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Abstract

We consider a wireless device-to-device (D2D) network whenodes are uniformly distributed at random over
the network area. We let each node with storage capdadityache files from a library of sizev > M. Each node
in the network requests a file from the library independeatlyandom, according to a popularity distribution, and
is served by other nodes having the requested file in thed loache via (possibly) multihop transmissions. Under
the classical “protocol model” of wireless networks, we retederize the optimal per-node capacity scaling law for
a broad class of heavy-tailed popularity distributionduding Zipf distributions with exponent less than one. In
the parameter regimes of interest, we show that a decemgtdatandom caching strategy with uniform probability
over the library yields the optimal per-node capacity seabf ©(,/M/m), which is constant wit, thus yielding
throughput scalability with the network size. Furthermdhe multihop capacity scaling can be significantly better
than for the case of single-hop caching networks, for whivh per-node capacity i®(M/m). The multihop
capacity scaling law can be further improved for a Zipf disttion with exponent larger than some threshpld,
by using a decentralized random caching uniformly acrossbset of most popular files in the library. Namely,
ignoring a subset of less popular files (i.e., effectivelguging the size of the library) can significantly improve the
throughput scaling while guaranteeing that all nodes wéllserved with high probability as increases.

Index Terms

Caching, device-to-device networks, multihop transmissscaling laws.

. INTRODUCTION

Internet traffic has grown dramatically in recent years, myadue to on-demand video streaming [1]. While
wireless is by far the preferred way through which users eonio the Internet, today’s cellular technology and
service providers do not support seamless cost-effectivdemnand video streaming. For example, most monthly
cellular data plans would be completely consumed Binglestreaming session of a standard definition movie from
a typical services such as Netflix, iTune, or Amazon Primadtion 1h:30, size 2GB). It is evident that in order
to fill in the gap between the users’ expectation and the ditioihs of the provided services, a dramatic technology
paradigm shift is required. In this perspective, it has besmently recognized thataching at the wireless edge
i.e., caching the content library directly in the wirelessdas (femtocell base stations or user devices), has the
potential of solving the problem of network scalability byopiding per-node throughput that scales much better
than conventional unicast transmission, in a variety ohades.

One important feature of on-demand video streaming is tlsar dlemands are highly redundant over time
and space. As an example, consider a university campus wherel 0000 users (distributed over a surface of
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~ 1km?) stream movies from a library e 100 files, such as the weekly top-of-the chart titles of Netflbyne, or
Amazon Prime. For such scenario, each user demand can sfeshby local communication from a cache, without
cluttering a cellular base station with thousands of urtisassions, or without requiring to deploy a large number
of small cell access points, each requiring costly higledlghput backhaul. Intuitively, caching can effectivelkda
advantage of the inherent redundancy of the user demarlisugh, differently from live streaming, in on-demand
streaming users do not request the same content at the saméthis type of redundancy is referred to [in [2]-[4]
asasynchronous content reyse

A. Related Work

1) Conventional ad-hoc networksSince the seminal work of Gupta and Kumar [5], the capacigfiisg laws
of wireless ad-hoc networks has been extensively studigd, (€]-[8]). The model introduced in[5] consists of
nodes placed uniformly at random on a planar region and guupo source—destination (SD) pairs at random.
Assuming an interference avoidance constraint referred tiveprotocol modelsee Sectiohll), it was shown inl[5]

that the per-node capacity must scaleas(%) (i.e., upper bound). Furthermore, a simple “straight“limailtihop

relaying scheme achieves the per-node throughput scalilﬁqe\/nlloﬁ). The same results were confirmed [in [6]

by using a simpler and more general analysis technique.r,Ldte 1//logn gap factor between converse and
achievability was closed i [8], by showing that the per@ddroughput scaling dﬂ(ﬁ) is indeed achievable by
using a more refined multihop strategy based on percolatieary.

Beyond the protocol model, the capacity scaling law of weissl ad-hoc networks has been also studied in an
information theoretic sense, consideringlaysical modethat includes distance-dependent propagation path-loss,
fading, Gaussian noise, and signal interference (€.g-[19]). While the protocol model is scale-free, the phykica
model behaves differently depending on whether the netigdixtended” (constant node density, with the network
area growing a®(n)), or “dense” (constant network area, with the node densiiyving as©(n)). In [9], [10], the
achievability schemes are based on multihop strategyif@ipoint coding, and treating interference as (Gaugsian
noise. For the extended network model, it was shown thaeifpth-loss exponent is greater than or equal to three,
then the scaling law is the same as for the protocol model hedrultihop strategy is sufficient to achieve the
optimal scaling. In contrast, for the extended network nadéh the path-loss exponent less than three and for
the dense network model (in this case the path-loss expasi@melevant) the multihop strategy is suboptimal. In
these cases, thieierarchical cooperatiorscheme proposed in [113] (see also improved and optimizewraigical
cooperation scheme in [14], [15]) achieves an almost optihraughput scaling within a factor of¢, wheree can
be made arbitrarily small as the number of hierarchicalegdgcreases.

2) Caching networksMotivated by the considerations made at the beginning af $lkiction, wireless caching
networks have been the subject of recent intensive invasiiy [2]-[4], [16]-[25]. The single-hop device-to-degic
(D2D) case was considered inl [3], [4],_[17], wheteuser node request files from a library «f files according
to a common demand or popularity distribution and each n@dedache capacity constraint equal to the size of
M < m files. The delivery scheme (i.e., the coordination of traigsions in order to serve the users’ requests) is
restricted to be one-hop, i.e., either the requested fil®und in the cache, or it is directly downloaded from a
neighbor node through a D2D wireless link. Under a Zipf papity distribution [26] with parameter less than one
and the protocol model of [5], it was shown [n [3]] [4], [17fththe per-node throughput scales@s§\//m). This
can be achieved by an independent and random caching platame a TDMA-based link scheduling scheme, at
the expense of a positive outage probability, due to theaandature of the caching placement scheme. However,
in the relevant regime whermeM > m, this outage probability can be kept under control, i.ee, $istem can be
designed in order to achieve any target outage probaleility0, for sufficiently largen. It is remarkable to notice
that the per-node throughput in this case scales much lib#tarin the case of general ad-hoc networks under the
protocol model. In fact, while in the general case the patenthroughput converges to zero with the size of the
network asl/+/n, here it is constant witm and directly proportional to the fraction of cached file§/m. This
much better scaling can be explained as an effect of the dgratil spectrum reuse allowed by caching, for which
the requested content is found within a short communicatalius, and therefore a large number of simultaneous
D2D links can be active on the same time slot. Furthermoreanfmmmation theoretic study of the one-hop D2D
caching network in the case of worst-case arbitrary demasngiovided in [27], where the same throughput scaling



of ©(M/m) is achieved througinter-session network coded multicasting oahemespatial reuse onlyscheme
without inter session coding as inl [3], or a combination ofhbschemes.

A different one-hop caching network topology has been stlidn [19]-{22], where a single transmitter (i.e., a
base station with all files in the library) servasuser nodes through a common noiseless link of fixed capacity
(bottleneck link). The scheme proposed[in|[19],/[20] pemtis each file into packets and each node stores subsets of
packets from each file. This provides “side information” atle node such that, for the worst-case demands setting,
the base station can compute a multicgaestwvork-codednessages (transmitted via the common link) such that each
node can decode its own requested file from the multicastagesand its cached side information. Also in this
case, the per-node throughput scaling under the worstardsteary demands model is again given ®yM/m),
which is remarkably identical with the throughput scalirdhi@ved by single-hop D2D caching networks. In this
case, the caching gain is explained in terms of “coded nadting gain”, i.e., in the ability of turning unicast traffic
into coded multicast traffic, such that one transmissioisfa$ multiple nodes. Further, when the user demands
are random and follow a Zipf distribution, the order optinagkrage rate was characterizedlin! [22]. This behaves
as a function of all the system parameters including the raumalb users, the library size, the memory size and
the popularity distributions. Remarkably, in all the regsnof system parameters, the cache memory &izean
provide amultiplicative gain which can be linear, sub-linear, or super-linear, depenon the cases. A number of
extensions, such as multiple number of requests, hiekthetwork structures, and extension to multiple servers
under various topology assumptions, can be found_in [23}-[28]-[30].

B. Contributions

In this paper, we study a natural extension of the singledbap network by allowing multihop transmission.
As a related work, a multihop transmission scheme for waleaching networks has been studied_id [16] under
the protocol model. The key differences between the prgsaper and [16] are as follows. First, the main objective
of [16] is to minimize the average number of flows passing ugtoeach node. Such average number of flows
is proportional to the reciprocal of the average per-nodeutphput only for certain network model; on the other
hand, we directly derive the optimal scaling law of the pedathroughput. Second, a centralized and deterministic
caching placement was proposed inl[16] according to thelpdpudistribution; in contrast, we present a completely
decentralized random caching placement according to @mmitlistribution over the whole file library, which is
“universal” since it is independent of the specific popwjadistribution. Remarkably, while the placement and
the achievability scheme of [16] would break under a nodeuayermutation, such that one should re-allocate
the cache content when the nodes are in the presence of ndaétynour scheme is robust since any random
permutation of the nodes would generate the same cachitrgpdi®n, and therefore yields the same throughput
scaling with high probability. Third, the file delivery sahe in [16] allows for multihop SD paths (i.e., between
nodes caching a given file and nodes demanding such file) arthexr of \/n, i.e., the delivery paths are allowed
to traverse the whole network. In contrast, in this paper oesider a more practical achievability scheme called
local multihop protocglwhere the number of hops between any SD pairs are indepeofigre number of nodes
and decreases when the storage capacity per node increases.

The proposed caching placement and delivery scheme yiekf-aqule capacity scaling & (/M /m), which
is order-optimal when the popularity distribution has thedvy tail” property (see Definitionl 3 in Sectibn 11-B).
For example, this is the case of a Zipf distribution with exgot less than one[[QE].This result shows that
multihop yields a much better per-node capacity scaling giagle-hop D2D networks, which is given B( M /m).
Furthermore, we show that for other popularity distribn§pwhere the “heavy tail” property is not satisfied or the
user demands strongly concentrate, a further improvenfethieoper-node throughput scaling beyo@d./ M /m)
is achievable, similar to the case of single-hop D2D netwonk[16], [22].

C. Paper Organization

In Sectionl, we provide our network model and some defingito be used throughout the paper. Sedtidn IlI
states the main results of this paper on the per-node cgmEting laws for caching wireless D2D networks. In

Throughout the paper, an “order-optimal” scheme meansittemhieves the optimal throughput scaling law within a riplitative gap
of n¢ for any e > 0.



Section 1V, we present an achievable scheme which is ural/e@rdependently from a popularity distribution. An
upper bound is provided in Sectigd V. In Sectlod VI, we furtimprove the throughput scaling laws for a Zipf
distribution with exponent larger than a certain thresh&dme concluding remarks are provided in Secfiod VII.

[I. PROBLEM FORMULATION

In this section, we provide the model of the network undeestigation and define achievable throughput and
system scaling regimes. Generally speaking, for a sequehesents{FE, : n = 1,2,3,...} we say thatF,
“occurs with high probability” (whp) iflim,, .~ P(E,) = 1, where it is understood that these events are defined in
an approprlate probability space, with probability measgenerally indicated b¥(-). For notational convenience,

whp
let > and < denote that the corresponding inequalities hold whp. Wealdlb use the following order notations

o f(n) =0(g(n)) if there existc > 0 andny > 0 such thatf(n) < cg(n) for all n > ny.
 f(n) =Q(g(n)) if g(n) = O(f(n)).
« f(n) =0O(g(n)) if f(n)=0(g(n)) andg(n) = O(f(n)).

A. Caching in Wireless Multihop D2D Networks

We consider a wireless multihop D2D network consisting ofapydation/ of n = |U| nodes, distributed
uniformly and independently over a unit square dfed] x [0, 1]. Let d(u,v) denote the distance between nodes
u,v € U. It is assumed that communication between nodes followsptheocol modelof [5]: the transmission
from nodeu to nodew is successful if and only if: i){(u,v) < r, and ii) no other active transmitter must be in a
circle of radius(1 + A)r from the receiver node. Here,r, A > 0 are given protocol parameters. Also, each node
sends its packets at some constant i&teits/s/Hz.

We consider a librarym = {W,--- ,W,,} of m = | F]| files (information messages), such that messaijesre
drawn at random and independently with a uniform distrimutover a message sf (binary strings of length
B), for some arbitrary integeB. It follows that each file inF has entropyH (W) = B bits. Consistently with
the current information theoretic literature on cachingwueks (see Sectiofl 1), aaching schemés formed by
two phases: caching placement and delivery. The file librargenerated, and then maintained fixed for a long
time. Each network node (user) has an on-board cache merhegpacity M B bits, i.e., expressed in “equivalent
file-size” the cache capacity is equal 3d files. The problem consists of storing information in the s such
that the delivery is as efficient as possible. It is importanhote that the caching placement phase is performed
beforehand, when the file library is generated. Then, eade aa U/ demands a file with index, € {1,--- ,m},
and the network must coordinate transmissions (in padicuh this paper we consider multihop D2D operations
according to the above defined protocol model), such that eéamand is satisfied, i.e., each useis able to
decode its desired fileg, from the content of its own cache and from what it receivemftbe other nodes.

In general, the caching phase is defined by a collection ofapsZ, : FF™ — FZM such thatZ,(F) is the
content of the cache at nodec U/. Notice that the cache content is independent of the demectdn( f1, - - - , f),
reflecting the fact that the caching phase is performed bk#ord. In this sense, the caching placement can be
regarded as part of the “code set-up”. In the achievabilitgtegies considered in this paper we consider only
caching of entire files/ files per node). As a result, as in [2], [4], ]16], the paramdie(file size) is irrelevant
for our achievability result@

Restricting caching to entire files, a caching placemenliza#on is uniquely defined by a bipartite graph
G = (U, F,€E) with “left” nodes U/, “right” nodes 7 and edges’ such that(u, f) € £ indicates that filelV; is
assigned to the cache of nodeA bipartite cache placement graghis feasible if the degree of each node= U/
is not larger than the cache constraiit Let G denote the set of all feasible bipartite graghsThen, we define
a random cache placement as a probability mass funéfjoover G. In particular, ifI1. is induced by randomly
and independently assigning files to each user node € U/, we say that the cache placement is “decentralized”.
For a decentralized caching placement, each user nodeehdssownM files independently of the other nodes.

After the caching functions are computed and the resultasedtin the user nodes’ caches, the network is
repeatedly used imounds At each round, each node requests a file in the library, aach#iwork must satisfy

2Notice that this is not the case for other schemes such a9jn[A0], [27], where the file size plays an important roleg(482].



such requests. Since the network resets itself at the enacbf @elivery cycle, by the renewal-reward theorem [33]
the per-node throughput is given by the reciprocal of theetimeeded to deliver the files (up to a multiplicative
constant that depends ¥, on the system bandwidth, and on the file size). Two modelthi®user demands have
been investigated in the literaturarbitrary andrandom In the first case, the users’ demand vedtpr, - - - , f,,)

is arbitrary, and the delivery time is defined for the woms$e demand configuration [18]-[20]. In the second
case, the demands are generated at random and the deliverystiaveraged over the users’ demand distribution
[2]-[4], [22]. In this paper, we consider the random demaséting. In particular, we assume that the users’
demands are independently and uniformly distributed afingrto a common probability mass functidp,.(f) :
feA{1,---,m}}. The probability mass functiop,(-) is referred to in the following as thgopularity distribution
Without loss of generality, we assume a descending orderdsgt request probabilities, ig,(i) > p,(j) if i < j for
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i,j € {1,--- ,m}. For instance, a Zipf popularity distribution with expohen> 0 is defined byp, (i) = s
foriec {1,---,m} [26]. .

In the following, all events regarding a network of size= 1,2, 3, ... are defined on a common probability space
generated by the random placement of the nodes, indicatd®] bBye random placement of the caches, indicated
by G, and the random demand vector, indicatedf by

B. Achievable Throughput and System Scaling Regime

In order to study capacity scaling of the caching wireles$timap D2D network defined before, we consider
and M expressed as functions ofas
m = ain® and M = aon®, 1)

wherea, aj,a; > 0 andj € [0, a]. We assume that; > as if « = 8 because the delivery phase becomes trivial
if o« =/ anda; < ay (each node is able to store the entire libraryfor this case).

Before entering the analysis, it is important to clearly wefthe concept of outage event and symmetric
throughput. For a given node placeméntcache placemer, and demand vectdr, a feasible delivery strategy
consists of a sequence of activation sets, i.e., sets ofeaginsmission links{.A4; : t = 1,2,3,...}, such that at
each timet the active links in4; do not violate the protocol model. For a given feasible dglivstrategy, we let
T,, denote the corresponding per-node symmetric throughgeut.the rate (in bit/s/Hz) at which the request of any
node in the network can be served with vanishing probabdftgrror, asB — oo. If for some nodeu € U the
message probability of error is lower bounded by some pesibnstant for allB, we say that the network is in
outage. In this case, conventionally, we Tgt = 0.

A sufficient condition for outage is that there exists some U/ for which 1, cannot be reconstructed from
the whole cache contetZ, : v € U}. Within the assumptions of our model, it is easy to see thatahove
condition also necessary. In fact, by contradiction, reotitat if for all« € U/ the requested messafié;, can be
reconstructed fror{ Z, : v € U}, then there exists some delivery strategy that conveysalichche messages to
all the user nodes by an appropriate multihop schedule, thathall nodes can decode their own desired file. This
is an immediate consequence of the fact that the transmigsiany single active link of the network is error-free,
and that any node can communicate with any other node, bydetie transmission radiussufficiently large. Of
course, conveying the global cache content to all nodes ailaya very long delivery time, yielding low throughput.
As a matter of fact, studying the behavior of the optirfialasn — oo is precisely the goal pursued in the rest of
this paper.

From what said abovel, is a random variable, function &f, f, andG. In general, the cumulative distribution
function of T,, takes on the form:

Fr, (x) = P(T, = 0)u(z) + F (x)

wherew(z) is the (right-continuous) unit-step function with jumpaat= 0, the probability mass at ®(7,, = 0),
is the outage probability, anfi,;f (x) is some right-continuous non-decreasing function:afontinuous atr = 0,
such thatlim,_, ;o F, (z) =1 —P(T;, = 0).

For a given delivery strategy, we say that no outage occugsiwhm,,_, ., P(T,, = 0) = 0. In addition, we say

h
that a deterministic sequenge!”} is achievable ifT}, sz g, Also, a throughput upper bound whp is defined by
h

whp
a deterministic sequendg!®} such thatT;, < ¢u. This leads to our definition of achievable throughput scali
laws:



Definition 1 (Throughput Scaling Law: Achievabilitysiven a deterministic sequendg!’}, the scaling law

whp
T,, = Q(¢g'*) is achievable whp if there exists a cache placement stratedydelivery protocol such thadf, > ¢
andlim,,_, P(7;,, = 0) = 0. O

Definition 2 (Throughput Scaling Law: Conversea}iven a deterministic sequendg®}, we say that7, =
whp

O(g'™®) is a converse throughput scaling law whp if for any cacheestsnt strategy and delivery protoch| <
ub
In - O
Obviously, a tight characterization of the throughput sgalaw is obtained wherT;,, = Q(¢) is achievable
whp, and we can exhibit a converse wiip = O(g!") such that whe}'® = ©(g'P).

I11. MAIN RESULTS

This section states the main results of this paper. We fitatdnce throughput scaling laws of caching wireless
multihopD2D networks achievable for any popularity distributionTineoreniil and compare with those of caching
wirelesssingle-hopD2D networks. In Theorerl 2, we then establish upper bounddmughput scaling laws for
a class of heavy-tailed popularity distributions. In Treaif3, we further improve the throughput scaling laws
achievable for a Zipf popularity distribution when its exgmt is larger than a certain threshold. For ease of
exposition, we partition the entire parameter space int® fiagimes as follows:

o Regime l:aa— 5 > 1.

o Regime ll:a— 8 =1 anda; > as.

o Regime lll: « — f =1 anda; < as.

o Regime IV:ao — 5 € (0,1).

o Regime V:iaa — g =0 anda; > as.

Notice that shifting from Regimes | to V tends to increase riflative caching capability at each node, compared
to the library size (recall the relation betweenand M in ().

The following scaling laws holdiniversallyfor any popularity distribution.

Theorem 1:For the caching wireless D2D network defined in Sediibn &, @lchievable throughput satisfies whp
the scaling laws:

0 for Regimes | and ||
Qn=2—¢ for Regime |I
T, - (n_ﬂ)_ or eg!me I B
Qn~= ~¢) for Regime IV,
Q(n™) for Regime V,

wheree > 0 is arbitrarily small.
Proof: The lower bound for Regimes | and Il is trivial. For the noivitdl part, the proof for Regimes IV and
V is given in Sectio IV-A and for Regime IIl in Sectidn TV}B. [ |
Corollary 1: Consider the caching wireless D2D network defined in Sedfioti the file delivery is restricted
to single-hop transmission, then the achievable througbatisfies whp the scaling laws:

0 for Regimes | and ||
1 .
T, - Q(n™) for Reg!me I, 3)
Q(n—(@=P=¢)  for Regime IV,
Q(n=°) for Regime V,

wheree > 0 is arbitrarily small.
Proof: The proof is given in Sectiopn TVAC. [

Fig.[d compares the achievable throughput scaling lawsetéthing wireless D2D network between multihop
and single-hop file deliveries inl(2) and (3), respectiveliere we omitted the term—¢ for simplicity. Regimes |
and Il correspond to the case where the overall cached fildsientire network is strictly less than the number of
files in the library, i.e..Mn < m. Thus, an outage is inevitable even if a centralized cactsinged, which results
in 7, = 0. As the relative caching capability increases comparedhé¢olibrary size, i.e.« — $ decreases, each
node can find its requested file in the network and thus, a Bom7Z, is achievable for Regimes IIl and IV. As it
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Fig. 1. Achievable throughput scaling laws [d (2) for cachimireless multihop D2D networks (solid curve) afbd (3) focliag wireless
single-hop D2D networks (dashed curve).

will be clear from the achievability delivery strategies ®éction 1V, the geometric interpretation of this behavior
is as follows: asy —  decreases (i.e., the storage capadgifyincreases), the file delivery distance decreases, such
that the network achieves larger and larger spatial reusdtifite links can be active at the same time, compatibly
with the protocol model). As a resulf;, increases as — 3 decreases for botfil(2) and (3). Finally when= 3

(i.e., Regime V), each node can find its requested file frooméarest neighbors. Thus, the delivery distance is
O(1/y/n) andT,, = ©(1) is achievable.

One of the most important facts is that single-hop file dejivie order-optimal only for Regime V. For almost
all parameter space of interest (Regimes Il and V), maltifiile delivery significantly improves the throughput by
a factor\/%. Intuitively, spatial reuse is much more effective with tivdp transmissions, namely, we can have
more concurrent transmissions in the network. At the same,tthe cost of duplicated transmissions by multihop
is not very significant comparing with the gains obtained g simultaneously active links. It is worthwhile to
mention that, for a Zipf popularity distribution with < 1, our result is well matched with that in_[16], even if
we use a random caching and a local multihop schemes (se®r8@¢} rather than a centralized caching and
a possibly “whole-network traversing” multihop schemessanted in[[16]. Furthermore, due to the universality
of the proposed scheme (random and independent cachimg$atine throughput scaling laws in Theorlem 1 and
Corollary[1 are achievable for random mobile networks sitiee network caching distribution is invariant with
respect to node permutation.

In order to establish upper bounds on throughput scaling,lave define a class of popularity distributions with
the “heavy tail” property.

Definition 3 (Heavy-tailed popularity distributionsPefine a class of popularity distributions such that, for any
0 < ¢ < a1, there exists:y > 0 satisfying that

cin®
Tim Y pe(i) <1-e 4)
i=1
wherec; andcy; are some constants and independent.of O

Lemma 1:The Zipf distribution with exponent less than one (iex 1) [26] satisfies the condition in Definition
B.
Proof: Letting f(n) =i, 77, we have that

cin® . cin® i f(ClTLa)
2 0= 2 TS T
i=1 im1 2j=1J !

Using the bounds . .
/ x Vde < f(n) <1 —I—/ z Vdx,
1 1



we have:

L flem®) a0

w35 Flam®) = w5 0T ali—) _ 1

where the upper bound converges(tQ]L)( 7), which is strictly less than 1 sinag < a; and~y < 1. |
For the above class of popularity distributions, ignoringnaall portion of requests in the tail of the distribution
yields a non-vanishing outage probability. Hence, almddiles in F should be cached in the network in order to
achieve a non-zer®,,. This is the main idea underlying the throughput upper bauantthe following theorem.
Theorem 2:Consider the caching wireless D2D network defined in Sedifiand assume that demands dis-
tribution satisfies the condition in Definitidd 3. Then thedilghput of any scheme must satisfy whp the scaling
laws:

0 for Regimes | and |

O(n~3te for Regime Il

T, =00 ) J (5)
O(n~ "2 ™) for Regime IV,
O(1/logn) for Regime V,

wheree > 0 is arbitrarily small.
Proof: The proof is given in Section"VAA for Regimes | and Il, Sect[@fB] for Regimes IIl and IV and

Section V-C for Regime V. [ |

For all five regimes, the multiplicative gap between the echbleT,, in Theorem[Il and its upper bound in
Theorem[ 2 is withinn® for any arbitrarily smalle > 0. Therefore, the throughput scaling law depicted in Fig.
[ (solid curve) is order-optimal for the class of heavyedilpopularity distributions in Definition] 3. As we will
explain in Sectio 1V, in the parameter regimes of interegth order-optimal throughput scaling is achievable
by fully decentralized random caching uniformly acra&s Similarly, from the following corollary, the throughput
scaling law depicted in Fid.l 1 (dashed curve) is order-ogtifar the class of heavy-tailed popularity distributions
in Definition[3 when the file delivery is restricted to sindiep transmission.

Corollary 2: Consider the caching wireless D2D network defined in Seffiamd assume that demands distri-
bution satisfies the condition in Definitidd 3. If the file deliy is restricted to single-hop transmission, then the
throughput of any scheme must satisfy whp the scaling laws:

0 for Regimes | and |

—1+e i
T — O(n ) for Regfme [, ©)
O(n~(@=F)+¢)  for Regime IV,
O(1/logn) for Regime V,

wheree > 0 is arbitrarily small.
Proof: The proof is given in Section ViD. [ |

As the deviation between the request probabilities in theufaoity distribution increases (e.gy, increases in
a Zipf distribution), the condition in Definitionl 3 may not Isatisfied. In this case, it can be expected that the
throughput scaling law may be improved by a more refined cachktrategy, biased towards the files requested
with higher probability. In particular, we consider cadionly an appropriately optimized subset of most popular
files, while guaranteeing that the aggregate “tail” prolighof the least popular files vanishes, such that we still
get no outage whp. In the following, we demonstrate the alstagzment for a Zipf popularity distribution with
v>1+ é

Theorem 3:Consider the caching wireless D2D network defined in Sedfiloend assume that the demands
follow a Zipf popularity distribution with exponent > 1 + é Then the achievable throughput satisfies whp the
scaling law:

_ 1-min(1,8+1-1/(y—1)) _

T, = Q (n 5 5) for Regime 1V, (7)

wheree > 0 is arbitrarily small.
Proof: The proof is given in Section VI. [ |
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Fig. 2. Achievable throughput scaling laws [d (7) (solidw@)rand [(2) (dashed curve) with respectytdor Regime IV.

In Fig.[2, we compare the improved scaling laws[ih (7) and teisg laws in [2) for Regime 1V, where the
term n—¢ is omitted. When the demands follow a Zipf popularity dittion, the improved throughput scaling
@(1/\/51/(7_1)_5) is achievable instead cﬁ)(l/\/ﬁa_ﬁ) in @ if v > 1+ 1 and eventuallyo(1) scaling is
achievable whery > 1 + % (see Fig[R). As we will explain in Sectidn VI, a fully deceadized random caching
still achieves the improved throughput scaling laws in Teed3, by appropriately reducing the effective library
size, i.e.,decentralized random caching uniformly across a subsevbplfar files Namely, in this regime, we can
rule out some files from the library, each of which probapiig small enough such that an outage does not occur
with probability approaching one as— oc.

Comparison with the results in [16]: In order to compare our results with these summarized ineTéblof
[16], we need to letv < 1 (n = Q(m)) and M be a constant op = 0 (M = ©(1)), then by ignoring the:

in the scaling law exponent, we obtain tHgt = Q M) =0 (n‘lm{m> under the conditiony > 1 + é

from Theoren{ B, which can be either better or Worsg than theltsein [16]. For example, if we lett = 1 and
nM —m = (1), then the throughput in [16] i& (%) which is smaller thaf (n=""5) for v > 2, which

is feasible sincex = 1. Remarkably, in this regime, a simple decentralized gsat®nsisting of caching the files
at random with a uniform distribution over the most populéesfi while discarding the tail of the distribution,
can achieve a better throughput than the centralized cgagcdtheme of[[16]. On the other hand, for< 1, the
throughput in [[16] behaves &3(1), which is better thar) n~" %), In this case, the decentralized random
caching strategy might not be sufficient to achieve ordemuglity under Definition[1, i.e., the symmetric rate
under no outage. Whether it is possible to achieve ordemaptthroughput scaling with decentralized random
caching, allowing for more general caching distributionst(just uniform over a subset of most probable files) is

an interesting question which is left for future research.

IV. UNIVERSALLY ACHIEVABLE THROUGHPUT

In this section, we prove Theordm 1. In particular, we prefiEnplacement policies and transmission protocols
for Regimes lll, IV, and V and analyze their achievable thlylmput scaling laws.

A. Regimes IV and V

In this subsection, we prove that
a—p

T, =n~"3" ¢ 8)

is achievable whp for Regimes IV and V, where- 0 is arbitrarily small.
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Fig. 3. The proposed multihop routing protocol for file dely after the source node selection.

1) File placement policy and transmission protocah these regimes, decentralizedile placement and bocal
multihop protocol are proposed as follows.

Decentralized file placement Each nodeu storesM distinct files in its cache, chosen uniformly at random
from the library 7, independently of other nodes.

Local multihop protocol: We first explain how each node finds its source node havingaheested fileqource
node selectio:

« Divide the entire network into squateaffic cells of areaa. = n~" for somen € [0,1), wheren will be
determined later on.

« Each node chooses one of the nodes having the requested file same traffic cell as itsourcenode. If
there are multiple candidates, choose one of them unifoahiandom.

From Definition[1 and the above source node selection, akksstould find their source nodes within their own
traffic cells whp, in order to achieve a non-zéfp. LemmalB below characterizes such a condition of the area of
traffic cell ac (i.e., ) such asp € [0,1 — (o — 3)).

For the ease of exposition, we refer to the pair formed by aermud its source node @®urce—destination
(SD) pair. Notice that in our model, each SD pair is located in the samaffid cell while in the conventional
wireless ad-hoc network, SD pairs are randomly located thesentire network. Thanks to caching, we can reduce
the distance of each SD pair (see Lenima 3). Also, differeintlsn the conventional ad-hoc network model, each
node can be a source node of multiple destinations, whichentlaé throughput analysis more complicated (see
Lemmalb).

Next, we explain the proposed multihop transmission schiemthe file delivery between SD pairs, see also
Fig.[3 (multihop transmission):

« Divide each traffic cell into squareopping cellsof areaay, = 2“’%.

« Define the horizontal data path (HDP) and the vertical data PfdDP) of a SD pair as the horizontal line

and the vertical line connecting a source node to its ddgiimaode, respectively. Each source node transmits

the rEquested file to its destination by first hopping to thaaaht hopping cells on its HDP and then on its
VDP

3If a source node and its destination node are in the same tjueil, then the source node directly transmits to its dasin.



11

« Time division multiple access (TDMA) scheme is used withseediactor.J for which each hopping cell is
activated only once out of time slots.
« A transmitter node in each active hopping cell sends a filefrfemment of a file) to a receiver node in an
adjacent hopping cell. Round-robin is used for all transmihodes in the same hopping cell.
In this scheme, each hopping cell should contain at leashode for relaying as il [5]/[34], which is satisfied
whp sincea, = 21%7 (see Lemma&l2 (a)).
Lemma 2: The following properties hold whp:
(a) Partition the network regioft), 1] x [0, 1] into cells of areazlo%. Then the number of nodes in each cell
is betweenl and4logn.
(b)  Partition the network regiof, 1] x [0, 1] into cells of arean™", wherea € [0,1). For anyé > 0, the
number of nodes in each cell is betwe@dn— §)n'=% and (1 + 6)n'~.
Proof: The proofs of first and second properties are given in [34,mear] and[[13, Lemma 4.1], respectively.
[ |
Lemma 3:Suppose Regimes IV and V. if€ [0,1 — (ae— /3)), then all nodes are able to find their source nodes
within their traffic cells whp.
Proof: Let A; denote the event that nodeestablishes its source node within its traffic cell, wheee[1 : n].
Then, we have:

P (MiepinAi) =1 — P (Ujeprn AF)
>1— ) P(A)
1€]1:n]

whp m— M (1-8)nac
>1—n ,

©)

where the first inequality follows from the union bound ane thecond inequality is due to the fact that the

m

hp
number of nodes in each traffic cell is lower bounded by- §)na. whp (see LemmBl2 (b)) and hend¥ A¢) Wg
_ (1-d)nac

TnF]us, for Regime 1V,

a1 pa—B\ o
whp 1 an 1 ay
P (Miepindi) = 1—n ((1 - — ) ) (10)

and from the fact that

1,a0—p8

1 ag " 1
lim <1 - %—B> =, (11)

n—00 ap n%— e

P (mie[lm]Ai) — 1 asn — oo, sincen < 1 — a + § is assumed in this lemma. Similarly, for Regime V,
Whp o (1—5)711777
P (MicpmAi) 2 1—n (“1a “2) , (12)
1

which again converges to one as— oo, sincea; > ay for this regime and) < 1 — «a + S is assumed in this
lemma. In conclusion, all nodes are able to find their souozies within their traffic cells whp under the condition
wheren € [0,1 — (a — B)). n

2) Achievable throughputWe now show that the proposed scheme in Sedfion IV-Al acki€@k whp for
Regimes IV and V. From Lemmnid 3, we assume [0,1 — (o — 3)) to achieve a non-zer®,, by the proposed
scheme in Section IV-A1. The following lemmas are instrutaéto proof.

Lemma 4:Suppose Regimes IV and V and assume that[0,1 — (o — 3)). Let R,, denote the aggregate rate
achievable for any hopping cell. If > (2[(1 + A)V5] + 1)2, thenR,, = % is achievable.

Proof: This lemma is a well-known property, e.g., se€ [34, Lemm&@&t.completeness, we briefly review proof

steps here. Consider an arbitrary transmission pair dimggisf a transmitter node and its receiver node illustrated
in Fig.[4. Clearly, the hopping distance is upper boundedfy,, and hence, we choose the transmission range
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Fig. 4. TDMA cell size from the protocol model.

r = +/bay In the protocol model. Thus, the transmission is succe#fstudre is no node S|multaneously transmitting
within the distance of1+ A)y/5a;, from the receiver node. This is satisfied/if> (2[(1 + A)v/5] + ) That i |s

the aggregate rate &f is achievable it/ > (2[(1 + A)V5] + 1)2. Since this holds for all hopping cell&,, = ¥

is achievable if7 > (2[(1 + A)V5] +1)°. n
Lemma 5: Suppose Regimes IV and V and assume that[0,1 — (oo — 3)). Fore > 0 arbitrarily small, each
node can be a source node of at most”—(@—#)+¢ nodes in its traffic cell whp.
Proof: Let B;(k) denote the event that nodebecomes a source node for less thkanodes. Denoter; =

(14 8)n'=". Then, we have
P (Nicn) Bi(k)) =1 =P (Uiepm B (K))

F1 () G (-3
)

e (o (2

—1—nexp <—k:log <n]€17;\24> — (1 — k) log (m ;1 _J\’? >>

— 1 — nexp(—k) <n"i”]\”‘4>_ln(2) exp (—(n1 — k)) ( (( ))> (13)
—A =B

if % < nﬁl < 1, whereD(a||b) = alog(%) + (1 — a)log(3=%) denotes the relative entropy farb € (0,1). Here
the first inequality follows from the union bound and holdsp/\dnnce the number of nodes in each traffic cell is
upper bounded by;; whp from LemmdXP (b), and the second inequality is due to toetfeat for X ~ B(n, p),

P(X > k) <exp(—nD (k/n|p)) if p<k/n <1. (14)

First consider Regime IV. Suppose that= n" for 7 € (0,1]. Then the conditionl‘n—{ < nﬁl < 1 is given by
%f‘”nl—"‘(“‘ﬁ) <n” < (1+6)n'~", which is satisfied as increases if

l—-n—(a—08)<7<1—n. (15)
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Sincer > 0,

—1n(2)
a _ o
A = nexp (_n’T) <mnr 1+n+( B)) (16)

converges to zero as increases. Furthermore

an®((1 + &)n'=1 —p7) \ @
)> (17)

B =exp (_((1 + 5)n1—77 B nT)) <(1 + 0)nt="(a;n® — agn?

converges to zero as increases ifr <1 — 7. In summary,P (ﬂieu;n]Bi(n”)) converges to zero as increases if
(@5) holds. ThereforeP (N;cpy., Bi(n' 1~ (@=A+€)) — 0 asn — oo by settingr = 1 —n— (o« — ) + ¢ for e > 0
arbitrarily small, implying that each node becomes a soname of at most' ~7—(*~5)+¢ nodes whp for Regime
V.

Now consider Regime V. Suppose again that n” for 7 € (0,1]. Then the condition% < nﬁl < 1is given by

%f‘”nl‘” <n” < (14 6)n'=", which is satisfied by setting = 1 — 7 sincea; > as for Regime V so that we
can findé > 0 satisfying%f‘s) < 1, see Lemmal]2 (b). For this case, we have
) a —1In(2)
A= —pt) (L 18
nexp( n )<a2(1—|—5)> (18)
and

B a6 —1In(2)
B = exp (=) <(a1—a2)(1+5)> |

Hence,A — 0 and B — 0 asn — oo sincen < 1. Therefore, each node becomes a source node of atsmho%t
nodes whp for Regime V. |

Based on Lemmal5, we derive an upper bound on the number ofpdé#ita that should be carried by each
hopping cell in the following lemma, which is directly redak to achievable throughput scaling laws.

Lemma 6: Suppose Regimes IV and V and assume that[0,1 — (o — 3)). Fore > 0 arbitrarily small, each
hopping cell is required to carry at most =~ ~(@=A)+< data paths whp.

Proof: First consider the number of HDPs that must be carried by bitrary hopping cell, denoted bi¥,qp,.

By assuming that all HDPs of the nodes in the hopping cellatkgt at the same horizontal line pass through the
considered hopping cell, we have an upper boundVag,. Since the total area of these cells is given by

2logn 19 1 2logn
= -n = 2 19
Vacth =\ T T T A Togn n (19)
the number of nodes in that area is upper bounded by
1—n 1 1—n
nz WZlogn:nT\/Zlogn (20)

whp from LemmdXR (a). Moreover, each of these nodes may beeosweirce node of multiple nodes within the
same traffic cell. Therefore, from Lemrha 5 ahd](20)

whp PR
Nhdp < pl-n—(a=B)+e' =5 /o logn
— 52— @=B+  Slogn (21)

for ¢ > 0 arbitrarily small. The same analysis holds for VDPs. In dosion, each hopping cell carries at most
n* 5t (@=B)+e data paths whp foe > 0 arbitrarily small, which completes the proof. [ |

We are now ready to prove thaf (8) is achievable whp for Regieand V. Lete’ > 0 be an arbitrarily small
constant satisfying that — (o« — 8) — ¢ > 0, which is valid for Regimes IV and V since — § € [0,1). Then set
n=1—(a—pB)— ¢, which determines the size of each traffic cell. From Lerfiinev@ry node can find its source
node within its traffic cell whp. From Lemnid 4, setting= (2[(1 + A)V5] + 1)2, each hopping cell is able to
achieve the aggregate rate of

Ro =W/ (2f(1+ A)VE] +1) (22)
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Furthermore, from Lemmia 6, the number of data paths that kaphing cell needs to perform is upper bounded
by

5

3(1—n) a—B | ¢
“(a=f)te St

¢ (23)

V|

n =N

whp, where we useg =1 — (o — ) — €.
Since each hopping cell serves multiple data paths usingdroobin fashion, each data path is served with a
rate of at leasf(22) divided by (23) whp. Therefore, an acb& per-node throughput is given by

w _a=f_
= 2n 2
(2[(1 + A)V5E] + 1)
whp for e > 0 arbitrarily small. In conclusion[{8) is achievable whp RRegimes IV and V.

’ a—fB

P (24)

o

B. Regime llI
In this subsection, we prove that

T, —n i (25)

is achievable whp assuming that— 8 = 1 anda; = a2, wheree > 0 is arbitrarily small. Hence the sanig, is
also achievable whp fatt — 8 = 1 and anya; < as, which corresponds to Regime Ill.

From now on, assume that— 5 = 1 anda; = a». For this case, the total number of files that can be stored
by n nodes (i.e., the total number of files stored in the netwaskdxactly the same as the number of files in the
library (i.e.,nM = m). We propose &entralizedfile placement and globally multihop protocol as follows.

Centralized file placement It can be seen that a distributed file placement might resudin outage, as seen
from the analysis in Lemmi 3. Instead, we employ a simplerakred file placement for which all distinet
files (in the library) are randomly stored in the total merasrofn nodes. Hence, the network can containrall
files, thus being able to avoid an outage.

Globally multihop protocol: As explained before, the traffic cell should be equal to thére network (i.e.,

n = 0 in Section[1V-A), in order to avoid an outage. Namely,SD pairs are located over the entire network.
Hence, we can expect the same scaling result with the caomahtwireless ad-hoc network inl[5], namely, no
caching gain is expected.

We briefly explain how to achievé (R5) whp, since the procesuf proof are almost similar to Regimes IV and
V. Similarly to Lemmah, we can show that each node is able ta lseurce node of at most nodes whp for
e > 0 arbitrarily small. Then, following the analysis in SectibtA2] we can easily prove thak (25) is achievable
whp for Regime llI.

C. Single-Hop File Delivery

In this subsection, we prove Corollaty 1. First consider iReg IV and V. We apply the same file placement
and source node selection policy described in Seéfion VAN Lemmal3 holds guaranteeing no outage whp by
settingn = 1—(a—3)—¢€, wheree’ > 0 be an arbitrarily small constant satisfying that («—3)—¢ > 0. Consider
the file delivery. Instead of multihop routing within eachffic cell, each source directly transmits the required file
to its destination within each traffic cell. Then, from thengaanalysis in Lemm@l 4, each traffic cell achieves the

aggregate rate oR,, = m by TDMA between traffic cells with reuse fact¢2[(1 + A)v/5] + 1)2.

Since there are at mogt + §)n(*~#*< nodes in each traffic cell whp (Lemrha 2 (b)), the rate/Bfn—(*=#~<is
achievable whp for each file delivery. Therefofg, = n—(=%)—¢ is achievable whp for Regimes IV and V, where
e > 0 is arbitrarily small.

Now consider Regime lll. As the same reasori in IV-B, we assume3 = 1 anda; = ay, and then apply
the same file placement and source node selection policyideddn Sectio IV-B, which guarantees no outage.
Then, from the direct file delivery by time-sharing betwee®&D pairs,T,, = % is achievable whp for Regime III.
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V. CONVERSE

In this section, we prove the upper bounds in Thedrém 2 assguthat the popularity distribution satisfies the
condition in Definition8. We first introduce the followingdenical lemma.
Lemma 7:Let X follow a binomial distribution with parametetsandp, i.e., X ~ B(l,p). Then, fork € [0 : ip],

1 (Ip—k)?
X <k)< —— 7).
P(X <k) <exp ( o 7 (26)
Proof: The proof follows immediately from the Chernoff bound. [ |

A. Regimes | and Il

We introduce the following lemma, which demonstrates thab@a-vanishing outage probability is inevitable for
Regimes 1 and 2 even if centralized caching were allowedreftie, a non-vanishing outage probability implied
by Lemmal8 yields thaf;,, = 0 whp for Regimes | and Il.

Lemma 8:Suppose Regimes | and II. L&k, ; denote the number of nodes that they cannot find their reggiest
files in the entire network. Then, we ha¥g,,; 1 > csn whp for some constant; > 0 independent of..

Proof: The total number of files that are able to be stored by theeenttwork is given bya M = aon'*5.
Hence the probability that each node cannot find its reqddgeein the entire network is lower bounded by

aznts
1= " pr(i) = pout1- (27)
i=1
Then, forp € [0, pout,1], we have
(a) n n . .
P(Nowes = ) = 3 (Z.>pzut,1<1 o)™
i=pun
U
Sy (Z.>pzut,1<1 "~ Poura)"
i=1
©®) — )2
> 1— exp (_Mn> 7 (28)
2pout,l

where(a) follows from (27) and the fact that each node requires a filkependent of other nodes afig follows
from LemmalY. Here, the conditiom € [0, poyt,1] iS required to apply Lemm 7.

Now considemp,,,1 defined in[(2¥). Notice thaton!™# < a;n® asn — oo for both regimes because— 3 > 1
for Regime | andv — 8 = 1 anda; > as for Regime Il. Hence, from Definitioh] 3jm,,—,o0 Pout,1 > ¢4 for some
constantc; > 0 independent of.. Then settingu = $ in (28), which satisfieg. € [0, pout,1] @asn — oo, yields
that P (Nout,1 > %n) — 1 asn — oo. Therefore,Ny.: 1 > can whp for some constant; > 0 independent of..

[ |

B. Regimes Il and IV

The key ingredient to establish the upper bounds in Thedddor Regimes Il and IV is to characterize the
minimum distance for file transmission that a non-zero foacbf SD pairs must go through, which is given in
Lemmal® below. Then, as a consequence of the protocol modehvadoes not allow concurrent transmission
within a circle of radiug1+ A)r around each intended receiver, we are able to determine taw 8D pairs can
be simultaneously activate at a given time slot, which igedly related to the desired throughput upper bounds.

Lemma 9:Suppose Regimes Il and IV. Far > 0 arbitrarily small, let/N,, denote the number of nodes
that they cannot find their requested files within the distaotn 5" —¢ from their positions. Then, we have
Nout,2 > csn whp for some constant; > 0 independent of.

Proof: Let ¢ > 0 be an arbitrarily small constant satisfying thHat (o« — 8) + ¢’ € [0,1), which is valid for
Regimes Il and IV sincex — 3 € (0, 1]. For simplicity, denote& = % Let N be the total number of
files that are able to be stored by the area of radins. From LemmdXR (b), the number of nodes in that area is
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Fig. 5. A lower bound on the exclusive area occupied by thetihag transmission of a SD pair with distange et .

upper bounded byl + §)n'=% whp becaus€¢ € [0,1). HenceNyie < (1 4 6)n'=2M = as(1 + 6)n*~¢ whp.
Then the probability that each node cannot find its requefiiavithin the radius of. ¢ is lower bounded by

Nrie whp as (146)n—
1- Zpr(i) >1- Z pr(i) ‘= Pout,2- (29)
i=1 =1
Then similarly to [2B8), we have
whp _ 2
P(Noweo > ) > 1 — exp (—@2;7;‘)71) (30)
out,

for i € [0, pout,2]. From Definition[B,lim,, .o pout,2 > ¢ for some constants > 0 independent of.. More
specifically, we can apply Definitidd 3 becausg1 + 6)n®~¢ < a;n® asn — co. Hence setting: = S in (30),
which satisfies: € [0, pout,2] asn — oo, yields thatP (Nout,2 > $n) — 1 asn — oo. Therefore,Nout 2 > c5n
whp for some constant; > 0 independent of.. |
Based on LemmBl9, we can prove that the throughput of any sehemst satisfy
whp a5

T, <n =z ' (31)
for Regimes Il and IV, where > 0 is arbitrarily small. Specifically, from Lemnid 9, fef > 0 arbitrarily small,
there are at least;n SD pairs whose distances are larger than 5 ¢ whp, wherec; > 0 is some constant
and independent of. Then, we restrict only on the delivery of the requests ohsB® pairs, obtaining clearly

an upper bound on the per-node throughput. First, we conslideexclusive area (i.e., the area to prohibit the

transmission for other SD pairs) occupied by the multihemémission of a SD pair with distanee 5 <. In

order to obtain a lower bound on such area, we assume&\hkal) and each receiver node is located at the distance
of r from its transmitter node along with the SD line (see Eig.T)en, the exclusive area is lower bounded (i.e.,

only taking the shaded areas in Hig. 5) such as

_l-(a=p)_
27r3n 2 € _1-(a=B)_

= T7Trn 2 € . (32)

2r

Hence, the maximum number of SD pairs guaranteeing a ralté oler the entire network of a unit area is upper

1-(a—B)

bounded by%n > T¢ whp. As a result, the sum throughp$it (summing the rate of all users) is upper bounded

Whp 1—(o— ’ . . . . .
by S, < %n S=2+¢. Notice that for a given sum throughp#,, the symmetric per-user rate is trivially upper

bounded byT,, < S,,/n. Hence, we have

whp —1—(a— ,
T, < S0P W2
n mwr
That the above bound ofi, increases as decreases. On the other hand, it was shownlin [5, Sectionat]tke
absence of isolated nodes is a necessary condition for aerait,, requiring that

(33)

whp
r > cry/logn/n (34)
for some constant; > 0 independent ofi. Therefore, from[({33) and (B4), we have an upper bound on¢h@qde
throughput as

whp T/ _a=B_loglogn |

Tn < —n 2 2logn
ToTmer

< piTte (35)
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for € > 0 arbitrarily small. In conclusion, the upper bound [nl(31)dsowhp for Regimes Il and IV.

C. Regime V
In this subsection, we prove that the throughput of any sehemast satisfy
whp
T, < (36)
logn

for Regime V, wheres > 0 is some constant independentrofThe following lemma shows that at least a constant
fraction of nodes have to download their requested files fotimer nodes, which will be used as the key ingredient
to prove the upper bound in_(36).
Lemma 10:Suppose Regime V. L&V, 3 denote the number of nodes that they cannot find their regdditts
in their own cache memories. Then, we havg, s > con whp for some constant, > 0 independent of..
Proof: Similar to the proof in Lemmas] 8 aid 9, we have

N2
P(Nout,3 > pun) > 1 —exp (—Mn> (37)
2pout,3

asn®

for € [0, pout,3], Wherepgues = 1—"" p,(i). Sinceas < a; for Regime V,lim,, o pout,3 > c10 for some con-
stantc;0 > 0 independent of. from Definition [3). Hence setting = <3¢ in (37) yields that? (Nout’g > %n) —1
asn — oo. Therefore,Ny 3 > con Whp for some constant, > 0 independent of. [ |
From Lemmd&I0, a non-vanishing fraction of nodes have to ttmehtheir requested files from other nodes
and, as a result{ (84) should be satisfied for successful diigedy, seel[5, Section V]. From the protocol model,
then, the rate of each file delivery is upper bounded®ybits/sec/Hz and there are at moé% L concurrent

logn

whp whp
file deliveries in the network whp, from the bound [n](34). Tfere, S, < Y, andT, < % < W1 In

ez logn = 7cZlogn®
conclusion the upper bound ih_(36) holds whp for Regime V. ¢ ¢

D. Single-Hop File Delivery

In this subsection, we prove Corolldry 2. For Regimes | and.émmal8 still holds, resulting th&f, = 0 whp
for these regimes. Also, the same argument in Se€tion V-@shaksulting that (36) whp for Regime V.

Now consider Regimes IlIl and IV. From Lemma 9, if the file detiy for SD pairs with distance at least
n~ 5"~ s restricted to single-hop transmission, the exclusieaarccupied by each of those SD pairs is lower

bounded by
an~(1=(a=p))—=¢ (38)

’

whp
whp for ¢ > 0 arbitrarily small. Then, as the same analysis in Sedfion, W8 haves, < %nl‘(a‘ﬁ)“,

. whp . . .
resulting thatZ}, < n—(@=8)+¢ for ¢ > 0 arbitrarily small for these regimes.

VI. IMPROVED ACHIEVABLE THROUGHPUT

In this section, we prove Theorelth 3 by assuming that user desnfollow a Zipf popularity distribution with
exponenty > 1+ 1.

A. File Placement and Delivery

Similar to the case of Regime IV in Sectibn TV-A, i.ex,— § € (0, 1), adistributedfile placement and &cal
multihop protocol are performed. In order to describe theppsed file placement, lef > 0 be an arbitrarily small
constant satisfying that

B+1—%—ec>0, (39)
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which is valid becausg + 1 — % > 1— (a— pB) > 0, where the first inequality holds from the assumption

v>1+ é and the second inequality holds for Regime IV siace g € (0,1). Then, define

ny = plomin(LA+I=1/ (1) /2 (40)

and letF,,, C F denote the subset of the first (most probalfle)n,) files in the library. During the file placement
phase, each node storgs distinct files in its cache, chosen uniformly at random fréiy, independently of other
nodes.

During the file delivery phase, the same local mulithop dbsdrin Sectiorl IV-A is performed. To determine
the size of each traffic cell, we set

7 = min <1,ﬁ—|—1—%>—ec, (42)
which is valid sincen € (0,1) from (39). Then the number of nodes in each traffic cell is uggrinded by
(14 8)ngn</? (42)
whp and lower bounded by
(1 — 8)ngn<e/? (43)
whp from LemmdR (b).
B. Achievable Throughput
In this subsection, we prove that
Tp=n= s e (44)

is achievable whp for Regime IV, wheee> 0 is arbitrarily small. The overall procedure is similar teetbase of
Regime IV in Sectio IV-A. In the following, we first show thall nodes can find their required files within their
traffic cells whp by setting) as in [41).

Lemma 11:Suppose Regime IV angl= min (1, B+1— ﬁ) —¢.. Then all nodes are able to find their sources
within their traffic cells whp.
Proof: DenoteP = >_2"2 p, (i), where the definition ok, is given by [@D). Foi ¢ [1 : n], denote\; C [1 : n]
as the set of nodes in the traffic cell that nade included andA; as the event that nodeestablishes its source
node inA;. Then the outage probabilij§( A¢) is given by
P(A7) = P(nodei requestsf; € Foup)P(fi ¢ Ujen; M nodei requestsf; € Fqp)
+ P(node: requestsf; ¢ Feup)

Mng — M\ WV
e 1-P
< MTLQ > +( )

whp 1\ (1=0)nance/
< P(l——) +(1-P), (45)
ng

where|N;| denotes the cardinality of/;. Here, the second equality holds since each nosteresM distinct files
in its local memoryM;, chosen uniformly at random froi,,,, independently of other nodes and the inequality
holds from [438).

Then, following the analysis in{9), we have:

Whp 1 (1—5)1/),2”‘0/2
P (ﬁie[lzn}Ai) >1-n|(P <1 — —> +(1-P)

n2

1 (1—=3)ngnee/?
21—n<1——> —n(l—P)

1\ (1=8)nee/?
:1—n<<1——> > —n(l—P). (46)
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nay (1—-6)nee/?
From [11) and the fact that, — oo asn — oo, the termn ((1 - n%) ) in (48) convergeges to zero
asn increases. Furthermore,

m I~
0-n ()
i=1

Q (Jaan 7 e
B S ady

(c) na(l—’Y)‘H _ n(ﬁ-l—l—min(l75+1—1/(7_1))+Ec/2)(1_“/)4‘1

- noel=v) —1 ’ (47)

where (a) follows from the definition of P, (b) follows becausey>’_,. i < [’z Vdz and Y0_ i™7 >
[P 2=7dz, and(c) follows from the definition ofns. Notice thatn®('=") andn®(=7)+! in @) converge to zero
asn increases since > 1+ 1. Also,

pBH1—min(1,8+1-1/(y=1))+e./2)(1-1)+1  , (B+1=(B+1-1/(v=1))+e/2)(1=7)+1

e /2

=ni- (48)

converges to zero as increases becauié_% < 0. Therefore, the term(1 — P) in (46) also converges to zero as
n increases.

In conclusion, from[(46)P (ﬁie[lzn}Ai) converges to zero as increases. ]

As proved in Lemmal1, we set=min (1,8 + 1 — % — €. from now on, which determines the size of each
traffic cell guaranteeing no outage at all nodes whp. Nofig¢ Lemmd¥ holds regardless of the file popularity
distribution. Hence, a non-vanishing aggregate rate isesahle for any hopping cell by TDMA between hopping
cells with some constant reuse factor. We then derive thee saatement in Lemnid 5 in the following lemma.

Lemma 12:Suppose Regime IV angl= min (1, B+1— ﬁ) — €.. Then each node can be a source node of

at mostn nodes in its traffic cell whp.
Proof: Let B;(k) denote the event that noddbecomes a source node for less titanodes. From the same
analysis in[(IB), we have

(14+8)ngnee/?

whp 146 n2nec/2 1 J 1 (1+8)ngnce/2—j
P (MiepnyBi(k)) > 1—n Z <( )‘ L L L

=k J
L
ns

(1 + 5)712716‘:/2 —k
(1 + §)nonce/2 — (1 + §)nee/2

=1—- neXP(_k) ((1 + 5)716“/2)

=C

cexp(—((1 4 8)ngn/? — k)) <

k
>1 - —~(1+0)nan“/*D | ——r
= nexp < ( + )TlQTL <(1 +5)n2n60/2

k

- exp (-((1 + 8)ngn/? — k) log <

1+ 6)nanc/? —k (@)
(14 6)ns nﬁﬁ) (49)

(1 4+ 0)ngnc/2 — (14 9)
:ZVD
if L < =i <1, whereD(a||b) = alog(%)+ (1—a)log(1=%) denotes the relative entropy farb € (0, 1).

N2 (14+0)nonee/?
Suppose that = n. Then the conditionni2 <7 ; < 1 is satisfied becaus@ + 0)n/? < ne <

k
_ 1+d)naonee/
(1 + 0)pt—min(LA+1-1/(y=1))+e  Fyurthermore, we have

nec/2
146

—1In(2)
C = nexp(—n®) < > — 0 asn — oc. (50)
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Similarly, from the definition ofn, in (40),
D = exp(—((1 + §)ptmin(LAH—1/(r=D)tec _ pecy)

(1 + 5)nl—min(l,ﬁ—i—l—l/(w—l))—i—ec — pte
' <(1 + 5)n1—min(l,ﬁ-{-l—l/(’y—l))-l-Ec _ (1 + 5)nsc/2

—1In(2)
> —0asn — (51)
—mi _ _ 146)pl—min(LB+1-1/(v=1)+ec _pee
becausg (1 + §)n!min(LA+1-1/(y=)+e _ pee) 5 50 asn — oo and (Hé)nl)ﬁmwﬂ,W,Wéc_(Hg‘)nécm —1

asn — oo. Therefore,P (ﬂie[l:n]B,-(nEC)) — 1 asn — oo, meaning that each node becomes a source node of at
mostn nodes whp. |

Lemma 13:Suppose Regime IV angl = min Ql,ﬂ +1-— %) — €. Fore > 0 arbitrarily small, each hopping

5
cell is required to carry at most *¢ data paths whp.

Proof: Let Nhq, denote the number of HDPs that must be carried by an arbitrapyping cell. From the same
analysis in[(IP) and_(20) and Lemral 12, we have

1—min(1,841—1/(y—1)
2

whp

thp <= nl—min(l,ﬁ'zl—l/(‘vfl))+EC /—2 log . (52)
The same analysis holds for VDPs. In conclusion, each hoppéll carries at most™—"""5—""—"+¢ data
paths whp fore > 0 arbitrarily small, which completes the proof. [ |

We are now ready to prove thdf {44) is achievable whp for Redivh From Lemmdl1, every node can find
its source node within its traffic cell whp. From Lemilia 4, isett/ = (2[(1 + A)V5] + 1)2, each hopping cell
is able to achieve the aggregate rate[inl (22). Furthermovey £emma1B, the number of data paths that each
hopping cell needs to perform is upper bounded by

nl—min(l,ﬁgl—l/w—l))_i_e/ (53)
whp for ¢ arbitrarily small. Therefore, an achievable per-node ugtput is given by at leasi (P2) divided Hy [53)
whp. In conclusion,[(44) is achievable whp for Regime IV.

VIlI. CONCLUDING REMARKS

We considered a wireless ad-hoc network in which nodes havked information from a library of possible
files. For such network, we proposed an order-optimal cacbiolicy (i.e., file placement policy) and multihop
transmission protocol for a broad class of heavy-tailedupenity distributions including a Zipf distribution with
exponent less than one. Interestingly, we showed that ahdittd uniform random caching is order-optimal for
the parameter regimes of interest as long as the total nuaitfdes in the library is less than the overall caching
memory size in the network. i.eqq — g € (0,1]. Also, it was shown that a multihop transmission provides a
significant throughput gain over one-hop direct transraisss in the conventional wireless ad-hoc networks. As
a future work, the complete characterization of the optithebughput scaling laws for this network with random
demands following a Zipf distribution with an arbitrary exgent~ (in particular, with~ > 1) remains to be
determined. In this regime, decentralized uniform randaching over a subset of most probable files is generally
not order-optimal, and gains can be achieved by more refimediom decentralized caching policies. Whether these
can achieve the same scaling laws of the deterministic @iered strategy of [16] in all regimes remains also to
be seen.
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