ S), as illustrated in Figure 1.

Each camera s ∈ S acquires an image and processes it to

extract its BoW histogram which needs to be transmitted to the

database for matching, wherever it is located. Let L be the size

of the BoW query histogram and T the period of acquisition

of an image from a camera. Assuming the processing of a

continuous stream of images, each camera generates a bitrate

identified as ρs = L/T .

We aim at reducing the visual task completion time by

selecting a subset of relay nodes that host shares of a given

database of size β and further perform the matching algorithm.

Each relay node features a CPU and a non-volatile memory,

which limit the possible placements of the database’s portions.

The processing power and storage capacity of each relay node

i ∈ R are denoted by pi and bi, respectively. The capacity of

the wireless link (i, j) ∈ L that can be established between any

two nodes is defined as cij ; for each wireless link (i, j) ∈ L
in the network, the set I(i, j) contains all the interfering

links, namely all the links that cannot be simultaneously

activated with the link (i, j), due to self-interference. Table I

summarizes the notation used throughout the paper.

V. DISTRIBUTED OBJECT RECOGNITION PROBLEM

The DOR problem can be defined as follows: given a set

of cameras and a set of relay nodes, find for each camera a

subset of nodes in the network and a portion of the original

database to be assigned to each element in the subset, such that

the overall visual analysis task completion time is minimized.

TABLE I: Basic notation used in the paper.

Parameters

cij = c Capacity of wireless link (i, j) (bit/s).

pi Processing speed of node i (s/bit)

oi Processing overhead of node i (s)

bi Storage capacity of node i (images)

L Average packet size (bit)

β Database size (bit)

T Inverse of frame rate (s)

ρs Bitrate generated by camera s (bit/s)

ν Response generated by a matching node (bit/s)

The nodes hosting a database portion and thus performing in-

network matching tasks are called hereafter “matching nodes”.

As we let each camera have its own set of matching nodes,

the original database may be replicated several times in the

network. The DOR problem can be formalized as a Mixed

Integer Linear Programming (MILP) model by using the

following decision variables and constraints.

Binary decision variables xs
i (s ∈ S and i ∈ R) indicate

which node is selected as matching node for camera s, namely

the relay that hosts a portion of the database used by camera

s for recognizing captured images (xs
i = 1 if node i hosts

the portion of the database for camera s, xs
i = 0 otherwise).

The portion of the database hosted on node i for camera s is

instead identified by the continuous variable dsi . Furthermore,

let variables fs
ij ∈ R

+ and ysij ∈ N, (i, j) ∈ L, (i, j) ∈
L, denote the traffic flow and the number of visual queries

generated by camera s and routed on link (i, j) towards all

matching nodes used by s. Binary variables zsij (s ∈ S and

(i, j) ∈ L) provide the wireless links that are used to carry

the traffic generated by camera s. Therefore, zsij = 1 indicates

that link (i, j) is used by camera s to transmit ysij > 0 visual

queries towards some of (or all) the corresponding matching

nodes. We observe that the subsets of relays used by cameras

as matching nodes may a each other. Put another way, a relay

i ∈ R can be selected as matching node to host portions

of the database used by different cameras. Finally, we define

the variables ns
i ∈ N and θ ∈ R

+ in order to enumerate

the nodes on the tree connecting a camera to its matching

nodes and minimize the worst latency (due to transmission and

processing), respectively. Specifically, ns
i denotes the level of

relay i on the multicast tree used by camera s to transmit its

traffic, whereas θ represents the maximum transmission and

processing time on a branch of the multicast tree rooted at the

camera and terminating in the matching nodes.

Given the above definitions and notation, the DOR problem

amounts to the following mathematical program:

min θ (1)

s.t.
L

c
·
(

n
s
i − 1

)

+ pi · d
s
i + oi · x

s
i ≤ θ ∀i ∈ R, s ∈ S (2)

∑

(s,i)∈L

f
s
si −

∑

(i,s)∈L

f
s
is =

∑

j∈R

x
s
j · (ρs + ν) ∀s ∈ S (3)

∑

(i,j)∈L

f
s
ij −

∑

(j,i)∈L

f
s
ji = −x

s
k · (ρs + ν) ∀k ∈ R, s ∈ S (4)

∑

(s,i)∈L

y
s
si −

∑

(i,s)∈L

y
s
is =

∑

j∈R

x
s
j ∀s ∈ S, a ∈ A (5)

∑

(i,j)∈L

y
s
ij −

∑

(j,i)∈L

y
s
ji = −x

s
k ∀k ∈ R, s ∈ S (6)



∑

s∈S

f
s
ij +

∑

s∈S

f
s
ji ≤ cij ∀(i, j) ∈ L, (j, i) ∈ L (7)

fs
ij

cij
≤ y

s
ij ∀(i, j) ∈ L, s ∈ S (8)

∑

s∈S

fs
ij

cij
+

∑

(u,v)∈I(i,j)

∑

s∈S

fs
uv

cuv

≤ 1 ∀(i, j) ∈ L (9)

∑

s∈S

d
s
i ≤ bi ∀i ∈ R (10)

∑

i∈R

d
s
i ≥ β ∀s ∈ S (11)

ds
i

bi
≤ x

s
i ∀i ∈ R, s ∈ S (12)

n
s
j − n

s
i ≥ 1 − |N|

(

1 − z
s
ij

)

∀(i, j) ∈ L, s ∈ S (13)

n
s
s = 1 ∀s ∈ S (14)

fs
ij

cij
≤ z

s
ij ∀(i, j) ∈ Ls ∈ S (15)

z
s
ij ≤ y

s
ij ∀(i, j) ∈ Ls ∈ S (16)

d
s
i , f

s
ij ≥ 0 ∀(i, j) ∈ L, i ∈ R, s ∈ S (17)

x
s
i , y

s
ij ∈ {0, 1} (i, j) ∈ L, ∀i ∈ R, s ∈ S (18)

The objective function (1) coupled with constraints (2)

minimizes the worst latency for object recognition tasks, which

comprises the time for transmitting visual queries from a

camera to the farthest matching node and the processing

time due to matching in the database portion hosted by

that matching node. Constraints (3) and (4) define the flow

balance at node j. The term
∑

fs
ji accounts for the total

traffic generated by a camera s ∈ S , while terms
∑

fs
ij

and
∑

fas
ji represent the total incoming and outgoing traffic

originated from camera s, respectively. Constraints (5) and (6)

prevent traffic splitting among several links. Put another way,

they force the utilization of a single path to route the traffic

generated by a camera towards the corresponding matching

node. The set of constraints (7) ensures that the total traffic

routed on the forward and reverse links connecting two devices

i and j does not exceed the channel capacity, denoted by cij ,
while (8) force the variable ysij = 1 whenever the link (i, j)
is used to transmit the traffic generated by the camera s. In
contrast, constraints (9) further limit the maximum amount of

traffic that can be routed on a wireless link considering all

simultaneous transmissions over its interfering links (i.e., all

links that cannot be simultaneously activated). Constraints (10)

set a limit on the maximum amount of portions of the database

that can be stored into any network node equal to the storage

capacity of the node, whereas the set of constraints (11)

force the relays selected for a camera as matching nodes to

store jointly the whole database (the aggregated amount of

information stored on all matching nodes used by a camera

must be equal to the complete database size). Constraints (12)

denote coherence constraints to force the activation of node

i as matching node (i.e., xs
i = 1) whenever some storage is

reserved for camera s (dsi > 0). The set of constraints (13)-

(16) enumerates sequentially all nodes on the path connecting

a camera to its matching nodes. The value ns
i represents

therefore the level of network node i in the tree rooted at

camera s and terminating at each relay selected as matching

nodes (i.e., i ∈ R such that xs
i = 1). Such value can be

used to compute the number of links traversed on a path

from a camera and its matching nodes, thus minimizing the

worst transmission time. Finally, constraints (17) ensure the

positiveness of flow and storage variables, while (18) ensure

the integrality of binary decision variables.

The following proposition holds on the complexity of the

DOR problem.

Proposition V.1. The DOR problem is NP-hard.

Proof: Let’s prove that DOR problem is NP-hard by

considering a simplified instance of the DOR problem where

the set of matching nodes assigned to each camera is fixed,

that is, variables xs
i become parameter of the problem. In this

case, the DOR problem becomes a problem of shortest path

multi-commodity with non-splittable flows which is known to

be NP-hard [15]. Thus, the DOR problem contains as a special

case an NP-hard problem, which makes the DOR problem

itself NP-hard.

VI. NUMERICAL RESULTS

In this section, we illustrate the results obtained solving

the DOR problem, evaluating the impact of several network

parameters, like the number of cameras and relay storage

size. We first describe the experimental methodology of our

simulations, then we discuss the performance of the proposed

DOR approach, comparing it with a centralized scheme.

A. Experimental Methodology

We consider VSNs where nodes are randomly scattered

over a circular area of radius 40 m. Cameras are deployed

uniformly at the external border of the area, whereas 15
relay nodes, are randomly placed inside the area to simulate

a typical VSN deployment. To evaluate the effect of the

number of cameras, we vary their number in the range [2, 6].
Each camera node is characterized by the parameters derived

from the analysis of the testbed presented in Section III.

Regarding the search time, we set pi = 68.75 µs/Mb and

oi = 625 µs. Moreover, we observe that β = 100 MB is the

maximum amount of database information that can be stored

in the RAM of a BeagleBone when using nearest neighbor

search algorithms like those proposed in [8]. Nonetheless,

100 MB of information permits to store 100000 image rep-

resentations using the BoW model [11] with 1 kbit for each
image descriptor/signature. In our simulations, we consider

the utilization of a single ZigBee channel for all devices and

the transmission power is set to 10 mW. The reception and

carrier sense thresholds are set according to the sensitivity

of the 802.15.4 compliant CC2420 transceiver1. Furthermore,

the interference graph is computed assuming the utilization

of an ARQ mechanism as error recovery technique (i.e., we

assume DATA-ACK message exchange among network nodes

involved in data communications). With this settings and with

the standard packet size of 107 bytes, nearby nodes can

achieve a throughput of roughly 80 kbps [16]. The path loss,

which is necessary to evaluate the sensitivity of the receiving

1Available on-line http://www.ti.com/lit/ds/symlink/cc2420.pdf



node, is computed according to the Friis propagation model.

We underline that all above assumptions do not affect the

proposed DOR algorithm, which is general and can be used

to solve any network scenario.

The performance of the proposed DOR approach are com-

pared against those of a centralized approach where matching

is performed at a single relay node with unlimited energy

budget (i.e., the central controller). In the following, the cen-

tralized benchmark will be referred to as Centralized Object

Recognition (COR). The two approaches are compared with

respect to two performance metrics, namely analysis task

latency and energy consumption. The former includes the

transmission time to propagate the query on the path(s) from

the camera node to the matching node(s), the processing time

spent by the matching node(s), and the transmission time to

propagate back the query response on the reverse path(s) from

the matching node(s) to the camera nodes. The latter metric

is measured by computing the network lifetime as the number

of object recognition tasks which can be performed by camera

nodes over time, that is:

ξ = min

{

E

Ei

: i ∈ R

}

. (19)

where E is the total energy budget at a node (e.g., 32.5 kJ),

whereas Ei represents the energy spent by each node i, when
all cameras send their request towards their matching nodes.

The value of Ei for the generic relay i is defined as sum of the

energy spent for transmission and the computation, as follows:

Ei =Etx
i + E

cpu

i
= P tx

i ·





Q

c

∑

s∈S,(i,j)∈L

ysij +
L

c

∑

s∈S,(j,i)∈L

ysji



+

+P
cpu

i
·

∑

s∈S

xs
i · (pi · d

s
i + oi) . (20)

In Equation (20), P tx
i and P cpu

i represents the transmission

and processing power of relay node i, respectively. The value

of Q
c

is the time spent to transmit/forward a query, whereas∑
(i,j)∈L ysij represents the number of outgoing transmissions

from node i for camera s. Similarly, the value of L
c

is the

time spent to transmit a response (whose size is equal to

a packet), whereas
∑

(i,j)∈L ysji represents the number of

incoming transmissions of node i for camera s, which cor-

responds to the transmissions of the corresponding responses

sent back by matching nodes on the reverse path(s). In contrast,

xs
i · (pi · d

s
i + oi) represents the time spent by matching node

i to perform the object recognition task for the requests sent

by camera s.

Note that, due to the high computational and space com-

plexities of the ILP model, we could not scale beyond the

network sizes and time epochs discussed above (i.e., 15 relays

and 6 cameras). Indeed, the maximum computational time to

solve the problem using the CPLEX solver on an Intel i7-

3770 Processor with 8 cores, clock speed of 3.4 Ghz and

8 GByte of RAM was approximately equal to 4 hours. For each

network scenario we performed 40 independent measurements,

computing very narrow 95% confidence intervals, which we

do not show for the sake of clarity.

B. Performance Evaluation

We first evaluate the effect of the number of cameras on

the performance of the COR and DOR schemes. Specifically,

in the network scenario described above, we progressively

remove one camera to decrease their number from 6 to 2, thus
making gradually the topology asymmetric (at the beginning

6 cameras are uniformly distributed on the circular edge).

Figures 3 shows the latency, the number of matching nodes,

and the network lifetime obtained using the proposed opti-

mization approaches for different storage capacities of relay

nodes, namely 50, 75, and 100 Mb. Note that the number of

matching nodes are illustrated only for the DOR scheme, since

the centralized optimization is not affected by the processing

time and only one powerful device, which replaces a relay

node, performs the visual tasks.

As illustrated in the figures, the DOR scheme achieves

the best performance in terms of latency as the number of

cameras increases, thus confirming the validity of the dis-

tributed matching/object recognition approaches for increasing

the system’s responsiveness. The COR approach performs

slightly better than the DOR with 2 cameras, since in this

latter case there likely exists a relay node directly connected

to both cameras (recall that the topology is highly asymmetric

with 2 and 3 cameras). However, as long as the number of

cameras increases and the topology becomes more symmetric,

the DOR solutions outperform the COR approach, since it can

activate individual matching nodes for each camera no more

than 2 hop away. This is further confirmed by Figure 3(b),

which shows that the DOR approach increases the number of

matching nodes as the number of cameras increases, since it

selects the closest relays to act as matching nodes for each

camera.

We further observe from Figure 3(a) that the storage ca-

pacity slightly affects the maximum latency experienced by

camera nodes, since in sparse networks only a subset of

cameras can place the largest portion of the database on the

closest relay (e.g., 75 MB on the first hop, and 25 MB on

the second hop). Only if the relay’s storage size matches the

database size, all cameras can surely put all their information

on the 1-hop neighbor. For example, the maximum latency

experienced by 6 cameras results approximately 18 ms and

24 ms, with relay’s storage size equal to 100 and 75 MB,

respectively.

The DOR approach puts extra burden onto the match-

ing nodes which are requested to perform energy-consuming

matching functionalities. To this extent, the DOR approach

may lead to a reduced network lifetime if compared to the

COR approach.

Figure 3(c) illustrates the network lifetime defined in Equa-

tion (19) of the COR and DOR approaches for different relay’s

storage sizes as a function on the number of cameras. Note that

the network lifetime for the COR approach is not defined for

two cameras, since the server that performs the visual tasks
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Fig. 3: Object recognition latency, processing overhead, and number of matching nodes as a function of the number of cameras.

is always placed 1-hop away from the two cameras and no

intermediate node is involved in the visual analysis process

(both the server and cameras have not energy constraints).

As expected, when the storage size of the relay is lower

than the database size, the DOR scheme always reduces the

network lifetime due to the energy spent by matching nodes to

execute object recognition tasks on their portion of database.

However, the lifetime gap between the distributed and central-

ized approaches decreases as the number of cameras increases,

since the relay nodes close to the server spend more energy

for the transmission of the traffic generated by and directed to

cameras. In contrast, with the DOR approach almost all relay

nodes spend the same amount of energy for the transmission,

since the traffic is distributed more fairly within the network.

The network lifetime loss caused by the increase of the

energy spent for processing purposes is practically offset by

the improvement of the system responsiveness achieved with

the DOR approach (cf. the latency in Figure 3(a)). Indeed,

when the server is placed at least 2-hop away from cameras

like in the symmetric topology with 6 cameras, the lifetime of

the network deployed according to the DOR scheme decreases

by 35% with respect to the COR approach, whereas the latency

improves by 30%, considering a storage capacity of 50 Mb.

VII. CONCLUSION

Motivated by the need to reduce the completion time of

visual tasks of object recognition in Visual sensor Networks

(VSNs), we considered in this paper the opportunity of dis-

tributing in the VSN the matching task, by letting in-network

sensor nodes play the role of matching nodes. Such approach

has the advantage of moving the matching nodes closer to

the camera nodes, with a consequent reduction in the overall

task latency. On the other side, the matching functionalities

put an extra burden onto the matching sensor nodes, in terms

of consumed energy and required data storage space. We

have proposed a MILP formulation to optimally select in-

network sensor nodes to play the role of matching nodes

with the objective of minimizing the visual task completion

time, while accounting for node-related and network-related

resource constraints. The MILP formulation was finally used

to evaluate the trade-off between the reduction of the visual

task completion time and the loss in network lifetime.
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