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Abstract—In this work we analyze a quantum communication
scheme for entanglement-based continuous variable quantum
key distribution between two ground stations. Communication
occurs via a satellite over two independent atmospheric fading
channels dominated by turbulence-induced beam wander. In this
scheme the engineering complexity remains largely on the ground
transceivers, with the satellite acting simply as a reflector. We
show how the use of a highly selective post-selection strategy may
lead to a useful quantum key generation rate for this system.This
work represents the first quantitative assessment of continuous
variable quantum key rates in the pragmatic scenario of reflection
off low-earth-orbit satellites.

I. I NTRODUCTION

Quantum key distribution (QKD) [1] is the most developed
and most widely known protocol of quantum communications.
A QKD protocol is consists of two steps. Firstly, a quantum
communication part where two distant parties, Alice and Bob,
generate two sets of correlated data through the exchange ofa
significant number of quantum states. Secondly, by running
a classical post-processing protocol through a public (but
authenticated) classical channel Alice and Bob extract from
their correlated data a secret key that is unknown to a potential
eavesdropper, Eve. The final key which is unconditionally
secure based on the laws of quantum mechanics can then be
used to encode secret messages e.g., [1]–[3].

There are two main technologies of QKD, discrete variable
(DV) where key information is encoded on the properties of
single photons such as the phase or polarization e.g., [4],
[5], and continuous variable (CV) where key information is
encoded on the quadrature variables of coherent or squeezed
states e.g., [3], [6]–[9]. In the former technology detection
is realized by single photon counting measurements, which
are replaced in CV QKD protocols by the homodyne (or
heterodyne) detection techniques which are faster and more
efficient.

Although QKD has matured to commercial applications
and a number of QKD schemes have been implemented both
over optical fibers [2], [3] and terrestrial free-space links [4],
[5], it is still limited to relatively small scales. One way of
extending the deployment range of QKD is through the use of
satellites. Indeed, it is now a widely held view in the quantum
communications community that the use of satellites is pivotal
the deployment of quantum based communication protocols
over global scales [10]–[20]. Such satellite-based quantum
communication will be built on the techniques of free-space

optical (FSO) communications (for review see [21]). Imple-
mentations of QKD over atmospheric channels are discussed
in several recent works [16], [22]–[25]. All of the free-space
QKD systems (DVs or CVs) so far implemented are based on
direct transmission through a single point-to-point free-space
link. In this work we will focus on CV QKD protocols over
the combined atmospheric fading channel traversed by a laser
beam reflected off a low earth orbit (LEO) satellite.

The main motivation for our scheme, referred to as thedirect
QKD scheme, is to minimize the deployment of quantum tech-
nology at the satellite. There are many practical advantages in
deploying quantum aspects of the communication technology
at the ground stations, such as lower-cost maintenance and the
ability to rapidly upgrade. The deployment likelihood for the
type of (relative) low-complexity communication scheme we
describe here is enhanced by recent experimental tests of the
reflection paradigm for single photons [19], [20]). Although
satellite reflection towards another station is a sophisticated
engineering task in its own right, it does not require on-
board generation of quantum communication information and
is devoid of any embedded quantum control mechanisms.
Our scheme therefore represents one of the simplest ways of
creating QKD via satellite. The cost of this simplicity willbe
a reduction in the secret key rate, and it is this point that forms
the thrust of the work reported here.

As we discuss later, all QKD schemes can be represented
by an equivalent entanglement-based QKD protocol. We will
focus on CV QKD entanglement-based protocols, where the
entangled states shared by the two ground stations are first gen-
erated via quantum communication. Specifically we assume a
two-mode squeezed state is generated at ground station A,
with one component of the beam kept at A, while the other
component is transmitted to ground station B via a LEO re-
flecting relay satellite. The level of entanglement produced by
this scheme has recently been analyzed by us in [26]. Quantum
key generation can then occur via Gaussian measurements e.g.,
heterodyne or homodyne detection on the components at each
ground station [6], [7]. Note that the transmitted beam from
ground station A will encounter atmospheric fading caused
by its traversal in the uplink towards the satellite, and then
again on its traversal in the downlink towards ground station
B. The fading experienced will be largely dominated by the
transmission fluctuations caused by beam wandering [21],
[25], [27].
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Fig. 1. Direct transmission scheme for implementation of CVQKD. Here one
mode of an entangled state remains at A while the other mode isreflected
off a LEO satellite and sent to B. Stations A and B can make a range of
quantum measurements. Classical post-selection can occurat B, and classical
post-processing between A and B occurs before a quantum key is generated.

II. QKD OVER FADING CHANNELS

We wish to analyze the direct QKD scheme of Fig. 1. But let
us first introduce some preliminaries regarding CV quantum
information. In the following we set~ = 2.

A. Preliminaries

The quadrature operatorŝq, p̂ for a single bosonic mode
are defined byq̂ = â + â† , p̂ = i(â† − â ) where â, â†

are the annihilation and creation operators, repectively.The
quadratures satisfy the commutation relation[q̂, p̂] = 2i. The
vector of quadrature operators for a quantum state withn
modes can then be defined asR̂1,...,n = (q̂1, p̂1, . . . , q̂n, p̂n ).

We note that as opposed to some of the non-Gaussian states
we discuss later, Gaussian states are characterized solelyby the
first and second moments of the quadrature operators. These
second moments can be represented by acovariance matrix
(CM) M , whose elements are given by

Mij =
1

2

〈

R̂iR̂j + R̂jR̂i

〉

−
〈

R̂i

〉〈

R̂j

〉

. (1)

The CM of an-mode quantum state is a2n × 2n real and
symmetric matrix which must satisfy the uncertainty principle,
viz., M + iΩ ≥ 0, where

Ω :=
n
⊕
k=1

ω =







ω
. . .

ω






, ω :=

(

0 1
−1 0

)

. (2)

The first moment of every two-mode Gaussian state can be
set to zero (By local unitary operators) and the CM can take
the following standard form

Ms =

(

Am Cm

CT
m Bm

)

, (3)

where Am = aI , Bm = bI , Cm = diag (c+, c−),
a, b, c+, c− ∈ R, andI is a 2× 2 identity matrix.

B. Quantum Key Rates

CV QKD protocols can be described as prepare-and-
measure schemes (which have an equivalent representation as
CV entangled protocols), where Alice prepares quantum states
based on encoding (modulation) of classical random variables
onto Gaussian states, such as squeezed states or coherent
states, and then sends them to Bob. For each incoming
state, Bob makes Gaussian measurements, e.g., homodyne or
heterodyne detection on the amplitude or phase quadrature.
In order to warrant security, Alice and Bob must randomly
choose different basis for preparation and measurement. When
the quantum communication is finished and all the incoming
states are measured by Bob, the second stage, i.e., classical
post-processing over a public channel starts where Alice and
Bob reveal which quadrature (basis) they used to prepare and
measure the information. At the second step, the two parties
reveal a randomly chosen subset of their data, allowing them
to estimate some parameters of the channel and upper bound
the information Eve can have about their values. This step
is followed by a reconciliation protocol which encompasses
error correction (e.g., via LDPC codes [28] combined with
digitization). QKD can be operated in two reconciliation
scenarios, direct reconciliation (DR) and reverse reconciliation
(RR). In the DR protocol Alice’s data are the reference and
she sends correction information (classical information)to Bob
who corrects his key elements to have the same values as
Alice. By contrast, in RR protocol Bob’s data are the reference
and must be estimated by Alice (also by Eve) [8]. Finally,
both parties knowing the upper bound on Eve’s information,
and then apply a privacy amplification protocol to produce a
shared binary secret key.

Considering the type of quantum state (squeezed states or
coherent states) which Alice prepares and also the kind of
measurement (homodyne or heterodyne detection) which Bob
applies on the received states as well as the type of recon-
ciliation, there are eight protocols to represent CV QKD in
the prepare-and-measure paradigm. However, all the protocols
can be described in an unified way using an entanglement-
based scheme [6], [7], where Alice and Bob share a two-
mode squeezed stateAB, and they both make ageneralized
heterodyne detection on their own modes using an unbalanced
beam splitter of transmittivityTA in Alice’s side and of
transmittivity TB in Bob’s side. If Alice applies a homodyne
detection (TA = 1), the (equivalent) prepared state is a
squeezed state and if Alice makes a heterodyne detection
(TA = 1/2), the (equivalent) prepared state is a coherent state.
On the other side, Bob can make homodyne measurement with
TB = 1 and heterodyne measurement withTB = 1/2.

Let us now recall briefly how security is analyzed in the
Gaussian CV QKD protocols we investigate. In this paper,
the Gaussian entanglement-based scheme for CV QKD is
considered, in which Alice generates an entangled state (pair
AB) with quadrature variancev of each of its modes. One
mode of an entangled state (modeA) is kept and measured
by Alice (homodyne or heterodyne) while the other mode



(modeB) is sent through the lossy channel with transmittivity
of τ and measured by Bob using a homodyne detection. At
the output of the channel, the entangled quantum state before
Alice and Bob’s measurements is a Gaussian two-mode state
with a zero mean and the CM of (3) taking the specific form

MAB =

(

aI cZ
cZ bI

)

, where

a = v , b = 1 + τ (v − 1) , c =
√

τ (v2 − 1)

(4)

whereZ = diag (1,−1). Considering collective eavesdrop-
ping attacks (where Eve interacts individually with each signal
pulse sent by Alice and applies a joint measurement at the end
of the classical post-processing), the secret key rateK (bits per
pulse) in the case for the RR and DR scenarios can be derived.
We point out that due to the non-Gaussian nature of our
final ensembles the key rates provided here can be considered
lower bounds1 [29], but only on the usual assumption that the
number of exchanges between Alice and Bob are considered
infinite (see later). More details on the derivation ofK can
be found in [6], [7]. Here, we summarize these known results
for three specific protocols that we later simulate.

(i) Reverse Reconciliation (homodyne by Alice): For this
type of reconciliation we find

K = IAB − χBE (5)

whereIAB is the mutual information between Alice and Bob
expressed in terms of the quadrature variance and conditional
quadrature variance of modesA and B, i.e. VA and VA|B

(variance of A conditioned on measurement of B) as

IAB =
1

2
log2

(

VA

VA|B

)

(6)

whereVA = a , VA|B = a − c2

b
. Eve’s quantum information

on Bob’s measurement can be calculated as

χBE = S(E)− S(E |B ) (7)

where S(E) and S(E |B ) are the von Neumann entropy
of Eve’s state before the measurement on modeB and
the von Neumann entropy of Eve’s state conditioned on
the measurement outcome, respectively. Using the fact that
Eve’s system is able to purify the stateAB, we will have
S(E) = S(AB), whereS(AB) can be calculated through the
symplectic eigenvaluesν1,2 of MAB as:

S (AB) = G

(

ν1 − 1

2

)

+G

(

ν2 − 1

2

)

(8)

whereG (x) = (x+ 1) log2 (x+ 1) − x log2x is the bosonic
entropic function. The symplectic eigenvaluesν1,2 of MAB

1Due to the relatively long coherence time of the channel, in principal it
should be possible to devise a scheme in which key rates for each realization
of the fading (each fading bin realized) are derived and summed. Within each
(small) bin we can assume the fading is constant and therefore the states in
that particular bin are Gaussian. We will not pursue this type of scheme in
this work.

are provided by

ν1,2 =

√

∆±
√
∆2 − 4 detMAB

2
(9)

with ∆ = detAm + detBm + 2detCm. Next, the entropy
S(E |B ) as a function of the symplectic eigenvalueν3 of the
conditional covariance matrixME|B is given by

S (E |B ) = G

(

ν3 − 1

2

)

(10)

where

ME|B = Am − Cm(ΠBmΠ)
−1

CT
m

ν23 = a
(

a− c2
/

b
)

(11)

whereΠ := diag {1, 0} and (ΠBmΠ)
−1 is a pseudo-inverse

sinceΠBmΠ is singular.
(ii) Direct Reconciliation (homodyne by Alice): Alice and

Bob’s mutual information is the same for DR and RR.
However, in DR, Eve’s information on Alice’s measurement
should be calculated byχAE = S(E)−S(E |A ), whereS(E)
is exactly the same as RR in (8). The conditional entropy
S(E |A ) is also calculated in a similar way as

S (E |A ) = G

(

ν3 − 1

2

)

(12)

whereν23 = b
(

b− c2
/

a
)

. Thus, the key rate for DR can be
estimated byK = IAB − χAE .

(iii) Reverse Reconciliation (heterodyne by Alice): In the
above discussion on RR and DR we have assumed homodyne
detection at Alice. It will be useful for us to consider a twist on
the RR protocol, where Alice makes a heterodyne detection.
When Alice makes such a heterodyne detection on her own
mode, the mutual information between Alice and Bob changes
such that

IAB =
1

2
log2

(

VA + 1

VA|B + 1

)

(13)

Note that Eve’s information on Bob’s measurement in the RR
scenario is exactly the same as (7).

C. Atmospheric Turbulence

Beam wander is expected to dominate losses in a wide range
of turbulent atmospheric channels and is considered to be the
dominant loss mechanism in ground-to-satellite channels [21],
[25], [27]. If we assume the beam spatially fluctuates around
the receiver’s center point, such fading can be described by
a distribution of transmission coefficientsη with a probability
density distributionp(η), where this latter function is given by
the log-negative Weibull distribution [27] [25],

p (η) =
2L2

σ2
bλη

(

2 ln
η0
η

)( 2

λ )−1

exp

(

− L2

2σ2
b

(

2 ln
η0
η

)( 2

λ )
)

(14)
for η ∈ [0, η0], with p (η) = 0 otherwise. Here,σb

2 is the
beam wander variance,λ is the shape parameter,L is the



scale parameter, andη0 is the maximum transmission value.
The latter three parameters are given by

λ = 8h exp(−4h)I1[4h]
1−exp(−4h)I0[4h]

[

ln
(

2η2

0

1−exp(−4h)I0[4h]

)]−1

L = β
[

ln
(

2η2

0

1−exp(−4h)I0[4h]

)]−(1/λ)

, η20 = 1− exp (−2h)

(15)
whereI0 [.] and I1 [.] are the modified Bessel functions, and
whereh = (β/W )

2, with β being the aperture radius andW
the beam-spot radius.

Note that the beam wander varianceσ2
b for the uplink is

normally significantly larger than the downlink due to the
fact that turbulence is larger near the ground [21]. Also note
the rate of the fluctuations caused by turbulence is normally
much slower than than transmission rates of the light pulses
(kHz compared to Mhz). This allows for measurements of the
channel transmission coefficient (using intertwined coherent
pulses) to be made dynamically by a ground receiver with the
measured classical information being fed back to the sending
station, all well within the coherence time of the channel.

D. Direct QKD Scheme

In the direct transmission scheme, we assume Alice is
located at the ground station A and Bob is placed at the station
B. Since security analysis, and the subsequent key rate, of the
Gaussian CV QKD protocols is based on the CM description
of the quantum states, we are required to calculate the CM of
the output state of our scheme between the terrestrial stations.
Let us consider the ground station A initially possessing a
two-mode squeezed vacuum state with squeezingr, then the
initial CM can be written

Mi =

(

v I
√
v2 − 1Z√

v2 − 1Z v I

)

, (16)

wherev = cosh (2r), r ∈ [0, ∞). We assume one mode re-
mains at the ground station while the other mode is transmitted
over the fading uplink to the satellite, then perfectly reflected
in the satellite and sent through the fading downlink towardthe
ground station B. As a result, depending on the initial level
of squeezing, there would exist an entangled state between
the two ground stations. The separate uplink and downlink
channels are assumed to be independent and non-identical.

After transmission of the optical mode through the uplink
and then reflection through the downlink with probability den-
sity distributionspAS (η) andpSB (η), respectively, the CM of
the two-mode state at the ground stations for each realization
of the transmission factorsη (uplink) andη′ (downlink) can
be constructed by

Mη η′ =

(

v I
√
η η′

√
v2 − 1Z√

η η′
√
v2 − 1Z (1 + η η′ (v − 1) + χ) I

)

(17)
Here, we also assume the QKD protocol is performed in the
presence of excess noise varianceχ. In realistic implementa-
tion of CV QKD over such a scheme, the excess noise can
generally come from several sources such as preparation of

quantum states at the transmitter, reflection at the satellite, de-
tection at the receiver, excess channel noise, or noise generated
by Eve. Here we assume that the excess noise manifests itself
only at the receiver and is independent of the fading.

Since η and η′ are random variables, the elements of
the final CM of the resulting mixed state are calculated by
averaging the elements ofMη η′ over all possible transmission
factors of the two fading channels giving

M =

(

v I c Z
cZ b I

)

, where

b =
∫ η0

0

∫ η′

0

0
pAS(η) pSB(η

′) (1 + η η′ (v − 1) + χ) dη dη′

c =
∫ η0

0

∫ η′

0

0
pAS(η) pSB(η

′)
√
η η′

√
v2 − 1 dη dη′.

(18)
Note that the final state ensemble is a non-Gaussian mixture
of the Gaussian states obtained for each realization ofη and
η′.

Our entanglement-based CV QKD protocols can be per-
formed such that ground station A applies a homodyne mea-
surement of a mode’s quadratures (according to a random bit),
or else applies a heterodyne measurement of both quadratures.
The ground station B also makes a homodyne measurement
of the amplitude or phase quadrature over its mode depending
on its own random bit.

Since the resulting ensemble-averaged state shared by the
ground stations is a non-Gaussian state, it cannot be described
completely by its first and second moments. Therefore, the
key rate we compute based on the CM of the resulting mixed
state is essentially based only on the Gaussian entanglement
between the terrestrial stations, and therefore the actualgen-
erated key rate may be higher in practice.

In the QKD protocol, Alice and Bob are required to know
the channel characteristics, i.e. the channel transmission and
the amount of excess noise, in order to bound Eve’s informa-
tion. Since the rate of atmospheric fluctuations are of order
kHz, which is at least a thousand times slower than typical
transmission/detection rates [21], [25], [27], such channel
measurements can be obtained. Note, that in our scheme it is
only thecombined channel transmissivityηη′ that is measured
at the ground station B.

III. C OMPARISON OF THECV QKD PROTOCOLS

We now simulate the performance of our scheme in terms
of the estimated key rate. For all simulations shown, the
following assumptions are adopted: (i) For each simulation,
all initial entangled states have the same level of squeezing
r. (ii) Beam wander, as modeled by the log-negative Weibull
distribution, is used to characterize the two fading channels,
with β = 1. (iii) The two separate fading channels are assumed
to be independent, but not necessarily identical. (iv) The
beam wander standard deviationsσb AS , σb SB for the two
possible link traversals satisfyσb SB = k1 k2 σb AS , where
0 ≤ k1 ≤ 1 and k2 ≥ 0, respectively, parameterize the
beam wander dependence on communication direction and
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Fig. 2. Estimated key rateK in a CV QKD protocol between the ground
stations where Alice applies a homodyne detection and the RRscheme is im-
plemented with respect to the beam wander standard deviation σb (normalized
to β) in the uplink, and the squeezing levelr. Here,k1 = 0.4 , k2 = 0.64
andβ/W = 1.

geometries. For clarity the apertures (and beam-spot radii)
will be assumed the same at satellite and ground station. (v)
For each CV QKD protocol, Bob carries out a homodyne
measurement on his own component. (vi) All key rates are
calculated in bits per pulse.

Fig. 2 shows the estimated key rate resulting from the direct
QKD scheme in which Alice applies a homodyne detection
in the RR scenario, Fig. 3 displays the case of DR with
homodyne detection at Alice, while Fig. 4 corresponds to
the protocol where Alice makes a heterodyne detection in
the RR scenario. The key rate is estimated as a function of
beam wander standard deviationσb in the uplink from station
A, and the squeezing levelr of the initial entangled states
in the absence and in the presence of the excess noiseχ.
The parameters shown in Figs. 2-4 correspond to channels
with mean losses of approximately 3dB (atσb = 0.7) in the
uplink. They are used here only to show the trends expected
in the FSO channel. Although not directly related to our
specific ground-satellite scenario, such losses are typical of
FSO ground atmospheric links of about 1km length [25], as
well as high-altitude-platform to satellite links of the type
discussed in [30].

It is evident that an increase inσb reduces the key rate
since the amount of Gaussian entanglement between the
ground stations is diminished by increasing beam fluctuations
variance, while increasing the input squeezing is able to partly
compensate the fading since the initial entanglement increases.
However, for a large squeezing levels at largeσb we see the
resulting key rate degrades since strongly squeezed statesare
more sensitive to fading. Note that excess noise at the receiver
drastically reduces the key rate such that in the presence of
high noise the key rate becomes zero for large values ofσb

(i.e. the high-loss regime). The other point of these results is
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Fig. 3. Same as Fig. 2 except here a DR scheme is implemented.
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Fig. 4. Same as Fig. 2 except here Alice applies a heterodyne detection.

that when Alice makes a heterodyne detection of (Fig. 4) on
her part, the key rate is reduced by roughly50% compared to
homodyne detection (Fig. 2). For the DR case of Fig. 3 we
find similar results to the RR case of Fig. 2, except that the key
rate always disappears for losses above a specific threshold.
Explicitly we find in the DR case, the key rate is always zero
for values ofσb > 0.7, which is in agreement with the fact
that for fixed attenuation channels, DR protocol only works
for losses smaller than 3dB [9].

Although reverse reconciliation is able to improve the key
rate at high losses, it is still not sufficient for ground-to-
satellite communications which undergo much stronger losses
than those illustrated in Figs. 2-4. Single FSO uplink ground-
to-satellite channels are anticipated to have losses of order
25dB and beyond [21]. Under such losses, generation of a
quantum key will be a fruitless endeavor without use of a



highly-selective post-selection strategy.

IV. POST-SELECTION

In order to enhance the quantum key rate between the
ground stations, we apply a post-selection strategy where a
subset of the channel transmittance distribution, with high
transmittivity, is selected to contribute to the resultingpost-
selected state used for the quantum key generation. The
post-selection strategy which occurs at the receiving ground
station is based on classical measurements of the channel
transmittance. This strategy has been previously exploited in
[25] for a CV QKD protocol over a small-scale single point-
to-point fading channel.

For this form of post-selection to operate in our scheme, in
addition to quantum information, a large number of coherent
(classical) light pulses are sent through fading uplink andthen
reflected off the satellite in order to measure the transmittance
of the combined channelζ = η η′ at the receiving ground
station, where againη andη′ are random variables describing
transmission factors of the uplink and downlink, respectively.
The received quantum state is kept or discarded, conditioned
on the classical measurement outcome being larger or smaller
than a post-selection thresholdζth. Providing we have a form
for the probability density distributionp(ζ), the resulting post-
selected CM can be calculated as

Mps =

(

v I cpsZ
cpsZ bpsI

)

, where

bps = 1
Ps

∫ η0η
′

0

ζth
p(ζ) (1 + ζ (v − 1) + χ) dζ

cps = 1
Ps

∫ η0η
′

0

ζth
p(ζ)

√
ζ
√
v2 − 1 dζ .

(19)

Here, Ps is the total probability for the combined channel
transmission to fall within the post-selected region, and is
given byPs =

∫ η0η
′

0

ζth
p(ζ) dζ . UsingMps, the key rate emerg-

ing from the post-selected entangled state can be computed.In
the high-loss ground-to-satellite scenario we are considering
one could expect typically 25-30dB loss in the uplink and
5-10dB in the downlink. Fig. 5 and Fig. 6 show expected
key rates in such losses. In Fig. 5 the key rate is calculated
for the case where Alice makes a homodyne measurement in
the RR scenario in the presence of noise. Fig. 6 is identical
except that Alice makes a heterodyne measurement. The key
in both figures is illustrated with respect to the post-selection
thresholdζth and success probabilityPs. The figures explicitly
show the trade-off in increased key rate (as the threshold value
increases) at the cost of lower success probability. Note that
in these calculations no closed-form solution forp(ζ) could
be used, so a numerically determined form was utilized. It is
important to realize that these are key rates perpost-selected
pulse. That is they are the key rates determined only from the
final ensemble of post-selected states. As such, the input pulse
rate at the sender must be multiplied by the post-selection
probability Ps, and the key rateK (bits per pulse selected),
in order to find the final key rate in bits-per-second. Note,
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Fig. 6. Same as Fig. 5 except here Alice applies a heterodyne detection.

significantly higher rates than those illustrated in Figs. 5-6 can
be achieved if entangled states are generated in the satellite
directly, as we discuss next.

V. D ISCUSSION

Another approach to entanglement-based CV QKD dis-
tribution is through on-board generation of entangled pairs
within the satellite itself. In this alternative scheme oneof
the entangled modes is sent directly to station A with the
other mode sent directly to station B. Although such a scheme
increases the complexity at the satellite it does have the
advantage of having no uplink channels. For LEO satellites
one could expect losses in downward links to be better than
the losses in upward links by levels of order 20dB, e.g.
[10]. From an application of the RR performance analysis
given in [31] to this lower-loss fading scenario, we find the
alternative on-board generation scheme generatesK = 0.83
at Ps = 10−3 (at ζth = 0.8). Relative to the direct QKD
scheme of Fig. 5, a key rateK = 0.83 at Ps = 10−3

would represent an approximately100 fold increase in the
bits-per-second final key rate, thereby illustrating the trade-off
in performance versus (satellite-based) complexity.

Possibilities for improving the direct QKD scheme are
provided by multiple-beam technology (spatial diversity)as
applied to the FSO scenario [32]. In the direct QKD scheme,
an optimal diversity gain in the generated quantum key
rate will require some form of quantum coding across the
beams in the uplink - a sophisticated quantum-engineered



task. However, simpler no-coding diversity set-ups will still
significantly increase the success probability of post-selection
and a corresponding increase in the key rates. The remaining
engineering complexity in these latter set-ups lies largely in the
integration of beam selection at the sender and receiver (which
may be meters apart on the ground), and in the reflection of
multiple beams at the satellite.

Note again, that the CV QKD rates presented here are based
on the assumption of an infinite number of signals being sent
between the sender and receiver. Of course, in reality all QKD
deployments undergo only finite signalling. However, such
finite signalling effects are of particular relevance to ourdirect
QKD scheme due to the highly selective nature of our post-
selection strategy. As such, the rates determined here can only
be described as indicative of future performance if the effects
of finite signalling can be shown to be negligible. Security
proofs based on finite signals are difficult but progress has
been made recently, e.g. [33] [34] [35]. If future theoretical
studies2 could find that under the large losses associated with
ground-to-satellite fading channels, a total signaling number of
order1010 negates any significant finite-size effects then all the
results provided in Figs. 5-6 would be immediately applicable.
Improvements in the input pulse rate (typically108Hz), the ad-
dition of long-term quantum memory, use of multiple satellites
(or multiple pass-overs), and/or use of multiple beams, would
drive downwards the difficulty in realizing a QKD system in
which finite signalling effects could be ignored.

VI. CONCLUSIONS

In this work we have explored a quantum communication
architecture based on reflection from a LEO satellite in order
to perform Gaussian entanglement-based CV QKD. Utilizing
reverse reconciliation in the post-processing strategy combined
with a highly-selective post-selection strategy we have found
that a useful quantum key rate may be achievable. The results
given here represent the first quantitative assessment of CV
QKD via reflection off a LEO satellite, and provide confidence
that an experimental validation of space-borne CV QKD is
within reach.
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