
ar
X

iv
:1

41
0.

40
74

v3
  [

cs
.IT

]  
30

 A
pr

 2
01

5

Robust Nonparametric Sequential Distributed
Spectrum Sensing under EMI and Fading

Sahasranand K. R. and Vinod Sharma,Senior Member, IEEE

Abstract—A nonparametric distributed sequential algorithm
for quick detection of spectral holes in a Cognitive Radio set
up is proposed. Two or more local nodes make decisions and
inform the fusion centre (FC) over a reporting Multiple Access
Channel (MAC), which then makes the final decision. The local
nodes use energy detection and the FC uses mean detection in
the presence of fading, heavy-tailed electromagnetic interference
(EMI) and outliers. The statistics of the primary signal, channel
gain or the EMI is not known. Different nonparametric sequential
algorithms are compared to choose appropriate algorithms to be
used at the local nodes and the FC. Modification of a recently
developed random walk test is selected for the local nodes for
energy detection as well as at the fusion centre for mean detection.
It is shown via simulations and analysis that the nonparametric
distributed algorithm developed performs well in the presence of
fading, EMI and is robust to outliers. The algorithm is iterative
in nature making the computation and storage requirements
minimal.

Index Terms—Nonparametric tests, sequential detection, dis-
tributed detection, energy detector, electromagnetic interference,
heavy-tailed distributions, shadowing-fading, outliers, robust
tests.

I. I NTRODUCTION

Spectrum has been a costly commodity of late and intelli-
gent use of available spectrum is warranted. A paradigm that
helps us share the available spectrum is called Cognitive Radio
(CR) [1]. When the licensed users (primary users) are not
using the spectrum, others (secondary users) can make use of
it provided they sense the availability as quickly as possible.
This problem is known as Spectrum Sensing in CR literature.
Depending upon the knowledge of the primary signalling and
the channel gains ([2], [3]), spectrum sensing is performedin
a wide variety of ways.

There is a need to detect the presence of holes as early as
possible to make efficient use of idle channel and to minimize
interference to the primary users. Hencesequentialprocedures
serve better which can reduce the expected number of samples
required, by more than half, over the fixed sample procedures
[4]. Detection of spectral holes has to be performed at very low
SNRs (∼ –20 dB) in the presence of shadowing and fading
[5]. This also demandsdistributed detection which exploits
spatial diversity to mitigate fading and can also reduce the
detection time ([2], [3]). Furthermore, the transmit power,
channel gains, coding and modulations of the primary are
unknown and hence standard algorithms such as matched
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filter or cyclostationarity detector ([3]) may not be available.
Energy detection (or generalised energy detection [6]) is found
to be the technique applicable in such scenarios. Lack of
complete knowledge about the signal and the channel fad-
ing (shadowing) calls fornonparametric (or semiparametric)
detection algorithms. Besides, the distribution of SINR may
not be known and noise power could be time varying due
to time varying electromagnetic interference (EMI). EMI is
modelled using heavy-tailed distributions ([7], [8]) and outliers
[9] could be present in the samples received at the local
nodes as well as the fusion centre (FC) over a reporting
Multiple Access Channel (MAC). Channel fading can have
Rayleigh, Rician or Nakagami distribution and shadowing
is modelled by log normal distribution [10], [11]. Thus the
channel gain could possibly have a heavy-tailed component
(due to log normal distribution) and a light-tailed component
(due to the fading component) [12]. Hencerobust tests which
work well with heavy tailed noise and signals are required.
In summary, it is desirable to have distributed, nonparametric,
robust, sequential algorithms for spectrum sensing in a CR
system which mitigate the effects of heavy tailed distributions
also.

Spectrum sensing has been subjected to detailed study dur-
ing the recent years. [1], [13], [14] and the references therein
give an overview of pioneering work in spectrum sensing.
See [2], [3], [15], [16], [17] for more recent contributions.
Various studies have suggested parametric ([18], [19]) as
well as nonparametric ([20], [21]) solutions to this problem.
None of these works studies the effect of EMI or outliers
on the detection algorithm. Distributed spectrum sensing has
been a recent development in this direction ([2], [22], [23],
[24] and the references therein). See [17], [25], [26], [27],
[28], [29], [30] for more recent developments in distributed
detection and [30] for distributed estimation. Some of the
issues in distributed detection are that the reporting channel
(for decisions from the local nodes to the FC) should not
require much bandwidth and the energy consumed and the
delay in reporting the decisions should also be small [2].
Many of the works ([2], [3], [19], [31]) do not consider
MAC noise or multipath fading in the reporting channel.
However, see [32] and the references therein for studies which
consider shadowing and fading in reporting channels. Design
of algorithms at the local nodes as well as the fusion centre
are motivated by the various above considerations.

The contribution of this paper is in designing new dis-
tributed, sequential, nonparametric energy detection andmean
detection algorithms which perform well in the presence of
slow-fast fading, heavy-tailed EMI and outliers. We are not
aware of any other robust nonparametric scheme to mitigate
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the effects of EMI and outliers. Theoretic analysis of the
algorithm is also provided.

The paper is organized as follows. Section II provides the
system model and the distributed set up. Section III presents
several available (nonparametric) algorithms and their com-
parison via simulations. It also selects appropriate algorithms
for the local nodes and FC for our distributed algorithm. Sec-
tion IV provides theoretical performance analysis of selected
algorithms. Section V theoretically analyses the distributed
algorithm. It also shows the effect of heavy tails on the system
performance. Section VI provides an approximation analysis
of the algorithm. Section VII provides the performance of the
distributed algorithm for specific examples via simulations.
Section VIII concludes the paper.

II. SYSTEM MODEL AND DISTRIBUTED ALGORITHM

We consider a CR system whereL CR (local) nodes
are scanning the environment to detect if a primary user is
transmitting or not. Based on their observations, the nodes
make local decisions and transmit to the FC. The FC makes
the final decision based on the local decisions it receives from
the secondary nodes. This is the most common distributed
spectrum sensing architecture ([2], [3]).

At time k, nodel sensesX̃kl (at baseband level) where

X̃kl = HklSk +Nkl

if a primary is transmitting (HypothesisH1). Here, at timek,
Hkl is the channel gain from the primary to the local nodel,
Sk is the symbol transmitted by the primary andNkl is the
nodel receiver noise with possibly some EMI. If the primary
is not transmitting at timek (HypothesisH0) then

X̃kl = Nkl.

We assume that{Sk, k ≥ 1} and {Nkl, k ≥ 1} are in-
dependent identically distributed (i.i.d.) and independent of
each other. In the following this assumption will be slightly
generalized. Also,{Nkl} are assumed independent sequences
for different nodesl.

For {Hkl, k ≥ 1}, we either assume thatHkl ≡ Hl, a
random variable, possibly unknown (this is a commonly made
assumption [10], [33]), representing slow fading, or an i.i.d.
sequence, representing fast fading.Hkl represents multipath
fading as well as shadowing. For shadowing, log normal
distribution is considered a good approximation [10], while for
multipath fading, Rayleigh, Rician and Nakagami distributions
are considered suitable [11]. ThusHkl could possibly have a
heavy-tailed component (due to log normal distribution) and
a light-tailed component (due to the fast fading component)
[12]. Often the combined effect of these is approximated by
a K-distribution [34] which has a heavy tail.

If sensing is done at times of primary symbol transmission
then assuming{Sk} to be i.i.d. is realistic which will often
take values in a finite alphabet depending on the modulation
scheme used by the primary. The secondary may not know the
coding and modulation used by the primary. Also, different
primary users may be using the same channel and a primary
can change its modulation and coding with time. Thus, we

will not assume that the local nodes know the signalling of
the primary. This is a common assumption in the CR literature.

As a result of unknownHkl, Sk statistics, it is usually
recommended to use energy detection at the local nodes ([2],
[3]). Thus, we consider the energy samples

Xkl =

Mk
∑

i=(k−1)M+1

(X̃il)
2

(1)

at each local nodel whereM is a constant decided as part of
the sensing algorithm. Taking square ofX̃kl in (1) provides the
usual energy detector and is shown to be optimal for Gaussian
noise in the absence ofSk statistics. However, it has been
shown [6] that for non Gaussian noise, instead of2, some
other powerp of |X̃kl| may perform better. In the following
we will keepp = 2 but allow the possibility of other powers
when EMI is significant (see below).

In the following we will only assume{Xkl, k ≥ 1} to
be i.i.d. independent sequences underH0 and H1 allowing
{X̃il,Mk+1 ≤ i ≤M(k+1)} to have arbitrary dependence.
This provides flexibility in modelling fading and sensing
versus signalling duration.

The receiver noise is usually distributed as Gaussian, mean
0 and variance (say)σ2 (denoted asN (0, σ2)). However, in
wireless channels there can often be a significant component
of EMI [7]. EMI is modelled by Gaussian mixtures (which
are light-tailed) and symmetricα-stable distributions (which
are heavy-tailed forα < 2) ([8]). Thus Nkl will often not
be Gaussian and can possibly be heavy-tailed. Of course, as
a result of squaringX̃kl, the noise distribution will not be
symmetric.

Now we consider the hypothesis testing problem one en-
counters for energy detection with samples (1). We will denote
by Pi, Ei[X ] and V ari[X ], the distribution, the mean and
the variance ofX under the hypothesisHi, i = 0, 1. For
simplicity, we take{X̃kl, k ≥ 1} i.i.d. in this paragraph. IfNkl

has a general distribution with mean 0 and varianceσl
2, under

H0, E0[X1l] =Mσl
2 andV ar0(X1l) =M(E0[(N1l)

4]−σl4).
Also, underH1, E1[X1l] = Mσ1l

2 + Esl andV ar1(X1l) =
M(E1[(N1l + H1lS1l)

4] − (σ1l
2 + E1[(H1lS1l)

2])2) where
Esl =ME1[(H1lS1l)

2], the received energy at nodel.
If σl2 >> Esl andσl2, Esl are known but the distributions

of Nkl, Sk are not known, we can consider it as a nonpara-
metric mean detection problem withH0 : µ = µ0 =Mσl

2 vs
H1 : µ = µ1 =Mσl

2 + Esl. It is a simple hypothesis testing
problem with equal known variance under both hypotheses.
If Esl is not known but we know thatEsl is lower bounded
by EL then the testing problem isH0 : µ = µ0 = Mσl

2 vs
H1 : µ = Mσl

2 + Es ≥ Mσl
2 + EL = µ1. Now H1 is a

composite hypothesis. Ifσl2 is also not known but we know
thatσL2 < σl

2 < σU
2 then the problem isH0 : µ =Mσl

2 ≤
MσU

2 = µ0 andH1 : µ =Mσl
2 +Es ≥MσL

2 +EL = µ1.
Now the variance under the two hypotheses are the same but
unknown. The most general situation arises when the low SNR
assumption is also violated and now the unknown variances
under the two composite hypotheses are not the same.

As a consequence of the above comments, for a local node
to make a decision, nonparametric statistical techniques which



do not require complete knowledge of the distributions of
observationsXkl underH0 and H1 are suitable for energy
detection. To make quick decisions, local nodes will use
sequential detection. Thus nodel will make its decision at a
random time based on its local observations{Xkl, k ≥ 1}. In
the next section we compare several nonparametric sequential
algorithms for energy detection and pick the best.

If node l decidesH1 at timek, it will transmit +b1 to the
FC. If it decidesH0, it transmits−b0. If the node has not made
a decision at a time, it transmits nothing. Thus, at timek, FC

receivesYk =

L
∑

l=1

GklYkl +Zk whereYkl is the transmission

from nodel, Gkl is the corresponding channel gain andZk is
the superposition of the receiver noise (which will often have a
distributionN (0, σ2)) and EMI. Thus,Zk will be a summation
of Gaussian noise and Gaussian mixtures and/or alpha-stable
EMI. The distribution ofGkl may also not be known. Thus,
we need at the FC a nonparametric sequential algorithm but
unlike at the local nodes, the signalling (+b1 or −b0) is known
to the FC. Furthermore, unlike at the local nodes, we can use
partially coherent detection (we may be able to estimate the
phase; in particular, the sign ofGkl although not necessarily
the magnitude of the channel gains [35], [10]). Then the local
node multiplies its transmissionYkl (+b1 or −b0) by the sign

of Gkl and transmits. Thus,Yk =

L
∑

l=1

|Gkl|Ykl+Zk. Therefore

we do not need an energy detector (actually in our set up
we may not be able to use the energy detector at the FC)
but in fact a nonparametric detector which performs well for
mean detection with symmetric noise will be a suitable choice
(if Zk is zero mean symmetric, which will often happen in
practice. But we will not assume symmetric distribution in
the following).

As discussed above, at the local nodes as well as at the
FC, due to possibly significant EMI, the noise may be heavy-
tailed. Such a scenario in CR has been considered in [7].
But the impact of heavy-tailed noise has not been specifically
studied. In [24], this was considered in the context of change
detection and it was shown that heavy tails can degrade the
performance significantly. In this paper, for the distributed
hypothesis testing algorithm also, we show that heavy-tailed
distributions can significantly impact the performance. Then
we will modify the algorithms so that their impact along with
that of the outliers which are also present, can be mitigated.

Often the reporting (MAC) channel from the local nodes to
the FC is considered noiseless ([2], [19], [3], [31]). However,
as mentioned above, like any other wireless channel, it does
experience EMI, outliers and receiver noise. One implication
of this is that the decisions transmitted by local nodes may not
reach the FC without error making the use of standard Fusion
centre rules - AND, OR, majority etc. [3] less accurate and/or
difficult to implement.

Now we describe our basic distributed algorithm which has
been shown to be asymptotically optimal and performs well
at practical parameter values ([27], [21]). It also makes an
efficient use of the reporting MAC. An optimal algorithm in
this setting is not known [23]. We will complete this algorithm

by choosing appropriate detection algorithms for the local
nodes and the FC in the next sections. We will also study the
performance of the overall algorithm so developed especially
under the influence of EMI, outliers and fading.

Distributed Algorithm

• Each local nodel receives observationXkl at timek.
• Each nodel uses a sequential algorithm to computeTkl =
f(Xk,l, X(k−1),l, ..., X1,l) and makes a decision at time
Nl where

Nl = inf{n : Tnl /∈ (−γ0l, γ1l)},

γ0l, γ1l are appropriately chosen positive constants and
the decision isH0 if TNll ≤ −γ0l andH1 if TNll ≥ γ1l.
It transmitsYkl to the FC at timek where

Ykl = b11{Tkl ≥ γ1l} − b01{Tkl ≤ −γ0l}.

Nodel will keep transmitting till the FC makes a decision.
• At time k, FC receives

Yk =

L
∑

l=1

Yk,l + Zk

and computesWk based on an algorithm to be decided.
At time

N = inf{n :Wn /∈ (−β0, β1))},

it decidesH1 if WN ≥ β1 andH0 if WN ≤ −β0 where
β0, β1 are appropriately specified. AfterN , all nodes stop
transmitting. �

The energy detection algorithm to be used by the local nodes
and the mean detection to be used at the FC will be chosen
in the next section.

One of the advantages of our distributed algorithm is that
the local nodel which has a good channel gainHkl from
the primary will make a decision faster and will influence
the FC decision more. Also, since each local node keeps
transmitting its decision till the FC decides, if a local node
has made a wrong decision, most likely it will soon change
it and hence wrong local decisions will have minimal effect
on the FC decision, especially whenPFA (probability that the
FC decidesH1 while H0 is true) andPMD (probability that
the FC decidesH0 while H1 is true) are small.

III. S INGLE NODE: ALGORITHMS

In this section we consider sequential nonparametric single
node algorithms with their statistics denoted byTn, which can
be used by the local nodes and the FC for energy detection
and mean detection respectively. Optimal tests for single nodes
also do not exist. We will not use the node indexl in this
section.



A. Rank test

Rank test (Wilcoxon rank test) is a location test [4] for
location µ of a distributionF (x − µ) which is symmetric
aroundµ. For testingµ ≤ µ0 vsµ ≥ µ1, µ1 > µ0, its statistics
is defined as follows.

i. Let Yi = Xi − µ0+µ1

2 , whereXis are the observations.
ii. CalculateRi, the rank ofYi in Y1, ..., Yn when these are

arranged in ascending order of their absolute values.
iii. Test statisticTn =

∑n
i=1 sgn(Yi)

Ri

n+1 wheresgn(x) =
x
|x| for x 6= 0 and0 for x = 0.

We will use this statistic in our sequential set up. This statistic
is distribution free for symmetric distributions [4].

B. Sequentialt test

We use the usualt test [36] extended to make it a two sided
test. The test statistic is given by,

Tn = n
Xn − µ0+µ1

2

sn
(2)

where Xn = 1
n

∑n
k=1Xk is the sample mean, and

sn = [ 1
n−1

∑n
k=1(Xk −Xn)

2]1/2 is the sample variance.

C. Random walk

Its test statistic is obtained by modifying the abovet test
statistic:

Tn =

n
∑

i=1

(Xi −
µ0 + µ1

2
). (3)

The statistic is a simple random walk and we refer to this
algorithm as random walk.

The above three tests are primarily designed for detection
of meanH0 : µ ≤ µ0 vs H1 : µ ≥ µ1, but can also be used
for testing some other functional of the distributions. Unlike
sequentialt test and rank test, random walk test isiterative.
Thus it is simpler to compute the statistic and does not require
storing the whole data.

D. Mitigating effects of outliers, heavy tails and fading

The sample mean and the sample variance used in thet test
and random walk are not robust to outliers. This gets reflected
in the performance of these tests (compare Figures 3 and 4
below; see also Figure 1). From Figures 3 and 4 we also see
that the rank test is quite robust to outliers although may not
perform the best. This motivates the use of robust versions
of the random walk andt tests [9]. Robust tests are obtained
by replacing the sample mean (and sample variance) in these
tests by their robust versions.

• M − t test is obtained by applying a cut-off functionψ
(calledHuber functionafter [9]) to obtain a robust sample
mean (corresponding modified sample variance is in the
denominator ofTn below.) and obtain the statistics oft

test as

Tn =

∑n
i=1 ψ(Xi − µ0+µ1

2 )

(
∑n

i=1 ψ
2(Xi − X̄n))

1
2

, (4)

whereψ : R 7→ R is a non decreasing, continuous, odd
and bounded function. ForN (0, 1), a recommendedψ
[9] is

ψ0(z) =











K, if z > K,

z, if |z| ≤ K,

−K, if z < −K,
(5)

for a given positiveK <∞.
• Applying theψ function on the random walk, we get a

robust version calledM -random walk via the statistic

Tn =

n
∑

i=1

ψ(Xi −
µ0 + µ1

2
). (6)

This statistic isiterative, unlike thet test orM − t test.
It is known that thet test is not efficient for heavy-tailed

distributions [36]. One expects this behaviour for the random
walk test also (see Figure 1 below). On the other hand, the
rank test is quite efficient for heavy tailed distributions also.

We will also see that the Huber functionψ not only
robustifiest and random walk tests but also makes them more
efficient with respect to (w.r.t.) heavy-tailed distributions. We
will confirm these findings from simulations and the theory in
Section IV.

In very heavy-tailed case (SαS with α < 1 or for energy
detection withα < 2), the mean of the sampleXk is infinity.
Thus, random walk andt test will not work. The rank test can
possibly still work. Even the above robust versions of random
walk andt test (6) and (4) will not work directly becauseµ0

andµ1 will be infinity. Thus, we replace samplesXi with

X̂i = ψ1(Xi) (7)

where ψ1 is from the class of functions mentioned below
equation (4), and useM -random walk test on it withµ0 andµ1

corresponding to the means of̂Xi. We call thisM2-random
walk test. We will see below via simulations thatM2-random
walk test works for SαS with α < 2 while M -random walk,
random walk,t, M − t andM − t based on samples (7) do
not work at all.

Choice ofψ in (4), (6) andψ1 in (7) affects the performance
of the algorithm (see [9] for differentψ in parametric set up).
In our nonparametric setup we will simply useψ0 defined in (
5) with differentK values. Our aim of usingψ for heavy-tailed
case is to create light-tailed samples (7). In our simulations
below for energy samples, we will takeK large forψ1(≈ 200)
but small (≤ 5) for ψ in (4) and (6).

It has been known that slow fading can significantly degrade
the performance of a detection algorithm ([33]). We will
see that this happens for the above algorithms also. This is
because in slow fading,Xk = HSk + Nk and for usual
fading distributions e.g., Rayleigh,H can be small with a
large probability. In this case, applying theψ function does
not help. Then if we do not make a decision when|H | ≤ δ for
a smallδ, it can significantly improve the performance if we



takeEH [Ei[N(H)] as the performance measure for givenPFA

andPMD whereEi[N(H)] is the mean number of samples
needed to decide underHi when the channel gain isH . The
constantδ needs to be chosen carefully depending on the
desired probabilities of error. In the distributed setting, due to
spatial diversity, theδ needed can be reduced. We will study
the effect of this operation via simulation and theory in the
following.

When both EMI and slow fading are present, then we should
combine the above two operations: not make a decision if
|H | ≤ δ and when we do make, we use (3), (6) and (7). We
will call the corresponding random walk algorithms,δ-random
walk,M−δ-random walk andM2−δ-random walk. Similarly
we name thet test.

E. Simulation Results

We compare the above algorithms for mean detection when
the channels may experience slow/fast fading with shadowing
and SαS EMI and outliers. This scenario can be useful for
energy detection at low SNR and at the FC. We have taken
α = 1.8 for the SαS distribution [8] and fading is Rayleigh
distributed with parameterP whereP ∼ logN (0, 0.36) rep-
resents shadowing [12]. The receiver noiseZ ∼ N (0, σ2) and
SNR = 10 log E[H2](µ1−µ0)

2

σ2 . TheX-axis showsPFA+PMD

2

and theY -axis showsE0[N ]+E1[N ]
2 . For slow fading we keep

the channel gains constant till the decisions are made. The
simulations were run10, 000 times and averaged to obtain the
probabilities of error and the mean time to sense.

Figures 1- 5 show the simulations for various algorithms
with different combinations of fast/slow fading, SαS EMI and
outliers. We draw the following conclusions.

• From Figures 2- 5 we see that the random walk test
always performs better than thet test and the rank test.

• From Figures 2, 3, 4 comparing the top part of each figure
(for fast fading) with the bottom part (for slow fading),
for each algorithm, slow fading performs much worse.
The effect of heavy-tailed EMI is somewhat like that of
fast fading.

• From Figure 1 we see that for random walk, slow fading
has the most devastating effect on performance. This can
be seen for other algorithms also from other figures. Next
major damage is done by outliers. We see that heavy-
tailed EMI also degrades the performance significantly.

• From Figures 2, 5 we observe that when there is only
Gaussian noise and fast/slow fadingM -random walk does
not improve the performance over random walk. This
is expected because the operation ofψ is used only to
improve the performance with respect to outliers and
heavy-tailed EMI. We will see in the next section that
degradation via (slow) fading is mainly due to the channel
gainH being low very often. Also see comments below.

• That M -random walk andM2-random walk are very
effective in mitigating the effects of heavy-tailed EMI
and outliers can be seen from Figures 3, 4. From these
we can conclude that outliers can cause major damage
(for random walk,t test) but are effectively handled by
M -random walk. The rank test is not affected so much. In

case of energy detection with SαS EMI and fast fading,
the only algorithm (among the algorithms considered)
that works at all isM2-random walk. Other algorithms
do not provide probability of error≤ 0.3.

• Performance ofM2-random walk test with EMI is pre-
sented in Figure 12 along with that of the distributed
algorithm. From Figure 12 we also see that unlike in
Figure 1, the outliers are helping the performance in
the energy detection case. This is because we consider
outliers only when there is signal (H1) and not underH0

unlike in Figure 1 whereH1 andH0 both have signal.
• As mentioned above, slow fading causes maximum degra-

dation. This is because, for Rayleigh fading, the channel
gainH is low with a large probability. In that case, not
making a decision whenH is very small is the sensible
thing to do. Thus our algorithmδ-random walk actually
improves the performance significantly in this case (see
Figure 6).

Based on the above simulation results, we have decided to
use theM -random walk at the FC and theM2-random walk
test at the local nodes. However, this happened because we
took α in SαS EMI as 1.8. To allow for anyα > 0 at the
FC, we need to useM2-random walk at the FC as well.M2-
random walk can be made to work close toM -random walk
if we takeK in ψ1 large.

In the next section we will theoretically study these al-
gorithms. Asymptotic analysis of the random walk test is
provided in [37]. In the next section we briefly present that
and also include the effects of heavy tailed noise and fading
which was not discussed in [37]. This will explain whyM -
random walk andM2-random walk perform better under
heavy-tailed EMI and outliers and using truncation onH
improves performance in the presence of slow fading.
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Fig. 1: Effect of different factors on the performance of random
walk.

IV. SINGLE NODE: ANALYSIS FOR RANDOM WALK

First we consider the scenario of mean detection. Here, the
noise can have heavy tail due to Gaussian and symmetricα-
stable (or other heavy tailed) distribution. Furthermore,the
fading distribution can also be heavy tailed. In the following
we first provide the different classes of heavy-tailed distribu-
tions used in the analysis that follows.
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Fig. 2:Mean detection at FC in the presence of Gaussian noise. Top:
Log N shadowing - Rayleighfast fading. Bottom: LogN shadowing
- Rayleighslow fading.

The family of α-stable laws is denoted bySα(σ, β, µ) [7]
with 0 < α ≤ 2 its index,σ > 0 its scale parameter,−1 ≤
β ≤ 1 its skewness and−∞ < µ < +∞ its location. When
α = 2 then it becomesN (µ, 2σ2). All α-stable laws have
continuous, positive, uni-modal probability density function.
A random variableX with α-distribution,0 < α < 2 satisfies
P [X > x] ∼ x−α ∼ P [X < −x] and E[|X |p] < ∞ for
0 < p < α andE[|X |p] = ∞ for p ≥ α.

We also allow for the possibility of Gaussian mixture for
EMI, which is light-tailed. Also, forM -random walk and
M − t test, due to bounded Huberψ function, all distributions
become light-tailed.

We will use the following notation. For CDFF , F (x) =

1− F (x), F ∗2 is convolution ofF with itself andF
∗2
(x) =

1− F ∗2(x).
Definition [38]: F is light-tailed if

∫∞

−∞
eαxdF (x) <∞ for

all α with 0 ≤ |α| < α1 for anα1 ≤ ∞; otherwise it isheavy-

tailed. F is long-tailed(F ∈ L) if limx→∞
F (x+y)

F (x)
= 1 for all

finite y. F is sub-exponential(F ∈ S) if limt→∞
B

∗2
(x)

B(x)
= 2

whereB is the distribution ofmax{0, X} while X has the
distribution ofF . F is regularly varyingof index−α, α ≥ 0,
(denoted byF ∈ R(−α)), if F (x) = l(x)x−α, wherel is a
slowly varying function, i.e., for allλ > 0, l(λx)l(x) → 1 asx→
∞. F ∈ S

∗ if limt→∞

∫ t

0
F (t−x)

F (t)
F (x)dx = 2

∫∞

o F (x)dx.
A long-tailed distribution is heavy-tailed. Also,S∗ ⊂ S ⊂ L

and R(−α) ⊂ S. If F ∈ R(−α) and it also has a fi-
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Fig. 3: Mean detection at FC in the presence of Gaussian and
symmetricα-stable noise. Top: LogN shadowing - Rayleighfast
fading. Bottom: LogN shadowing - Rayleighslow fading.

nite mean, then it is inS∗. Gaussian, exponential, Rayleigh
and Laplace distributions are light-tailed while Pareto, log
normal and Weibull distributions are sub-exponential. For
α < 2, Sα(σ, β, µ) belongs toR(−α). If F ∈ R(−α) then
E[Xβ ] <∞ for β < α andE[Xβ] = ∞ for β ≥ α.

WhenSk takes values in a finite set andHk is light-tailed
thenHkSk is light-tailed; if Hk is heavy-tailed thenHkSk

is heavy-tailed, ifHk ∈ R(−α) then HkSk ∈ R(−α). If
independent random variablesX andY are light-tailed then
X + Y is light-tailed. If any ofX andY is heavy-tailed so is
X + Y . If F ∈ S, Ḡ(x) = O(F̄ (x)), thenF ∗ G ∈ S. If X ,
Y are long-tailed thenX +Y is long-tailed. IfX ∈ R(−α1),
Y ∈ R(−α2) then (X + Y ) ∈ R(−min{α1, α2}). If X ∈ L,
thenX2 ∈ L. If X ∈ R(−α), thenX2 ∈ R(−α/2).

The above results provide us the tail behaviour ofNk +
HkSk, Nk +Hkb1 andNk −Hkb0 in terms of tail behaviour
of Nk andHk whereb0 andb1 are positive constants. We also
see the effect of taking energy samples.

Consider the random walk statistics (3) or the robustified
random walk (6) with Huber functionψ.

We write it asTn =
∑n

k=1 Yk whereYk = (Xk− µ0+µ1

2 ) or
Yk = ψ(Xk− (µ0+µ1)

2 ). We chooseψ such thatθ0 , E0[Y1] <

0 and θ1 , E1[Y1] > 0. Implications forM2-random walk
directly follow.

The sequential test for the random walk statistics stops at
N = inf{n : Yn /∈ (−t0, t1)} where t0, t1 > 0. We will
discuss pickingt0 and t1 later on. Oncet0, t1 are fixed, the
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N(−2,5) vs N(2,5) in symmetric alpha stable noise, shadowing−slow fading and 5% outliers

Fig. 4: Mean detection at FC in the presence of Gaussian and
symmetricα-stable noise and5% N (0, 20) outliers. Top: Log N

shadowing - Rayleighfast fading. Bottom: LogN shadowing -
Rayleighslow fading.

actual performance of the test does depend on the distribution
of Y1 and we study that now. Define, fort > 0,

N1(t) = inf{n : Tn > t}, N0(−t) = inf{n : Tn < −t}.

We considerE0[N ]. The results will similarly hold for
E1[N ]. Let M = supn≥0 Tn.

UnderH0, E0[Yk] = θ0 < 0. ThusN0(−t) < ∞ a.s. for
all t > 0 and{N1(t) = +∞} = {M < t} whenM <∞ a.s.
ConsiderN(t) = min{N0(t), N1(t)}. Thus,

lim
t→∞

P0[N(−t) = N0(−t)] = 1, and

lim
t→∞

N(−t)
t

= lim
t→∞

N0(−t)
t

, a.s.

Since we want to design algorithms with small probabilitiesof
error, we will work witht whereP [N(−t) = N0(−t)] is large.
Thus, we considerN0(−t0). From random walk theory [39],
the following results hold. We havelimt→∞

N0(−t0)
t0

= −1
θ0

a.s.
and inL1 even whenθ0 = −∞ (then the limit is0). Forr ≥ 1,
if E[(Y1

−)r] <∞ thenE[(N0(t0)
r] <∞ and if Y1 has finite

moment generating function in a neighbourhood of0 then
N0(t) also has. Here and in the followingY −

1 = min{0, Y1}
and Y +

1 = max{0, Y1}. Also F denotes the distribution of
Y1.

For 1 < r < 2, if E[(Y1
−)r] < ∞ then E0[N(t0)] =
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H0: X ~ N(0,1)

H1: X = HS + Z
      where S ~ Unif{a,−a}
      H/P ~ N(0,P)
      P ~ LogN(0,0.36)
      Z ~ N(0,1)

Fig. 5: Energy detection in the presence of Gaussian noise. Top:
Without fading. Bottom: Under block LogN shadowing - Rayleigh
fast fading.
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Fig. 6: Comparison of random walk with delta-random walk

t0
θ0

+ o(t2−r). If E[(Y1
−)2] <∞,

t0
θ0

≤ E[N0(−t0)] ≤
t0
θ0

+
E[(Y1

−)2]

2θ0
2 + o(1). (8)

Similar results hold forE1[N1(t1)] with conditions on
E[(Y1

+)r].
From above results we see that the tail behaviour ofF

may not have much impact onE[N ]. For somewhat large
ti, Ei[N(ti)] is close to ti/θi, i = 0, 1 under very weak
conditions.

Next we considerPFA. We have

PFA = P0[YN ≥ t1] ≤ P0[M ≥ t1]. (9)

From [40], if E[eαY1 ] < ∞ for all 0 < α < α∗ ≤ ∞ and
E[eαY1 ] = ∞ for all α ≥ α∗ then there exists aΓ > 0 such



thatE[eΓY1 ] = 1 and then

P0[M ≥ t1] ≤ e−Γt1 for all t1 ≥ 0. (10)

Also, if Y1 is long tailed then

P0[M ≥ t1] ∼
1

θ0
F̄I(t1) as t1 → ∞, (11)

whereF̄I(x) =
∫

x

∞
(1 − F (y))dy and f(x) ∼ g(x) denotes

limx→∞
f(x)
g(x) = constant. Thus if Y1 ∈ R(−α) thenM ∈

R(−α + 1) for α > 1 and if F ∈ S, then M ∈ S. For
M -random walk, only (10) is relevant. From (9), (10) and (
11), we get an upper bound onPFA for light-tailed as well
as long tailed distributions ofY1. Because of our focus on
M -random walk andM2-random walk, light tailed case is of
particular interest. IfPFA ≤ α is desired then from (10) we
can get the thresholdt1 needed. However,Γ depends on the
distribution ofY1. But approximations forΓ are also available.
For example, from [41], ChapterIV , Γ < E[Y1]

2

E[Y −
1 ]E[Y 2

1 ]
. This

is a good approximation forE[Y1] close to0, i.e., Γ can be
replaced with this upper bound. This bound depends only on
the first two moments ofY1 and,E[Y −

1 ]. Similarly we can
use thePMD ≤ β to get t0. These then provideE0[N ] and
E1[N ].

Perhaps a more precise approximation ofPFA can be ob-
tained by observing thatPFA = P0[sup0≤k≤N0(−t0)Tk > t1].
SinceN0(−t0) is a stopping time for the random walkSk, if
distributionF of Y1 ∈ S∗ then [42],

P [sup0≤k≤N0(−t0)Sk ≥ x]

1− F (x)
→ E0[N0(−t0)] asx→ ∞.

Thus, if t1 is somewhat large we can write

PFA ∼ (1 − F (t1))E0[N0(−t0)] (12)

and use approximations and bounds onE0[N0(−t0)] provided
in (8) and above it. Thus,PFA decays witht1 at the same rate
as the positive tail ofF as long asF is in S∗. This provides a
stronger result than (11): ifY1 ∈ R(−α) thenPFA(t1) ∼ t−α

1 .
Similarly PMD depends on the negative tail ofF .
We use the above results to explicitly get the approximations

for E0[N ] andE1[N ] for givenPFA ≤ α andPMD ≤ β. For
the light-tailed case, from (10) we gett1 such thate−Γ0t1 = α.
Similarly we gett0 such thate−Γ1t0 = β whereΓ0 andΓ1

are theΓ coefficients in ( 10) underP0 and P1. For these
t0 and t1, E0[N ] ≈ E0[N0(−t0)] ∼ t0

θ0
= 1

θ0Γ1
| log β| and

E1[N ] ≈ E1[N1(t1)] ≈ 1
θ1Γ0

| logα|.
Now we consider the case where1−F0(t1) ∼ t−α1

1 and1−
F1(t0) ∼ t−α1

0 . Thenα = PFA ∼ (1−F0(t1))E0[N(−t0)] ∼
t−α1

1
t0
θ0

, β = PMD ∼ t−α1

0
t1
θ1

and hence

E0[N ] ∼ θ0
( 1
1−α1

2 −1)
(αθ1

α1βα1)
1

1−α1
2 , (13)

E1[N ] ∼ θ1
( 1
1−α1

2 −1)
(βθ0

α1αα1)
1

1−α1
2 . (14)

This shows that the performance of the random walk algo-
rithm depends quite strongly on the tail behaviour ofF and
with heavy tails the performance can really deteriorate.

Now we briefly comment of the performance of the (robust)
random walk for mean detection: underH0, Yk = Nk− b0Hk

and underH1, Yk = Nk + b1Hk. We takeE[Nk] = 0.
Initially assume that there is no fading. i.e.,Hk ≡ 1. It is

then a mean detection withµ0 = −b0 andµ1 = b1. Now the
above analysis directly provides the effect of light and heavy-
tailedNk. Also, we see that by applying Huber functionψ we
can substantially gain in case of heavy-tailedNk. For light-
tailed case if we pickK small, then it can makeµ0 andµ1

smaller and hence one may see worse performance.
Next we consider the case of slow fading:Hk ≡ H . Now,

it is realistic to assume thatH has been estimated and the
receiver knows it (coherent detection case). Then we can
consider observationsY k = Yk

H = Nk

H + b1 (or Nk

H − b0).
SinceNk is zero mean, independent ofH , Nk/H stays zero
mean. Also givenH = h, Nk/h will be heavy/light-tailed
if Nk is. Thus, it becomes the case considered in the pre-
vious paragraph. Denoting byPFA(t0, t1, h), PMD(t0, t1, h),
E0[N0(−t0, h)], E1[N1(t1, h)] the corresponding quantities,
E0[N0(−t0, h)] ≈ t0

b0
, E1[N1(t1, h)] ≈ t1

b1
. For light-tailed

case,E0[N0(H)] ≈ 1
b0Γ1(H) | log β|. If Nk ∼ N (0, σ2) then

Γ1(H) = b1H
2/σ2 and EH [E0[N0(H)]] ∼ | log β|σ2

b0b1
E[ 1

H2 ].
For Rayleigh fadingE[ 1

H2 ] = ∞. This is reflected in a
significant performance degradation seen in the simulation
results in Section III-E.

If P [Nk > t] ∼ t−α then P0[
Nk

H − b0 > t1] ∼ ((t1 +
b0)h)

−α1 and by ( 13) and ( 14) we get asymptotics for
EH [N0(H)] andEH [N1(H)]. We can further take expectation
overH to get the dependence on distribution ofH .

Above, we made the thresholdst0 and t1 dependent onH
and ensured that for eachh, PFA ≤ α andPMD ≤ β. But this
can often imply thatEH [N1(H)] and/orEH [N0(H)] = ∞. A
weaker requirement is to chooset0 and t1 independently of
H such thatEH [PFA(H)] ≤ α andEH [PMD(H)] ≤ β. It is
possible that even nowEH [N1(H)] and/orEH [N0(H)] = ∞.
In that case we can find positive constantsδ1, δ, α

′, β′ such that
δ1 < min{α, β} andP [|H | < δ] ≤ δ1 with E[PFA(H)|H ≥
δ] ≤ α′, E[PMD(H)|H ≥ δ] ≤ β′ and

E[PFA(H)] = P [|H | ≤ δ] + E[PFA(H)|H ≥ δ]P (H ≥ δ)

≤ δ1 + α′(1− δ1) = α

(15)

andδ+β′(1− δ) = β. Now we do not make a decision when
|H | ≤ δ. For this case we can ensure thatEH [Ni(H)] < ∞
for i = 0, 1. At least for GaussianNk and Rayleigh fading
example above,E[ 1

H2 ||H | ≥ δ] <∞.
If we assume that we only know the sign ofH and not

its magnitude (partial coherence – knowing the phase only)
then we defineY k = sgn(H)Yk = sgn(H)Nk + |H |b1 under
H1 (or sgn(H)Nk − |H |b0 underH0). From the distribution
of Nk, we get the distribution ofsgn(h)Nk and obtain the
asymptotics of our performance measures. In particular, ifNk

is zero mean, symmetric,sgn(h)Nk has the same distribution
asNk. Also E0[N0(−t0, h)] ≈ t0

|h|b0
, E1[N1(t1, h)] ≈ t1

|h|b1

and if P [Nk > t] ∼ t−α then we can get from (13) and (14),
E1[N(H)] andE0[N(H)].



From the above two paragraphs, we can see the advantage of
knowing the magnitude|H | at the receiver. Also, not knowing
|H | implies that we cannot decide when|H | ≥ δ1 as needed
in (15). Analysis ofPMD follows in the same way.

If the phase ofH is also not known, then random walk
algorithm is not the right choice for this problem because it
will perform quite badly.

Now we consider the fast fading case where{Hk} is i.i.d.
This is a less likely scenario but we briefly discuss it because it
leads to some new results. As above, if we have a noncoherent
case (no sign or magnitude ofH available) then we should not
use the random walk algorithm. The case of coherent detection
(phase and magnitude both available) seems quite unlikely.
Thus we consider partial coherence case where only the sign
of H is available. TakingY k = sgn(Hk)Yk = sgn(Hk)Nk +
|Hk|b1 under H1 and Y k = sgn(Hk)Nk − |Hk|b0 under
H0,we obtain the following conclusions:

• If Nk has light positive and negative tails, butHk is
heavy-tailed,P1 has a positive heavy tail and light nega-
tive tail and vice versa forP0. Thus, system performance
is not affected by the heavy-tailedHk. One can see
some beneficial effects becauseEi[Ni] will be somewhat
shorter which is not captured by our analysis.

• If Nk has heavy positive and negative tails, butHk is
light-tailed thenP0 andP1 both have heavy positive and
negative tails. Thus,PFA andPMD both suffer.

• If Nk andHk both are heavy-tailed then againPFA and
PMD suffer.

Now we consider the system described in Section II. Under
H0, X̃k = Nk and underH1, X̃k = HkSk+Nk. As discussed,
we use energy detection for this case by taking samplesXk in
(1). Then, from the results above, if{Sk} is i.i.d. with values
in a finite set and{Hk} is i.i.d. (fast fading) depending on the
tail behaviour ofHk andNk, we know the tail behaviour of
energy samplesXk. Also, under various SNR conditions, we
know that the energy detection problem can be considered the
mean detection problem and the above results can be directly
used. We do not need any information aboutHk itself; only
the mean ofXk underH1 andH0 may be required (at least
for the low SNR case).

For slow fading case,Hk ≡ h, a constant in the sensing
duration. Then, at low SNR, it is mean detection withµ0 =
Mσ2 andµ1 =M(σ2 + h2E[S2

k]). Now, for given thresholds
−t0 and t1, E[N0(−t0, h)] = t0

Mσ2 and E[N1(t1, h)] =
t1

M(σ2+h2E[S2
k
])

. Also, PFA(t0, t1, h) and PMD(t0, t1, h) can
be approximated/bounded as above and the effect of heavy
and light-tailedNk can be studied. Taking expectation over
H will provide the effects of tail of the distribution ofH as
well.

If Hk ≡ H (slow fading) and unknown, then let for
H = h, PFA(h), PMD(h), E[N0(−t0, h)], E[N1(t1, h)]
represent the corresponding probabilities of error and expected
detection times. ThenE[N(−t0)] ≈ t0/h. If Nk ∈ S

∗, then
PFA(t1, h) ∼ (1 − F0(t1 + ht0))

t0
h whereF0 is the cdf of

Nk. Also,EH [PFA(t1, H)] ∼
∫∞

0 (1−F0(t1+ht0))
t0
h dPH(h)

wherePH is the distribution ofH . Similarly one can study the
case ofH being light-tailed. The analysis forPMD is along

the same lines. In this case particularly, sinceψ0 andψ1 are
bounded, one expects thatM -random walk andM2-random
walk will provide much better performance.

This study explains the results observed in Section III-E.

V. A SYMPTOTIC ANALYSIS

Based on the simulation results in Section III and the
theory in Section IV we now consider the distributed algorithm
where each local node and the FC useM2-random walk. In
addition, we also useδ-truncation. We call this distributed
algorithm,M2-M2-δ-random walk. Exact theoretical analysis
of this algorithm is intractable. Therefore, in this section
we provide an asymptotic analysis of the algorithm which
provides the performance as thePFA andPMD tend to zero.
This analysis provides good insight but does not provide a
good approximation of the algorithm at practical parameter
values. Thus in the next section we will also present an approx-
imation analysis which provides a much better approximation
to the performance at usual parameters of interest than the
asymptotic results provided here.

The observations at the local nodes and the fusion node after
operation with theψ function are light-tailed, in fact bounded.
Therefore, assumptions of Theorem2 and 3 below, will be
satisfied. Comparing Theorem3 with Theorem4 shows the
advantage of usingψ0 andψ1. The following analysis is not
affected byδ-truncation.

Let

X̂1l = ψ0

(

ψ1(X1l)−
µ0l + µ1l

2

)

,

whereE1[ψ1(X1l)] ≥ µ1l,E0[ψ1(X1l)] ≤ µ0l and,µ1l > µ0l

for l = 1, 2, ..., L.
We chooseψ0 and ψ1 such that underH0,E[X̂1l] < 0,

underH1,E[X̂1l] > 0. Then,Tnl =
∑n

k=1 X̂kl andWn =
∑n

k=1 ψ0

(

ψ1(Yk) − µ0+µ1

2

)

where0 > µ0 and 0 < µ1 are

selected properly such thatµ0 ≥ −b0L, µ1 ≤ b1L. Let Ẑk =

ψ0

(

ψ1(Yk)− µ0+µ1

2

)

.
We use the following notation:

∆i = mean drift ofWk when all local nodes decideHi,

Di
tot =

L
∑

l=1

Ei

[

X̂kl

]

,

N = inf{k : Fk ≥ β1 or Fk ≤ −β0},

ξ∗i = ψ0(ψ1(Lb1 + Zi)−
µ0 + µ1

2
),

ξ∗∗i = ψ0(ψ1(−Lb0 + Zi)−
µ0 + µ1

2
),

Rl
i = − log inf

t≥0
Ei

[

e(−1)it(X̂il−
θ0l+θ1l

2 )
]

.

Ri = min
l
Rl

i.

We chooseψ0 such that∆0 < 0 and∆1 > 0.

Theorem 1 : For any finite thresholds γil, βi,
Pi[N <∞] = 1.

Proof : Please see the appendix. �



For Theorems2-4, we will use the following thresholds:

− β0 = −| log c|, β1 = | log c|,
γ0l = −γl| log c|, γ1l = ρl| log c|, where,

γl =
E0

[

X̂kl

]

D0
tot

, ρl =
E1

[

X̂kl

]

D1
tot

.

Theorem 2 : Let Ei[|X̂1l|α+1] < ∞ for l = 1, 2, ..., L and
Ei[|Ẑ1|α+1 <∞] for someα > 1. Then underHi,

lim sup
c→0

N

| log c| ≤
1

Di
tot

+Mi a.s.

and in L1 where Mi = ci
∆i
, c0 = −

[

1 +
E0|ξ

∗
1 |

D0
tot

]

, c1 =
[

1 +
E1|ξ

∗
1 |

D1
tot

]

.

Proof : Please see the appendix. �

We make the following assumptions for the next theorem.

• Ei[e
αlX̂1l ] < ∞ for |αl| < α∗

l ≤ ∞ andE[eα
∗
l X̂1l ] = ∞

for someα∗
l ≤ ∞, for i = 0, 1. This implies that there

existΓil > 0, i = 0, 1, l = 1, ..., L, such thatE[eΓilX̂il ] =
1 ([41]).

• There existsα0 > 0 such thatφξ∗(α0) , E0[e
α0ξ

∗

] <∞,
and aβ0 > 0 such thatφξ∗∗(β0) , E1[e

β0ξ
∗∗

] <∞.
• For k2 ,

∑

l γlγ
′
l where γ′l is the smallest positive

constant withE[e−γ′
lX̂1l ] = e−η for all l = 1, ..., L and

η is some positive constant less thanR0, k2 < α0. Also
let logφξ∗(α0) ≤ η. Similarly we define conditions for
H1.

• There exist constantsΓ0,Γ1 > 0 such thatEi[e
ΓiẐ1 ] = 1,

for i = 0, 1.
• There isα1 > 0 such that̄φil(α1) , E[e−α1X̂1l ] <∞ for

all l = 1, ..., L and η + log φ̄0l(α1) < α1E[−X̂1l] < 0.
Also, there isβ1 > 0 such thatφ̄il(β1) , E[e−β1X̂1l ] <
∞ for all l = 1, ..., L andη + log φ̄0l(β1) < 0.

• E[ξ∗1 ] ≥ 0, E[ξ∗∗1 ] ≤ 0.

Theorem 3 : Under the above assumptions,
(a) limc↓0

PFA

cr′
< ∞ for any r′, with 0 < r′ < min{rα0 −

k2,Γ0(1− r),Γ0lγl, l = 1, ..., L} for some0 < r < 1.
(b) limc↓0

PMD

cs′
< ∞ for any s′, with 0 < s′ <

min{sα1 − k′2,Γ1(1 − s),Γ1lγl, l = 1, ..., L} for
some0 < s < 1.

Proof : Please see the appendix. �

We verify the above assumptions for the Gaussian distribu-
tion. Then we do not useψ0 or ψ1. Thus,X1l ∼ N (µ0l, σ

2
l )

under H0 and X1l ∼ N (µ1l, σ
2
l ) under H1. Also, Ẑ1 ∼

N (
µ0−µ1

2 , σ2) underH0 and Ẑ1 ∼ N (
µ1−µ0

2 , σ2) underH1.

Now, Rl
0 = 1

2
µ2
0l

σ2
l

. Assuming that the means and variances

are the same at each node, i.e.,µil = µi and σ2
il = σ2

for i = 0, 1, we get R0 = 1
2
µ2
0

σ2 . Now logφξ∗1 (α0) =
µ0α0 +

1
2σ

2α2
0. We need to check if there exists anη < R0

such thatlogφξ∗(α0) ≤ η. Thus, we need to findα0 such

that logφξ∗(α0) <
1
2
µ2
0

σ2 . This translates to findingα0 such

that α0 <
−µ0−

√
µ2
0+µ0

σ2 . Now, by definition,k2 ,
∑

l γlγ
′
l

where γ′l = min{γ > 0 : E[eγX̂1l ] = e−η}. Thus γ′l =
µ1−

√
µ2
1−2σ2η

σ2 . From the definition ofγl, we get γl = 1
L

whereL is the number of local nodes. Thus,k2 = 1
σ2 (µ1 −

√

µ2
1 − 2σ2η). We need to check ifk2 <

−µ0−
√

µ2
0+µ0

σ2 so
that a choice ofα0 and k2 satisfying k2 < α0 is possible.
This is equivalent to checking ifµ2

1 < µ2
1 − 2σ2η, which

holds true for any positiveη. Thus, we can choose anyη such
that 0 < η < R0 andη + log φ̄0l(α1) < α1E[−X̂1l] < 0. We
also note thatΓ0 = Γ1 = µ1−µ0

σ2 are the positive constants
satisfyingEi[e

ΓiẐ1 ] = 1, for i = 0, 1.
The following result is for heavy-tailed case. This is

provided to show that if we do not robustify the observations
at the local nodes and/or FC, the penalty for heavy-tailed
EMI/outliers can be high. This holds for single node case also
as demonstrated in Section IV. For the following theorem,
we work with the random walk algorithm (3).

Theorem 4 : If there is anr1 > 1 and r2 > 0 such that
the distribution ofX1l ∈ R(−r1) for all l = 1, 2, ..., L and
underH0 andH1 and the distribution ofZ1 ∈ R(−r2 − 1)
then

PFA ≤ o(| log c|−min{r1,r2}+ǫ),

PMD ≤ o(| log c|−min{r1,r2}+ǫ).

for any ǫ > 0.
Proof : Please see the appendix. �

VI. A PPROXIMATION ANALYSIS

In this section we provide an approximation analysis of the
algorithm.

In the following, we take, for convenience,b1 = −b0 = b,
and µ1 = −µ0 = µ = I.b, for someI with 1 ≤ I ≤ L.
Roughly speaking, this ensures that the FC makes decision
H1 when I more nodes decideH1 compared to the nodes
decidingH0. Similarly for H0.

N1
l , inf{n : Tnl ≥ γ1l}, N0

l , inf{n : Tnl ≤ γ0l},

Nl = min{N1
l , N

0
l }

Similarly, N1, N0 andN represent the corresponding terms
for the FC.

From Theorems3 and4 we know that asγ0l, γ1l → ∞ and
β0, β1 → ∞, PFA, PMD → 0. One can similarly show that
asγ0l, γ1l → ∞, the local decisions made by each local node
are correct with probability1.

We will use the following notation:
δji,FC , mean drift of the FC process{Wk} underHi, when
j local nodes are transmitting.
tj , time at which the mean drift of{Wk} changes from
δj−1
i,FC to δji,FC .
W̃j , E[Wtj−1].

UnderHi,

W̃j = W̃j−1 + δj−1
i,FC(E(tj)− E(tj−1)), W̃0 = 0.



Based on the fact thatPFA and PMD of each local node
l → 0 asγ0l, γ1l → ∞ for eachl, we get

Lemma 1. Pi(decision of the local node at timetk is Hi

and tk is thekth order statistics of{N i
1, ..., N

i
L}) → 1 as

αl, βl → 0, ∀ l. �

Lemma 2. UnderH0, whenαl andβl are small,

N0
l ∼ N (

−|γ0l|
δ0,l

,
−|γ0l|ρ20,l

δ30,l
),

where δ0,l , E0[X̂k,l], and ρ20,l ,variance of[X̂k,l] under
H0.
Proof: See Theorem5.1, Chapter3 in [39]. �

A similar result holds forH1 as well.
Based on the above lemmas, in the following we provide

an approximation forEi[N ], i = 0, 1.
Let,

l∗0 , min{j : δj0,FC < 0 and
γ0l − W̃j

δj0,FC

< E(tj+1)−E(tj)}.

Then we can have the approximation

E0[N ] ≈ E(tl∗0 ) +
γ0l − W̃l∗0

δ
l∗0
0,FC

. (16)

The first term in approximation (16) corresponds to the mean
time till the mean drift of{Wk} becomes negative (forH0),
and the second term corresponds to the mean time from
then on till it crosses the threshold. Using the Gaussian
approximation of Lemma2, the tk ’s are the order statistics of
i.i.d. Gaussian random variables and hence, theF̃k ’s can be
computed. (See, for example, [43]). A similar approximation
can be written forE1[N ].

Next, we compute approximate expressions forPFA and
PMD.

Under the same setup of largeγ0l, γ1l, β0, β1, for PFA

analysis, we assume that all local nodes are making correct
decisions. Then for false alarm, the dominant event is{N1 <
t1}. Also, for reasonable performance,P0(N

0 < t1) should
be small. Then, the probability of false alarm,PFA, can be
approximated as

PFA = P0(N
1 < N0) ≥ P0(N

1 < t1, N
0 > t1)

≈ P0(N
1 < t1). (17)

Also,

P0(N
1 < N0) ≤ P0(N

1 <∞)

= P0(N
1 < t1) + P0(t1 ≤ N1 < t2) + · · · (18)

The first term in the RHS of (18) should be the dominant
term since aftert1, the drift of Fk will have the desired
sign (will at least be in the favourable direction) with a high
probability.

Equations (17) and (18) suggest thatP0(N
1 < t1) should

serve as a good approximation forPFA. Similar arguments
show thatP1(N

0 < t1) should serve as a good approximation
for PMD . In the following, we provide approximations for
these.

Let Ẑk beforet1 have mean 0 and probability distribution
symmetric about0. This will happen ifE[Zk] = 0, distribution
of Zk is symmetric about0 andµ0 + µ1 = 0. Then, from the
Markov property of the random walk{Wk}, beforet1,

P0(N
1 < t1) ≈

∞
∑

k=1

P0[{Wk ≥ − log c}

k−1
⋂

n=1

{Wn < − log c}|t1 > k]P0(t1 > k)

=

∞
∑

k=1

P0[{Wk ≥ − log c}|
k−1
⋂

n=1

{Wn < − log c}]

P0[
k−1
⋂

n=1

{Wn < − log c}]P0(t1 > k)

=

∞
∑

k=1

P0[Wk ≥ − log c|(Wk−1 < − log c)]

P0( sup
1≤n≤k−1

Wn < − log c)[1− Φt1(k)]

=

∞
∑

k=1

[

∫ ∞

u=0

P0(Ẑk > u)fWk−1
(− log c− u)du]

P0( sup
1≤n≤k−1

Wn < − log c).[1− Φt1(k)],

whereΦt1 is the CDF oft1. We can find a lower bound to
the above expression by using
P0( sup

1≤n≤k−1
Wn < − log c) ≥ 1− 2P0(Fk−1 ≥ − log c)

([44], page525) and an upper bound by replacingsup
1≤n≤k−1

Wn

by Wk−1.
Similarly, PMD can be approximated as

PMD &
∞
∑

k=1

[

∫ ∞

u=0

P1(Ẑk < −u)fWk−1
(log β + u)du]

[1− 2P1(Wk−1 ≤ log β)][1 − Φt1(k)],

and

PMD .
∞
∑

k=1

[

∫ ∞

u=0

P1(Ẑk < −u)fWk−1
(log β + u)du]

P1(Wk−1 > log β)[1 − Φt1(k)].

In the above expressions, fWk−1
stands for the probability

density function ofWk−1.
Figures 7 and 8 show the comparison of simulation, approx-

imation and asymptotics forEi[N ]. (Please see Section VII
for details on the simulation setup). Figure 7 shows the
results when there is no fading and Figure 8 shows the case
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Fig. 7: Performance of distributed algorithm under Gaussian
noise at the FC
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Fig. 8: Performance of distributed algorithm under Gaussian
and SαS noise,5% outliers and block LogN shadowing -
Rayleigh fast fading (with outliers at local nodes).

wherein there is fading, EMI and outliers. We see that the
approximation explains the simulation results much betterthan
the asymptotics. We also get approximation forPe and see (in
Figures 9 and 10) that the approximations are close to the
simulation results for smallPe.
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Fig. 9: Performance of distributed algorithm under Gaussian
noise at the FC
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Fig. 10: Performance of distributed algorithm under Gaussian
and SαS noise,5% outliers and block LogN shadowing -
Rayleigh fast fading (with outliers at local nodes).
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Single node − M2 random walk
Distributed algorithm − fast fading
Distributed algorithm − slow fading

H0: X ~ N(0,1)

H1: X = HS + Z
      where S ~ Unif{a,−a}
      H/P ~ N(0,P)
      P ~ LogN(0,0.36)
      Z ~ N(0,1)

Fig. 11: Energy detection in the presence of Gaussian noise.
Top: Without fading. Bottom: LogN shadowing - Rayleigh
fast fading.

VII. S IMULATION RESULTS FORDISTRIBUTED

ALGORITHM

We have consideredL = 5 local nodes reporting their
decisions to the FC. The distributions of fading, EMI and
outliers at the local nodes and the FC are the same as in
Section III. Also, b0 = 1, b1 = 1. The receiver noise at
the local nodes isN (0, 1) and at the FC isN (0, 5). From
Figures 11 and 12, we see that the distributed algorithm
performs much better than the single node algorithm using
M2-random walk, especially in the low probability of error
regime. Figure 11 shows the comparison when the local nodes
run M2-random walk and FC runsM -random walk in the
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H0: X = Z + A
      where Z ~ N(0,1)
      A ~ SaS distri. 

H1: X = HS + Z + A
      where S ~ Unif{a,−a}
      H/P ~ N(0,P)
      P ~ LogN(0,0.36)
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Single node − M2 random walk
Distributed algorithm − fast fading at FC

Fig. 12: Energy detection in the presence of Gaussian and SαS
noise,5% outliers and block LogN shadowing - Rayleigh fast
fading. Top: Without outliers at local nodes. Bottom: With
outliers at local nodes.

presence of Gaussian noise and fading. From Figure 12 we see
that the distributed algorithm performs better in the presence of
EMI (along with shadowing-fading) at the local nodes and the
FC. It also shows that the presence of5% outliers (along with
shadowing-fast fading) at the FC does not make a considerable
difference in the performance of the distributed algorithm.
We have considered the presence of outliers only when the
signal is present (underH1 at local nodes and under both
the hypotheses at the FC). With all these impairments, the
reporting channel becomes bad and the improvement over the
single node case is seen for small probability of error only
(Figure 12 bottom).

We see that the distributed algorithm performs much better
than the single nodeM2-random walk, especially at low
probability of error. It is also quite robust to the effects of
fading, EMI and outliers at the local nodes and the FC.

VIII. C ONCLUSION

We propose a distributed algorithm for spectrum sensing in
Cognitive radio. Various impairments such as additive noise,
EMI, shadowing and multipath effects and outliers were taken
into account while designing the algorithm. The local nodes
perform energy detection for lack of knowledge about the
primary’s transmission parameters and the FC is signalled via
BPSK. We find that robust versions of random walk algorithm
developed recently, perform well in case of energy detection at
the local nodes and binary signalling over the reporting MAC

channel. We have performed simulations to demonstrate this
and have theoretically validated the observations.

IX. A PPENDIX

The proofs of Theorems1−4 are provided in this appendix.
We will use the following notation:

N0
l = inf{n : Tnl ≤ −γ0l},

N1
l = inf{n : Tnl ≥ γ1l},

τl(−γ0l) = the last time random walkTnl is above− γ0l,

τ = max
l
τl(−γ0l),

ν(a) = Starting from0, the first timeWk crossesa

when all local nodes are transmitting− b0,

τ(c) = max
l
τl(−γl| log c|).

Proof of Theorem 1. We showP0[N <∞] = 1. Similarly
we can show forP1[N <∞] = 1.

UnderH0, Tnl is a random walk with finite negative mean,
for eachl. Thus,Tnl → −∞ a.s. and henceτl(−γ0l) <∞ a.s.
for any finiteγ0l. Thereforeτ <∞ a.s. Afterτ , all local nodes
transmit−b0 and hence increments ofWk have a negative
mean (= ∆0). Therefore,

N < τ + ν(−Wτ+1 − β0). (19)

Since τ < ∞ a.s. andE[|Yk|] < ∞, |Wτ+1| < ∞ a.s. and
henceν(−Wτ+1 − β0) <∞ a.s. Therefore,P0[N <∞] = 1.
�

Proof of Theorem 2. We prove forH0. From (19),

N

| log c| ≤
τ(c)

| log c| +
ν(−Wτ(c)+1 − | log c|)

| log c| .

Also, from [39]

lim
c→0

τ(c)

| log c| =
1

D0
tot

a.s.

Furthermore,

ν(−| log c| −Wτ(c)+1)

| log c| ≤ ν(−| log c|)
| log c|

+
ν(−Wτ(c)+1)

Wτ(c)+1

Wτ(c)+1

τ(c) + 1

τ(c) + 1

| log c|
and from [39],

lim
c→0

ν(−| log c|)
| log c| = − 1

∆0
a.s.

Also, by Strong Law of Large Numbers (SLLN) (sinceτ(c) →
∞ a.s. asc ↓ 0)

lim
c↓0

Wτ(c)+1

τ(c) + 1
≤ E[ξ∗1 ] a.s.

Thus,

lim
c→0

ν(−Wτ(c)+1)

Wτ(c)+1

Wτ(c)+1

τ(c) + 1

τ(c)

| log c| ≤
(−1

∆0

)

E[|ζ∗1 |]
D0

tot

a.s.

�



Proof of Theorem 3. We prove the result forPFA. It holds
for PMD in the same way.

We have,

PFA = P0[DeclareH1 upto τ(c)]+P0[DeclareH1 after τ(c)].

The first term on theRHS,

P0

[

DeclareH1 upto τ(c)
]

≤ P0

[

∪l {lth random walk crossesγl| log c| upto τ(c)}
]

+ P0

[

Ŵ0 = 0, Ŵk crosses| log c| upto τ(c)

with Ŵk =

k
∑

n=1

ξ∗n

]

≤
∑

l

P0

[

sup
0≤k≤τ(c)

Tkl > γl| log c|
]

(20)

+ P0

[

sup
0≤k≤τ(c)

Ŵk > | log c|
]

. (21)

The first term on the RHS in (21),

P0

[

sup
0≤k≤τ(c)

Tkl > γl| log c|
]

≤ P
[

M0l > γl| log c|
]

≤ e−Γ0lγl| log c|,

whereM0l = supk≥0 Tkl andE0[e
Γ0lX̂1l ] = 1. SinceΓ0l > 0,

this goes down exponentially to0 with | log c| → ∞ at rate
Γ0lγl.

Now considerP0[sup0≤k≤τ(c) Ŵk > | log c|], the second
term on the RHS of (21). From Theorem10 in [45], since
{Ŵk} is a submartingale, we get, for anα > 0 with E[eαξ

∗
1 ] <

∞ (by taking functiong(x) = eαx − 1, α > 0 in Theorem10
of [45]),

P [sup
k≤n

Ŵk ≥ x] ≤ E[eαŴn ]− 1

eαx − 1
.

Therefore, sinceτ(c) is independent of{Ŵk},

∞
∑

n=1

P [ sup
0≤k≤n

Ŵk ≥ | log c|]P [τ(c) = n]

≤
∞
∑

n=1

P [τ(c) = n]
(φξ∗(α0)

n − 1

eα0| log c| − 1

)

= (eα0| log c| − 1)−1
E[eτ(c) logφξ∗(α0) − 1]

≤ (eα0| log c| − 1)−1
E[(eητ(c) − 1)]. (22)

if logφξ∗(α0) ≤ η. Thus, we have from Lemma3 below,
exponential decay ifk2 < α0.

Next consider, for anr, 0 < r < 1,

P0

[

DeclareH1 after τ(c)
]

≤ P0

[

DeclareH1 after τ(c) if Wτ(c)+1 ≤ r| log c|
]

+ P0

[

Wτ(c)+1 > r| log c|
]

.

Since,

P0[Wτ(c)+1 > r| log c|] ≤ P [ sup
0≤k≤τ(c)+1

Ŵk > r| log c|],

from (22) and Lemma3,

P0[Wτ(c)+1 > r| log c|] ≤ k′1
E[eη(τ(c)+1)]− 1

k′1e
rα0| log c| − 1

→ 0

exponentially in| log c| if rα0 > k2 for some0 < r < 1.
Next consider

P0

[

DeclareH1 after τ(c) if Wτ(c)+1 ≤ r| log c|
]

≤ P0

[

DeclareH1 after τ(c) if Wτ(c)+1 = r| log c|
]

≤ P
[

random walk starting with zero

and incrementsZk − Lb0 has max> (1 − r)| log c|
]

≤ e−Γ0(1−r)| log c| → 0,

exponentially becauseΓ0 > 0 where E[eΓ0(Z1−Lb0)] = 1.
Thus,

PFA ≤k1e−α0| log c|ek2| log c| + k′1e
−α0r| log c|ek2| log c|

+ e−Γ0(1−r)| log c| +
L
∑

l=1

e−Γ0lγl| log c|

and limc↓0
PFA

cr′
< ∞ where r′ < min{α0r − k2,Γ0(1 −

r),Γ0lγl, l = 1, ..., L}. �

Lemma 3. Let there be anη such thatR0 > η > 0
and γ′l is the smallest positive constant withφil(γ′l) = e−η

for all l = 1, ..., L. Also, there isα1 > 0 such that
φ̄il(α1) , E[e−α1X̂1l ] < ∞ for all l = 1, ..., L and

η + log φ̄0l(α1) < 0. Then, lim supc↓0
E[eητ(c)]

k1ek2 | log c| ≤ 1 when
k1 is a constant andk2 =

∑

l γlγ
′
l .

Proof. For anyc, for l = 1, ..., L

E[eητl(c)] =

∞
∑

n=0

eηnP [τl(c) = n]

≤
∞
∑

n=0

eηnP (T(n+1)l ≤ −γl| log c|)

= e−η
∞
∑

n=1

eηnP (−Tnl ≥ γl| log c|)

≤
∞
∑

n=1

eηn
φ̄il(α1)

n

eγl| log c|
, (23)

by Markov inequality. Also, RHS of(23) is finite if η +
log φ̄0l(α1) < 0. Thus, under our assumptions, from [46],
there exist positiveγ′l such that

lim
c↓0

E[eητl(c)]

fl(γl)eγl| log c|γ′
l

= 1 for eachl,

when fl(γl) is a constant provided in [46]. Thus, since
τ1(c), τ2(c), ..., τL(c), are independent,

E[eητ(c)] ≤ E[eη
∑L

l=1 τl(c)] =

L
∏

l=1

E[eητl(c)].



Therefore,

lim
c↓0

E[eητ(c)]
∏L

l=1 fl(γl)e
| log c|

∑
l rlγ

′
l

≤ 1.

�
Proof of Theorem 4. Define

Al = {local nodel makes a wrong decision some time}.

Then,

PFA = P0( declareH1)

≤ P0( declareH1| ∩l A
C
l )P (∩lA

C
l ) +

L
∑

l=1

P0(Al).

From the text below equation (12),

P0[Al] ≤ P0[sup
n≥0

Tnl ≥ ρl| log c|]

∼ fl(ρl| log c|)(ρl| log c|)−r1

wherefl is a slowly varying function. Thus,

P0(DeclareH1) - P0(∩lA
c
l )P0(DeclareH1| ∩l A

c
l )

(

∑

l

fl(ρl| log c|)
ρr1l

) 1

(| log c|)r1 . (24)

Consider

P0(DeclareH1| ∩l A
c
l ) = P0(DeclareH1upto τ(c)| ∩l A

c
l )

+ P0(DeclareH1after τ(c)| ∩l A
c
l )

≤ P0( sup
0≤k≤τ(c)

n
∑

k=1

Zk > | log c|)

+ P0(DeclareH1after τ(c)| ∩l A
c
l )

(25)

Also, from [42], sinceZk distribution∈ R(−r2 − 1),

P0[ sup
1≤k≤τ(c)

k
∑

n=1

Zn > | log c|]

∼ E[τ(c)]g1(| log c|)| log c|−r2−1

∼ | log c|−r2g1(| log c|). (26)

whereg1 is a slowly varying function.

The second term onRHS of (25), for a δ, 0 < δ < 1,

P0(DeclareH1 after τ(c)| ∩l A
c
l )

≤ P [random walk at FC with mean∆0

and initial condition
τ(c)+1
∑

k=1

Zk crosses| log c|]

≤ P [FC random walk with mean∆0 and initial condition

δ| log c| crosses| log c|] + P [

τ(c)+1
∑

k=1

Zk > (1− δ)| log c|].

Also, for slowly varying functionsg2, g3,

P [

τ(c)+1
∑

k=1

Zk > (1− δ)| log c|]

≤ P [ sup
0≤k≤τ(c)+1

k
∑

j=0

Zj > (1− δ)| log c|]

∼ g2((1− δ)| log c|)E[τ(c) + 1]| log c|−r2−1

∼ g2((1− δ)| log c|)| log c|−r2 (27)

and
P [random walk with mean−∆0 and initial conditionδ| log c|
crosses| log c|]

≤ g3((1− δ)| log c|)| log c|−r2 . (28)

From (24), (25), (26), (27) and (28),

PFA -
(

∑

l

fl(ρl| log c|)
ρr1l

) 1

(| log c|)r1

+ g1(| log c|)| log c|−r2) + g2(1− δ)| log c|)| log c|−r2

+ g3(1− δ)| log c|)| log c|−r2 .

�
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