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Abstract—A nonparametric distributed sequential algorithm filter or cyclostationarity detector[([3]) may not be avhia
for _quick detection of spectral holes in a Cognitive Ra..diO se Energy detection (or generalised energy detecfibn [6)uml
up is proposed. Two or more local nodes make decisions andy, pe the technique applicable in such scenarios. Lack of

inform the fusion centre (FC) over a reporting Multiple Access .
Channel (MAC), which then makes the final decision. The local pomplete knowledge about the signal and the channel fad-

nodes use energy detection and the FC uses mean detection iind (shadowing) calls fononparametric (or semiparametric)
the presence of fading, heavy-tailed electromagnetic intierence  detection algorithms. Besides, the distribution of SINRyma
(EMI) and outliers. The statistics of the primary signal, channel not be known and noise power could be time Varying due
gain or the EMI is not known. Different nonparametric sequertial to time varying electromagnetic interference (EMI). EMI is

algorithms are compared to choose appropriate algorithmsa be . . L - .
used at the local nodes and the FC. Modification of a recently modelled using heavy-tailed distributions|([7], [8]) anatiéers

developed random walk test is selected for the local nodesrfo [9] could be present in the samples received at the local
energy detection as well as at the fusion centre for mean detgon. nodes as well as the fusion centre (FC) over a reporting
It is shown via simulations and analysis that the nonparametc  Multiple Access Channel (MAC). Channel fading can have
distributed algorithm developed performs well in the presece of Rayleigh, Rician or Nakagami distribution and shadowing

fading, EMI and is robust to outliers. The algorithm is iterative . S :
in nature making the computation and storage requirements is modelled by log normal distribution_[10]._[L1]. Thus the

minimal. channel gain could possibly have a heavy-tailed component
Index Terms—Nonparametric tests, sequential detection, dis- (due to log nor_mal distribution) and a light-tailed comp_[me
tributed detection, energy detector, electromagnetic irgrference, (du€ to the fading component) [12]. Heniusttests which
heavy-tailed distributions, shadowing-fading, outliers robust Work well with heavy tailed noise and signals are required.
tests. In summary, it is desirable to have distributed, nonparamet
robust, sequential algorithms for spectrum sensing in a CR
|. INTRODUCTION system which mitigate the effects of heavy tailed distiitg
so.

Spectrum has been a costly commaodity of late and intelfli-I
b . Y« y . Spectrum sensing has been subjected to detailed study dur-
gent use of available spectrum is warranted. A paradigm that

. . .. = INg the recent years.|[1], [13], [14] and the referencesetiner
helps us share the a""’?"ab'e spectrum Is F;alled CognitidioRa ige an overvi)(law of [p)i]cir;ee]rir{g \]/vork in spectrum sensing.
(CR) [I]. When the licensed users (primary users) are n%te [2], [3], [15], [16], [1¥] for more recent contributians
using the spectrum, others (secondary users) can make usg, of reb 1ol Lol LLBL, L

it provided they sense the availability as quickly as pdssib arious studies have suggested parametiic ([18]) [19]) as

ic[([20]l_[2 i i
This problem is known as Spectrum Sensing in CR Iiteraturlvé.e” as nonparametricl(l 0] [21]) solutions to this probl_e
: . . ; one of these works studies the effect of EMI or outliers
Depending upon the knowledge of the primary signalling and

. L2 2 “'oh the detection algorithm. Distributed spectrum sensiag h
the _channgl gains(([2].[3]), spectrum sensing is perforned been a recent development in this directidn ([2],1[22],] [23]
a wide variety of ways.

. S . -
There is a need to detect the presence of holes as earl;f‘% and the references therein). Séel[17].1 [26].] [26L] [27]

2
. . ; . 2128], [29], [30] for more recent developments in distribdite
possible to make efficient use of idle channel and to minimi . L A
: ) . etection and[[30] for distributed estimation. Some of the
interference to the primary users. Hersegjuentiaprocedures . L T : X
. issues in distributed detection are that the reporting ©bln
serve better which can reduce the expected number of samples

required, by more than half, over the fixed sample procedu 2 decisions from the local nodes to the FC) should not

X require much bandwidth and the energy consumed and the
[4]. Detection of spectral holes has to be performed at \asy | delay in reporting the decisions should also be sniall [2]
SNRs ¢ —20 dB) in the presence of shadowing and fadi Y P g , '

&) R .
. L : . . any of the works ([2], [[3], [19], [[31]) do not consider
[5] jl'hls.also_ demanqglstrlbutgd detection which exploits MACy noise or muItiﬁEit]h %a]din-g gn ‘the]) reporting channel.
spat|al_ d|ve_rS|ty to mitigate fading and can also rgduce tI?—“?owever se€e [32] and the references therein for studiestwhi
gﬁ;encr:g)ln gin;: %‘(Z)]oylirEB])z.anI:jurtrr:f(;TIgtri?)’n;h(e)f t{ﬁgsmr'itmz?wzg;onsider shadowing and fading in reporting channels. Desig
gains, 9 . P y o?cj'ilgorithms at the local nodes as well as the fusion centre
unknown and hence standard algorithms such as matche . . ; .
are motivated by the various above considerations.

1This work was partly presented in IEEE National ConferenneCom- The contribution of this paper is in designing new dis-
munications, 2015 and IEEE International Conference on i@onications, tributed, sequential, nonparametric energy detectionna@an
2015. Partially supported by a grant from ANRC. detection algorithms which perform well in the presence of

2The authors are with the department of Electrical CommuioicaEn- | f fadi h iled EMI d i Wi
gineering, Indian Institute of Science, Bangalore, Indimail: {sanandkr, SIOW-fast fading, heavy-taile and outlers. We are not

vinod} @ece.iisc.ernet.in aware of any other robust nonparametric scheme to mitigate
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the effects of EMI and outliers. Theoretic analysis of thwill not assume that the local nodes know the signalling of

algorithm is also provided. the primary. This is a common assumption in the CR literature
The paper is organized as follows. Sectigh Il provides the As a result of unknownHy,;, Sy statistics, it is usually

system model and the distributed set up. Sedifidn Il presenécommended to use energy detection at the local nodes ([2],

several available (nonparametric) algorithms and them-co[3]). Thus, we consider the energy samples

parison via simulations. It also selects appropriate #lgas Mk

for the local nodes and FC for our distributed algorithm.-Sec _ o 2

tion [IV] provides theoretical performance analysis of siléc Art = Z (Xa) @

algorithms. Sectiol_V theoretically analyses the distedu

algorithm. It also shows the effect of heavy tails on theayst at each local nodéwhere M is a constant decided as part of

performance. Sectiop VI provides an approximation analyshe sensing algorithm. Taking squareXf; in (1) provides the

of the algorithm. Sectiof VI provides the performance af thusual energy detector and is shown to be optimal for Gaussian

distributed algorithm for specific examples via simulasionnoise in the absence o) statistics. However, it has been

Sectior[ V1Tl concludes the paper. shown [6] that for non Gaussian noise, instead2pfsome

other powerp of | Xy,;| may perform better. In the following

we will keepp = 2 but allow the possibility of other powers

) when EMI is significant (see below).
We consider a CR system where CR (local) nodes In the following we will only assume{Xy,k > 1} to

are scanning the environment to detect if a primary userﬂa i.i.d. independent sequences un@gy and #; allowing

transmitting or not. Based on their observations, the nod R, ME+1<i< M(k+1)} to have arbitrary dependence
make local decisions and transmit to the FC. The FC ma Bis provides flexibility in modelling fading and sensing

the final decision based on the local decisions it receivas fr versus signalling duration.

the secondary_ nodes. _Th's IS tr,]’e most common OIIStrIbutedThe receiver noise is usually distributed as Gaussian, mean
spectrum sensing architecturg! ([2]] [3]). 0 and variance (sayy? (denoted as\V (0, c?)). However, in
At time k, node! sensesXy; (at baseband level) where wireless channels there can often be a significant component
Xy = Hu Sk + Nig of EMI [7]. EMI is modelled by Gaussian mixtures (which
are light-tailed) and symmetria-stable distributions (which
if a primary is transmitting (Hypothesit,). Here, at timek, are heavy-tailed forx < 2) ([8]). Thus N, will often not
Hy, is the channel gain from the primary to the local ndéde be Gaussian and can possibly be heavy-tailed. Of course, as
Sk is the symbol transmitted by the primary and, is the g result of squaringX;, the noise distribution will not be
node! receiver noise with possibly some EMI. If the primarysymmetric.
is not transmitting at timé (HypothesisH,) then Now we consider the hypothesis testing problem one en-
X = Nu. counters for energy detection with samplés (1). We will deno
by P, E;[X] and Var;[X], the distribution, the mean and
We assume tha{Sy,k > 1} and {Ny,k > 1} are in- the variance ofX under the hypothesi${;, ¢ = 0,1. For
dependent identically distributed (i.i.d.) and indepertdef simplicity, we take{ X;;, k > 1} i.i.d. in this paragraph. IN,
each other. In the following this assumption will be slightl has a general distribution with mean 0 and varianée under
generalized. Also{ Ny} are assumed independent sequencé, Eo[X1;] = Mo;? andVarg(X1;) = M (Eo[(N1,)*—01?).
for different noded. Also, underty, E[X1;] = Moy,? + Ey andVary (Xy;) =
For {Hy, k > 1}, we either assume thally, = H;, a M (Ei[(Ny; + H1S1u)Y — (012 + E1[(H1,51)%])?) where
random variable, possibly unknown (this is a commonly made,, = ME,[(H1,51;)?], the received energy at node
assumption[[10],[133]), representing slow fading, or ardi.i If 0,2 >> E,; ando;?, E,; are known but the distributions
sequence, representing fast fadirf@,; represents multipath of Ny, S, are not known, we can consider it as a nonpara-
fading as well as shadowing. For shadowing, log normaietric mean detection problem withg : 1 = po = Mo, vs
distribution is considered a good approximation [10], wlidr #; : u = 3 = Mo,? + Eg. It is a simple hypothesis testing
multipath fading, Rayleigh, Rician and Nakagami distribns problem with equal known variance under both hypotheses.
are considered suitable J11]. Thitg,; could possibly have a If Ey; is not known but we know thaE; is lower bounded
heavy-tailed component (due to log normal distribution)l arby E;, then the testing problem i&o : p = g = Mo vs
a light-tailed component (due to the fast fading compone); : © = Mo?> + E, > Mo,>2 + Er, = pi. Now H; is a
[12]. Often the combined effect of these is approximated mpmposite hypothesis. i;? is also not known but we know
a K-distribution [34] which has a heavy tail. thato 2 < 0;? < op? then the problem ig{y : p = Mo;?2 <
If sensing is done at times of primary symbol transmissiolW o2 = g andHy : p = Mo? + Es > Mop> + Ep, = .
then assuming.S;} to be i.i.d. is realistic which will often Now the variance under the two hypotheses are the same but
take values in a finite alphabet depending on the modulationknown. The most general situation arises when the low SNR
scheme used by the primary. The secondary may not know #ssumption is also violated and now the unknown variances
coding and modulation used by the primary. Also, differentnder the two composite hypotheses are not the same.
primary users may be using the same channel and a primarys a consequence of the above comments, for a local node
can change its modulation and coding with time. Thus, we make a decision, nonparametric statistical technigueshw

i=(k=1)M+1

Il. SYSTEM MODEL AND DISTRIBUTED ALGORITHM



do not require complete knowledge of the distributions dfy choosing appropriate detection algorithms for the local
observationsXy; under?#, and H; are suitable for energy nodes and the FC in the next sections. We will also study the
detection. To make quick decisions, local nodes will uggerformance of the overall algorithm so developed espgcial
sequential detection. Thus nodavill make its decision at a under the influence of EMI, outliers and fading.
random time based on its local observatidds,;, k > 1}. In
the next section we compare several nonparametric sequenti
algorithms for energy detection and pick the best. Distributed Algorithm

If node! decidesH; at timek, it will transmit +b; to the
FC. If it decidesH,, it transmits—bg. If the node has not made
a decision at a time, it transmits nothing. Thus, at tilné-C

L

« Each local nodé receives observatioX;,; at timek.
« Each nodé uses a sequential algorithm to compllig =

J( Xk, X(k—1),1, ---» X1,1) and makes a decision at time

receivesY;, = ZGMYM + Zi, whereY), is the transmission N; where

=1
from nodel, Gy, is the corresponding channel gain afigl is Ny = inf{n: T & (—yoi,v11)},
the superposition of the receiver noise (which will oftendna
distribution (0, 0%)) and EMI. Thus Z, will be a summation ~Yo1,711 are appropriately chosen positive constants and
of Gaussmr_] noise and Gaussian mixtures and/or alphaestabl the decision it if Tny < —vor and Hy if Ty > .
EMI. The distribution Okal may also not be known. ThUS, It transmitsYkl to the FC at timekx where
we need at the FC a nonparametric sequential algorithm but
unlike at the local nodes, the signallingt; or —bg) is known Yig = b1 1{Th > v} — bol{Thi < —yo1}-

to the FC. Furthermore, unlike at the local nodes, we can use

partially coherent detection (we may be able to estimate the Node! will keep transmitting till the FC makes a decision.
phase; in particular, the sign @fy,; although not necessarily , At time k, FC receives

the magnitude of the channel gains|[35],][10]). Then thelloca

node multiplies its transmissiork; (+b; or —bg) by the sign L
L Y = Z Yii1+ 2k
of G; and transmits. Thug;, = Z |Gri|Yii+ Z. Therefore =1

we do not need an energy déféctor (actually in our set up and computesV, based on an algorithm to be decided.

we may not be able to use the energy detector at the FC) At time

but in fact a nonparametric detector which performs well for

mean detection with symmetric noise will be a suitable choic N =inf{n: Wy, & (=fo, 1))},

(if Zx is zero mean symmetric, which will often happen in

practice. But we will not assume symmetric distribution in it decidesH; if Wy > 3, and Hy if Wy < —f3¢ where

the following). Bo, B1 are appropriately specified. Afté¥, all nodes stop
As discussed above, at the local nodes as well as at the transmitting. O

FC, due to possibly significant EMI, the noise may be heavy-The energy detection algorithm to be used by the local nodes
tailed. Such a scenario in CR has been consideredlin [Z],4 the mean detection to be used at the FC will be chosen
But the impact of heavy-tailed noise has not been spec¥icall, ine next section.

studied. Inl24], this was considered in the context of cheang One of the advantages of our distributed algorithm is that

detection and it was shown that heavy tails can degrade m% local nodel which has a good channel gaifi; from
performance significantly. In this paper, for the distrémlit the primary will make a decision faster and will influence

g_ypqéhe_ss testlng_alg]?rlthnlw a_lso, we :how :chat heavy’g_?lthe FC decision more. Also, since each local node keeps
Istributions can significantly impact the performancee transmitting its decision till the FC decides, if a local eod

we will modify Fhe algqrithms so that their impact a'Of,‘Q Wiﬂ]ﬁas made a wrong decision, most likely it will soon change
that of the outhers. which are also present, can be mmgateq and hence wrong local decisions will have minimal effect
Often the reporting (MAC) channel from the local nodes tgy, he FC decision, especially whét 4 (probability that the

the FC is considered noiseless ([2] [19], [3] [31]) Howev EC deCideS}[l while Ho is true) andPIWD (probablllty that
as mentioned above, like any other wireless channel, it dogs, Fc decide${, while #, is true) are small.

experience EMI, outliers and receiver noise. One implizati
of this is that the decisions transmitted by local nodes naty n

reach the FC without error making the use of standard Fusion 1. SINGLE NODE: ALGORITHMS
centre rules - AND, OR, majority etc.|[3] less accurate and/o
difficult to implement. In this section we consider sequential nonparametric sing|

Now we describe our basic distributed algorithm which hasde algorithms with their statistics denoted’By, which can
been shown to be asymptotically optimal and performs wdde used by the local nodes and the FC for energy detection
at practical parameter values ([27], [21]). It also makes and mean detection respectively. Optimal tests for singties
efficient use of the reporting MAC. An optimal algorithm inalso do not exist. We will not use the node indein this
this setting is not knowri [23]. We will complete this algbrit  section.



A. Rank test test as

Rank test (Wilcoxon rank test) is a location test [4] for T (X — Lot
location v of a distribution F'(z — ) which is symmetric T, = fl 5 . (4)
aroundy. For testingu < po VS > 1, 1 > o, its statistics (i ¥2(Xi = Xn))?
is defined as follows. wherey : R — R is a non decreasing, continuous, odd
i LetY; = X; — /%u where X;s are the observations. and bounded function. Fak/(0,1), a recommended
i. CalculateR;, the rank ofY; in Y1, ..., Y,, when these are [9] is
_?rranged_ ir_1 aTLscenc;:ng ordeE;f) tgeir art:solute \(/a;ues. K, if 2> K,
. Test statisticT,, = ?_ sgn(Y;)—=% wheresgn(z) = .
= for  # 0 and0 foriai =0 e Yo(2) = = if |2 < K, ©®)
|z e _ i _
K, if z< —K,

We will use this statistic in our sequential set up. Thisistiat
is distribution free for symmetric distributions] [4]. for a given positiveK’ < occ.
« Applying the ¢ function on the random walk, we get a
) robust version called/-random walk via the statistic
B. Sequentiat test "
« . : _ Ho + H1
We use the usualtest [36] extended to make it a two sided T, = Z"/)(Xi - T)- (6)
test. The test statistic is given by, i=1
This statistic isiterative, unlike thet test orM — ¢ test.

2 It is known that thet test is not efficient for heavy-tailed
distributions [36]. One expects this behaviour for the @nd
walk test also (see Figufgd 1 below). On the other hand, the
rank test is quite efficient for heavy tailed distributiorisca

We will also see that the Huber functio not only
robustifiest and random walk tests but also makes them more
efficient with respect to (w.r.t.) heavy-tailed distritris. We
C. Random walk will confirm these findings from simulations and the theory in
Section V.

In very heavy-tailed case (& with o < 1 or for energy
detection witha < 2), the mean of the sampl&;, is infinity.
T, — i(Xi Mo 42r H1 ). 3) Thus, random walk andtest will not work. The rank test can

=1

7 Mot

n

T, =n 2
Sn

where X,, = 1 k=1 Xk is the sample mean, and
sn =[5 S h_, (Xk — X,,)4Y/? is the sample variance.

Its test statistic is obtained by modifying the abaveest
statistic:

possibly still work. Even the above robust versions of rando
walk andt¢ test [6) and[{¥4) will not work directly becaugg

The statistic is a simple random walk and we refer to thignd ,; will be infinity. Thus, we replace sample$; with
algorithm as random walk. N
Xi = 1(Xi) @)

The above three tests are primarily designed for detectigihere 1, is from the class of functions mentioned below
of mean#o : u < po Vs H1 : p > p, but can also be usedequationf), and usé/-random walk test on it withu and;
for testing some other functional of the distributions. kel Corresponding to the means éfi- We call this M?2-random
sequential: test and rank test, random walk testitisrative  \yalk test. We will see below via simulations th&f2-random
Thus it is simpler to compute the statistic and does not requiyalk test works for S with o« < 2 while M-random walk,
storing the whole data. random walk,t, M —t and M — ¢ based on sample§l(7) do
not work at all.
Choice ofy in @), [@) andy; in () affects the performance
of the algorithm (see [9] for different in parametric set up).
The sample mean and the sample variance used int#® | oyr nonparametric setup we will simply ugg defined in (
and random walk are not robust to outliers. This gets reﬂbc@ with differentK values. Our aim of using for heavy-tailed
in the performance of these tests (compare Figltes 3 hnd4e is to create light-tailed samplés$ (7). In our simufetio
below; see also Figuie 1). From Figufés 3 &hd 4 we also 880w for energy samples, we will takéé large fori; (=~ 200)
that the rank test is quite robust to outliers although may ngyt small € 5) for ¢ in @) and [®).
perform the best. This motivates the use of robust versionsit has been known that slow fading can significantly degrade
of the random walk and tests [9]. Robust tests are obtaineghe performance of a detection algorithm ([33]). We will
by replacing the sample mean (and sample variance) in th@s@ that this happens for the above algorithms also. This is
tests by their robust versions. because in slow fadingX;, = HSj + N, and for usual
o M —t test is obtained by applying a cut-off functian fading distributions e.g., Rayleighi can be small with a
(calledHuber functiorafter [S]) to obtain a robust samplelarge probability. In this case, applying the function does
mean (corresponding modified sample variance is in tet help. Then if we do not make a decision whHéH < § for
denominator off;, below.) and obtain the statistics of a smalld, it can significantly improve the performance if we

D. Mitigating effects of outliers, heavy tails and fading



takeEy [E;[N (H)] as the performance measure for given, case of energy detection witbS EMI and fast fading,

and Py;p whereE;[N(H)] is the mean number of samples  the only algorithm (among the algorithms considered)

needed to decide undét; when the channel gain i&. The that works at all ishM2-random walk. Other algorithms

constantd needs to be chosen carefully depending on the do not provide probability of errox 0.3.

desired probabilities of error. In the distributed settidge to « Performance of\/2-random walk test with EMI is pre-

spatial diversity, the) needed can be reduced. We will study  sented in Figuré_12 along with that of the distributed

the effect of this operation via simulation and theory in the algorithm. From Figuré_12 we also see that unlike in

following. Figure[d, the outliers are helping the performance in
When both EMI and slow fading are present, then we should the energy detection case. This is because we consider

combine the above two operations: not make a decision if outliers only when there is signat() and not undet{,

|H| < § and when we do make, we udd (3)] (6) and (7). We unlike in Figure[l wheré4,; and#, both have signal.

will call the corresponding random walk algorithnastandom « As mentioned above, slow fading causes maximum degra-

walk, M —§-random walk and\/2 — §-random walk. Similarly dation. This is because, for Rayleigh fading, the channel

we name the test. gain H is low with a large probability. In that case, not
making a decision whet/ is very small is the sensible

E. Simulation Results Fhing to do. Thus our algorithrﬁ-_r.andom_wallf actually
improves the performance significantly in this case (see

We compare the above algorithms for mean detection when

the channels may experience slow/fast fading with shadpwin . . .
and $vS EMI and outliers. This scenario can be useful for Based on the above simulation results, we have decided to

2
energy detection at low SNR and at the FC. We have takBR® theM-random walk at the FC and the/“-random walk
o = 1.8 for the SS distribution [8] and fading is RayleighteSt at Fhe local nodes. However, this happened because we
distributed with parameteP where P ~ log N'(0,0.36) rep- took v in SaS EMI 3251-8- To aIIolv: forhanya > 0 at tf;e
resents shadowing[12]. The receiver naise- (0,0%) and ©_ 08 Rl 0 e ot e random walk
_ E[H?](p1—po)? . P P
SNR = 10log % The X-axis showsratlan

and theY -axis showsElY2EINT - Eor slow fading we kee Twe take K In v large. — -
2 ' 9 P_In the next section we will theoretically study these al-

the channel gains constant till the decisions are made. Thei o Asymptotic analysis of the random walk test is
simulat_i(_)ns were run0, 000 times and_ averaged to obtain theprovided in [37]. In the next section we briefly present that
probabilities of error and the mean time to sense. and also include the effects of heavy tailed noise and fading
MRhich was not discussed if [37]. This will explain why -
random walk andM2-random walk perform better under
heavy-tailed EMI and outliers and using truncation &h

Figure[®).

with different combinations of fast/slow fadingeS EMI and
outliers. We draw the following conclusions.

« From Figures {15 we see that the random walk teghproves performance in the presence of slow fading.
always performs better than theaest and the rank test.

« From Figure§H,13,]4 comparing the top part of each figure Comparsonof andom wakfest o N-25) 5 N28)

T
—plain Gaussian
- --Fast fading

Symmetric alpha-stable noise
~+-Shadowing-fast fading

Sas noise + Shad-fast fading
--5% outliers
== Shadowing-Slow fading
-+-Sas noise + 5% outliers + Shad-fast fading ||

(for fast fading) with the bottom part (for slow fading),
for each algorithm, slow fading performs much worse.
The effect of heavy-tailed EMI is somewhat like that of
fast fading.

« From Figurd]l we see that for random walk, slow fading
has the most devastating effect on performance. This car
be seen for other algorithms also from other figures. Next
major damage is done by outliers. We see that heavy-
tailed EMI also degrades the performance significantly.

« From Figured P[15 we observe that when there is only - - - -
Gaussian noise and fast/slow fadihfrrandom walk does ~ Probably of Eror
not improve the performance over random walk. Thi
is expected because the operationjofs used only to , 4
improve the performance with respect to outliers and
heavy-tailed EMI. We will see in the next section that
degradation via (slow) fading is mainly due to the channel
gain H being low very often. Also see comments below.

« That M-random walk andM?2-random walk are very First we consider the scenario of mean detection. Here, the
effective in mitigating the effects of heavy-tailed EMInoise can have heavy tail due to Gaussian and symmetric
and outliers can be seen from Figuféd B, 4. From theseble (or other heavy tailed) distribution. Furthermdte
we can conclude that outliers can cause major damafgeling distribution can also be heavy tailed. In the followi
(for random walk,t test) but are effectively handled bywe first provide the different classes of heavy-tailed distr
M-random walk. The rank test is not affected so much. tions used in the analysis that follows.

Average no. of samples

L L I I
01 012

I§ig. 1: Effect of different factors on the performance of random

IV. SINGLE NODE: ANALYSIS FOR RANDOM WALK



N(-2,5) vs N(2,5) in the presence of Shadowing-fast fading N(-2,5) \2/2 N(2,5) in the presence of symmetric alpha stable noise and Shadowing-fast fa

[ T T T T T T .

er— +Rank test 1 tganl{; test y
3 ---Random walk 2 20 andom wal
= —ttest s —ttest
% 15 -=-M random walk|] § 4 - m {z;lgg:)m walk
5 Mt test 5 155y
S R,
< c
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N(-2,5) vs N(2,5) in the presence of Shadowing-slow fading N(-2,5) \és N(2,5) in the presence of symmetric alpha stable noise and Shadowing-slow fe
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¥ -+Rank test S +Rank test
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@ ¥ ---Random walk 840 T andom walk ||
2 H —ttest = PN —ttest
Sa & | g 1 +M random walk
it i -=-M random walk 2a0 LRy M t test
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Fig. 2: Mean detection at FC in the presence of Gaussian noise. Téfig. 3: Mean detection at FC in the presence of Gaussian and
Log \V shadowing - Rayleigfastfading. Bottom: Log\ shadowing symmetric a-stable noise. Top: LogV" shadowing - Rayleigtast
- Rayleighslow fading. fading. Bottom: LogN shadowing - Rayleigislow fading.

The family of a-stable laws is denoted by, (o, 3, 1) [7] nite mean, then it is if§*. Gaussian, exponential, Rayleigh
with 0 < a < 2 its index,o > 0 its scale parameter;1 < and Laplace distributions are light-tailed while Paretog |
B < 1 its skewness and-oco < p < +oo its location. When normal and Weibull distributions are sub-exponential. For
o = 2 then it becomesV (i, 20%). All a-stable laws have o < 2, 5,(c, 3, 1) belongs toR(—a). If F € R(—a) then
continuous, positive, uni-modal probability density ftion. E[X#] < oo for 3 < a andE[X#] = o for 8 > a.

A random variableX with a-distribution,0 < o < 2 satisfies ~ When S, takes values in a finite set ardd; is light-tailed
PIX > 2] ~ 7% ~ P[X < —z] andE[|X[P] < oo for then H,.S}, is light-tailed; if Hj, is heavy-tailed thenH,,S;,
0 <p < aandE[|X|P] = oo for p > a. is heavy-tailed, ifH; € R(—«) then HpS, € R(—a). If

We also allow for the possibility of Gaussian mixture foindependent random variablés and Y are light-tailed then
EMI, which is light-tailed. Also, forA/-random walk and X 1V is light-tailed. If any of X andY is heavy-tailed so is
M —t test, due to bounded Huberfunction, all distributions X + vy . If F ¢ S, G(z) = O(F(x)), thenF + G € S. If X,
become light-tailed. . Y are long-tailed therX +Y is long-tailed. If X € R(—ay),

We will use the following notation. For CDF', F'(z) = Y € R(—ay) then(X +Y) € R(—min{ay,as2}). If X €L,

1 — F(z), F*? is convolution of F with itself andF*(z) = thenX2 e L. If X € R(—a), thenX? € R(—a/2).

1 — F*2(x). The above results provide us the tail behaviourNof +
Definition [38]: F is light-tailedif [*° e**dF(x) < oo for  H}Sy, Ny + Hyb, and Ny, — Hybo in terms of tail behaviour
all o with 0 < || < ay for ana; < oo; otherwise it isheavy- of N, and H), whereb, andb, are positive constants. We also

tailed. F is long-tailed(F € L) if lim,_, o % = 1forall see the effect of taking energy samples.
B2) 9 Consider the random walk statisti¢g (3) or the robustified

finite y. F 'S sub—_expom_enﬂaaF €s)if Hmt"f” B(z) random walk [(B) with Huber functiogp.
where B is the distribution ofmax{0, X} while X has the  \ve write it asT, = Y7, Vi whereY;, = (X, — £oti) or

distribution of F'. F' is regularly varyingof index —«, o > 0, . _ (potm) A >
(denoted byF € R(—a)), if F(x) = I(x)z—%, wherel is a Vi = w( Xy 3 )- We choosa) such thatl = Eo[¥i] <

A . : 2
’ . ! I(\z) 0 and 6, = E4[Y1] > 0. Implications for M=-random walk
slowly varying function, i.e., for alh > 0, T 1asz — directly follow.

0o. F € $* if limyyoo f, Fg_t)z)F(x)dx =2 [ F(z)dx. The sequential test for the random walk statistics stops at
A long-tailed distribution is heavy-tailed. Als8; CSCL N = inf{n : Y, ¢ (—to,t1)} wherety,t; > 0. We will

and R(—«a) C S. If F € R(—«) and it also has a fi- discuss picking;, andt; later on. Oncel, t; are fixed, the
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Fig. 4: Mean detection at FC in the presence of Gaussian aftpt fading.
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actual performance of the test does depend on the distibuti

of Y1 and we study that now. Define, for> 0,
Ni(t) =inf{n:T, >t}, No(—t) =inf{n: T, < —t}.

We considerEq[N]. The results will similarly hold for
Ei[N]. Let M = sup,,>q Tn.

Under Ho, Eo[Yx] = 0 < 0. Thus No(—t) < oo a.s. for
all t >0 and{Ny(t) = +o00} = {M <t} whenM < co a.s.
ConsiderN (t) = min{Ny(t), N1(t)}. Thus,

1tliﬁm Po[N(—t) = No(—t)] = 1, and
lim N(=Y) = lim M, a.s.
t— 00 t t— o0 t

Since we want to design algorithms with small probabilités
error, we will work witht whereP[N (—t) = No(—t)] is large.
Thus, we consideNy(—t). From random walk theory [39],
the following results hold. We havan;_, L;t”) = 5—01 a.s.
and inL; even wherfy = —oo (then the limit is0). Forr > 1,
if E[(Y17)"] < oo thenE[(No(to)"] < oo and if Y7 has finite
moment generating function in a neighbourhood(othen
No(t) also has. Here and in the followirlg~ = min{0, Y1}

and Y;" = maz{0,Y;}. Also F denotes the distribution of

Yi.
Forl < r < 2, if E[(Y17)"] < oo thenEo[N(to)]

Random walk test under N(0,5) noise and shadowing-slow fading
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Fig. 6: Comparison of random walk with delta-random walk

Lo 4 o(t277). If E[(Y17)?] < oo,

to to  E[(V17)%

— < E[No(—tg)] £ — + —=— +o0o(1). 8

0o = [No(—to)] < 0o 20,2 o(1) (8)
Similar results hold forE;[N;(¢1)] with conditions on
E[(Y17)"].

From above results we see that the tail behaviourFof
may not have much impact oB[N]. For somewhat large
t;, E;[N(t;)] is close tot;/6;,i = 0,1 under very weak
conditions.

Next we conside”r,. We have

Pra = PRy[Yny > 1] < Po[M > t41]. 9)

From [40], if E[e®¥1] < oo for all 0 < a < a* < co and
E[e®Y1] = oo for all o > a* then there exists & > 0 such



thatE[e'¥?] = 1 and then Now we briefly comment of the performance of the (robust)
random walk for mean detection: und®g, Y., = Ny — boH}.

—I'ty
Bo[M > t:] <e™ ™ forall ¢, > 0. (10)  and undert1, Y = Ny, + by Hy. We takeE[N;] = 0.
Also, if ; is long tailed then Initially assume that there is no fading. i.él; = 1. It is
then a mean detection wittay = —by and u; = b1. Now the
Po[M > t1] ~ iFI(tl) ast; — oo, (11) at_>ove analysis directly provides the leffect of light and\Ayea
0o tailed V. Also, we see that by applying Huber functignve

where Fy(z) = [ (1 — F(y))dy and f(z) ~ g(z) denotes €an substantially g_ain in case of hgavy-tail/é’q;l. For light-
limy o L&)~ constant. Thus if Y, € R(—a) then M € tailed case if we pickK’ small, then it can make, and y;
9(z) smaller and hence one may see worse performance.

R(-a+1)fora > 1 and if F € S, then M € S. For Next we consider the case of slow fadind;, = H. Now
M- Ik, only[(T0) is rel . F L1 . L k= ’
random walk, only ) is relevant. Frorfl (9 0) and |(t is realistic to assume thall has been estimated and the

[IT), we get an upper bound dR=4 for light-tailed as well . . :
as long tailed distributions o¥;. Because of our focus on 'Ecelver knows it (coherentndetecnon case). Then we can

i on¥, = Y — Nk Ne _
M-random walk and\/2-random walk, light tailed case is Of;9n3|(j]$r pbservatlonis’k_—d H E ht’ﬁ;_?\l] (c}; 1%’ bo)-
particular interest. IfPr4 < « is desired then from{10) we ince Ny, is zero mean, independent &, Ny,/H stays zero
can get the thresholti needed. Howevel, depends on the

mean. Also givenH = h, Ni/h will be heavy/light-tailed
distribution ofY;. But approximations fof" are also2 available. if N is. Thus, it becomes the case considered in the pre-
For example, from[[41], ChaptetV, I' < _EM_ This

vious paragraph. Denoting b§r 4 (to, t1, h), Pap(to,t1,h),

_ i E[Y, JE[Y?]" Eo[No(—to, k)], E1[N1(t1, k)] the corresponding quantities,

is a good approximation foE[Y1] clqse to0, i.e., I can be Eo[No(—to, h)] =~ Z_z E1[N1(t1,h)] ~ 1% For light-tailed

repIaped with this upper bound. Thls_bour_1d_depends only EHse,EO[NO(H)] ~ bori(H) llog B]. If Ny ~ N(0,02) then

the first two moments ot; and, E[Y;"]. Similarly we can 5, o llog Blo® mr 1

use thePyp < B to getto. These then provid&,[N] and L1(H) = bil*/o” and Ex[Eo[No(H)]] ~ =55 E[z].

E,[N]. For Rayleigh fadingE[J>] = oco. This is reflected in a
Perhaps a more precise approximation/fs can be ob- significz_int performance degradation seen in the simulation

tained by observing thalPp 4 = Polsupo<i<ny(—to) Tk > t1]- results in Sectiof III-E. N

Since No(—to) is a stopping time for the random walk,, if ~ If P[Ni > t] ~ t7* then Bo[5# — b > t] ~ ((t1 +

distribution F' of Y; € S* then [42], bo)h)~* and by (I8) and [(14) we get asymptotics for

En[No(H)] andEg [ N1 (H)]. We can further take expectation

Plsupo<i<n(~to)Sk 2 @] — Eo[No(—to)] asz — oo.  OVer H to get the dependence on distribution g

1 - F(z) Above, we made the thresholds and¢; dependent o

Thus, ift; is somewhat large we can write and ensured that for eaéh Pr4 < o andPy;p < 5. But this
can often imply thal [N, (H)] and/orEg [No(H)] = co. A
Ppa ~ (1= F(t1))Eo[No(—to)] (12) weaker requirement is to choosg and ¢, independently of

H such thaﬂEH[PFA(H)] <« andEH[P]uD(H)] < ﬁ It is

possible that even noWl; [N, (H)] and/orE g [No(H )| = co.

In that case we can find positive constants), o/, 8’ such that
91 < min{e, B} and P[|H| < 6] < §; with E[Ppa(H)|H >

6] <o, E[Pyp(H)|H > 6] < " and

and use approximations and boundsEyiNo (—to)] provided
in (@) and above it. ThusPr 4 decays withi; at the same rate
as the positive tail of” as long ad is in S*. This provides a
stronger result thafi (11): 1 € R(—«) thenPpa(t1) ~ t7 .
Similarly Py;p depends on the negative tail éf.
We use the above results to explicitly get the approximation _
for Eo[N] andE,[N] for given Pr4 < o and Py p < 8. For E[Pra(H)] = Pl|H] ,S O+ E[Pra(H)|H = o]P(H 2 9)
the light-tailed case, frofi(10) we gatsuch thae Tt = q. Sh+d(l-d)=a

Similarly we getty such thate~T1fe = 3 wherel'y andT; (15)
are thel' coefficients in [ID) undei and P;. For these , B .
to and ty, Eo[N] ~ Eo[No(—to)] ~ 5_2 _ 901r1|10g5| and andé+ f'(1—6) = 5. Now we do not make a decision when

|H| < ¢. For this case we can ensure tfigy[N;(H)] < oo
for i = 0,1. At least for GaussianV, and Rayleigh fading
example abovel [z || H| > 6] < <.
If we assume that we only know the sign &f and not
its magnitude (partial coherence — knowing the phase only)

El[N] ~ El[Nl(tl)] =~ ﬁ|loga|

Now we consider the case wherre Fy(t1) ~ t; ** and1—
Fl(to) ~ taal. Thena = Prjy ~ (1 —Fo(ﬁl))EQ[N(—to)] ~
t 1 g, B = Pup ~ 1, " ¢ and hence

s then we defing’;, = sgn(H)Yy = sgn(H) Ny, +|H|b, under

Eo[N] ~ o t==1® “(aby™ f%) 17, (13) 34, (or sgn(H)Ny. — |H|bo underty). From the distribution
of Ny, we get the distribution okgn(h)N, and obtain the

1 1 . . .

E,[N] ~ 91(17%2 1)(690a1aa1)1,a12 _ (14) asymptotics of our performance measures. In particulayy,if

is zero mean, symmetriegn(h)N;, has the same distribution
This shows that the performance of the random walk alges Ni. Also Eo[No(—to,h)] = pfi=, E1[Ni(t1,h)] ~ -
rithm depends quite strongly on the tail behaviourfofand and if P[Ny > ¢] ~ ¢t~ then we can get froni.(13) and {14),

with heavy tails the performance can really deteriorate.  E;[N(H)] andEy[N(H)].



From the above two paragraphs, we can see the advantagiefsame lines. In this case particularly, singeand ), are
knowing the magnitudgH | at the receiver. Also, not knowing bounded, one expects thaf-random walk and\/2-random
|H| implies that we cannot decide wheH | > ¢, as needed walk will provide much better performance.

in (I3). Analysis of Py;p follows in the same way. This study explains the results observed in SedfionlllI-E.
If the phase ofH is also not known, then random walk

algorithm is not the right choice for this problem because it V. ASYMPTOTICANALYSIS

will perform quite badly. Based on the simulation results in Sectiod Ill and the

Now we consider the fast fading case whéié,} is i.i.d. theoryin Sectiof IV we now consider the distributed aldorit
This is a less likely scenario but we briefly discuss it beeaus where each local node and the FC ug&-random walk. In
leads to some new results. As above, if we have a noncoheraudition, we also usé-truncation. We call this distributed
case (no sign or magnitude &f available) then we should notalgorithm, M 2-M2-§-random walk Exact theoretical analysis
use the random walk algorithm. The case of coherent detectiof this algorithm is intractable. Therefore, in this sentio
(phase and magnitude both available) seems quite unlikalge provide an asymptotic analysis of the algorithm which
Thus we consider partial coherence case where only the sggovides the performance as tifie 4 and Py;p tend to zero.
of H is available. Takin_g_/k = sgn(Hy)Yr = sgn(Hx)Np + This analysis provides good insight but does not provide a
|Hi|by underHy, and Yy = sgn(Hy)Ny, — |Hilbo under good approximation of the algorithm at practical parameter
‘Ho,we obtain the following conclusions: values. Thus in the next section we will also present an appro

« If N, has light positive and negative tails, b, is imation analysis which provides a much bette_r approxinmatio

heavy-tailed,P; has a positive heavy tail and light negaIO the performance at usual parameters of interest than the

tive tail and vice versa foPy. Thus, system performance@Symptotic results provided here. _
is not affected by the heavy-taile#l;,. One can see The observations at the local nodes and the fusion node after

some beneficial effects becauBgN;] will be somewhat OPeration with the function are light-tailed, in fact bounded.
shorter which is not captured by our analysis. Therefore, assumptions of Theoretnand 3 below, will be
« If N;, has heavy positive and negative tails, i is Satisfied. Comparing Theorewith Theorem4 shows the

light-tailed thenP, and P; both have heavy positive andadvantage of using, andz);. The following analysis is not

negative tails. ThusPr4 and Py;p both suffer. affected bys-truncation.
« If N, and H;, both are heavy-tailed then agait»4 and Let
; +
Pyrp suffer. Xu = o (1/11(X1z) _ Hol : Mu),

Now we consider the system described in Sediibn II. Under
Ho, X = Nj, and undefty, Xy, = Hy.Sx+Ny. As discussed, WhereE: [ (X1)] > pr, Eolth (X11)] < por @nd, par > puon
we use energy detection for this case by taking samfles fori=1,2,... L. N
[@). Then, from the results above, i} is i.i.d. with values e choosey, and 4 such that undefy, E[X1] < 0,
in a finite set and Hy,} is i.i.d. (fast fading) depending on theUnder#i, E[Xu] > 0. Then, Toy = 37, X and Wy, =
tail behaviour ofH,, and N, we know the tail behaviour of >_j_; %o (%1 (Vi) — #) where0 > 71, and0 < 7, are
energy samples(;;. Also, under various SNR conditions, weselected properly such thay, > —boL, 7, < biL. Let Z), =
know that the energy detection problem can be considered gp b (V) — Fatin),
mean detection problem and the above results can be directh 2
used. We do not need any information abai} itself; only
the mean ofX;, under?; and, may be required (at least A, = mean drift of /W, when all local nodes decid¥,,
for the low SNR case). L

For slow fading casefl; = h, a constant in the sensing D}, = > E;[Xy],

e use the following notation:

duration. Then, at low SNR, it is mean detection wjth = =1
Mo? andyuy = M(o? + h?E[S?]). Now, for given thresholds N =inf{k: Fy, > 31 or Fx < -0},
—to and ¢y, E[NQ(—ﬁQ,h)] = Ib}?rz and E[Nl(tl,h)] = . Ho + 14y
m. A|SO, PFA(to,fl,h) and P]uD(to,fl,h) can 61 = Q/JO(wl(Lbl + Zi) o 2 )’
be approxi'Fnated/bounded as above and the effect of heavy €% = o(tbr (—Lbo + Z) — o +ﬁ1)
and light-tailed N, can be studied. Taking expectation over i T 0 ! 2 ’
H will provide the effects of tail of the distribution off as Rﬁ — —log inf E; [e(—l)it(f(u—ﬂ)l;r_gm)]
well. t20

If H, = H (slow fading) and unknown, then let for Ri:mlinRé.

H = h, Pra(h), Pyp(h), E[No(—to,h)], E[N1(t1,h)]
represent the corresponding probabilities of error anc:etqal
detection times. ThelL[N(—tg)] ~ to/h. If N € S*, then Theorem 1: For any finite thresholds~;;, 2;,
Pra(ti,h) ~ (1 — Fyo(t1 + htg))%® where Fy is the cdf of P;[N < oo] = 1.

Ng,. A|SO,EH[PFA(t1,H)] ~ fooo(l—Fo(tl—l—hﬁo))t#dPH(h)

where Py is the distribution ofi/. Similarly one can study the Proof : Please see the appendix. O
case ofH being light-tailed. The analysis faP,;p is along

We choose)y such thatAy < 0 andA; > 0.



For Theorem2-4, we will use the following thresholds:

— fBo = —|logc|, 81 = |log¢],

Yor = =il loge|, v = pi|logc|, where,
B EO[XM] B

= W,Pl =

Theorem 2 : Let E;[| X 1]t < oo for I = 1,2, ..., L and
E;[|Z1|*T! < oo] for somea > 1. Then underH;,

) N
limsup —— <

— + M, a.s.
c—0 |logel — Di, !
and in L; where M; = £-,¢ 1+ E[‘))Lgr‘},cl =
El‘gikl tot
[1+ DL, ]
Proof : Please see the appendix. d

_ _ 2
that ap < —HH2R VITH Now, by definition, ky 2 S
wherey] = min{y > 0 : E[e?*1] = e7"}. Thus~, =

— 2 _
@. From the definition ofy,, we gety, =
where L is the number of local nodes. Thus, = 0_12(”1 _

V12 —202n). We need to check i, < —FY0TR0 VESti g
that a choice ofay and ky satisfying ks < ag is possible.
This is equivalent to checking ifi? < u? — 2027, which
holds true for any positiveg. Thus, we can choose amysuch
that0 < 7 < Ry andn + log doi (1) < anE[—X ;] < 0. We
also note thaf’y = I'y = ®=*° are the positive constants
satisfyingE; [el'%1] = 1, for i = 0, 1.

The following result is for heavy-tailed case. This is
provided to show that if we do not robustify the observations
at the local nodes and/or FC, the penalty for heavy-tailed
EMl/outliers can be high. This holds for single node case als
as demonstrated in SectignllV. For the following theorem,

We make the following assumptions for the next theoremwve work with the random walk algorithnB).

. Ei[eo‘lj(“] < oo for |y < of < o0 andE[eo‘l*X“] =00

for somea; < oo, for i = 0,1. This implies that there

existly > 0,i= 0,1, =1,..., L, such tha[e"«Xi] =
1 ([@10). *

« There existsyy > 0 such thatpe- (ag) £ Eg[e®¢’] < oo,
and agy > 0 such thatpe. (By) 2 Ei[ef¢ ] < oc.

« FOr ks = >, v, where 7, is the smallest positive

constant withE[e =7 %1] = ¢~7 for all [ = 1,..., L and
71 is some positive constant less th&p, k2 < ap. Also

Theorem 4 : If there is anr; > 1 andry > 0 such that
the distribution ofXy; € R(—ry) forall i = 1,2,...,L and
under?, and #; and the distribution ofZ; € R(—ry — 1)
then

Pra < 0(| log c|_77”'"{7'1,7'2}-&—6)7

Parp < of|logc|~mimirratte),

let log pe- () < 7. Similarly we define conditions for for anye > 0.

Hq. N
« There exist constani%, I'; > 0 such thaff;[eli%1] = 1,
for i =0, 1.

« Thereisa; > 0 such thatp (a;) £ E[e*‘“f(“]g oo for
alll =1,...,L andn + log ¢oi (1) < anE[-X1;] < 0.
Also, there isp; > 0 such thatp; (81) £ Ele=#1%1] <

oo foralll=1,...,L andn + log ¢o; (1) < 0.
« E[¢]] > 0, B[] < 0.

Theorem 3 : Under the above assumptions,
(@) limeyo % < oo for anyr’, with 0 < v/ < min{rag —
k2, To(1 —7),Coryi,l =1,..., L} for some0 < r < 1.

(b) limyo 2222 < oo for any s/, with 0 < & <
min{sa; — k4, T'1(1 — s),I'yy,l = 1,..,L} for
some0 < s < 1.

Proof : Please see the appendix. O

Proof : Please see the appendix. d

V1. APPROXIMATION ANALYSIS

In this section we provide an approximation analysis of the
algorithm.

In the following, we take, for convenienck, = —by = b,
andpu; = —pg = p = I1.b, for somel with 1 < I < L.
Roughly speaking, this ensures that the FC makes decision
H, when I more nodes decidé{; compared to the nodes
decidingH,. Similarly for H.

N &inf{n: Ty >yu}, N 2 inf{n: Tu <o},
N = min{ N/, N/'}

Similarly, N, N° and NV represent the corresponding terms
for the FC.

From Theorem8 and4 we know that asy;, v1; — oo and
Bo, 81 — o0, Pra, Pvyp — 0. One can similarly show that

We verify the above assumptions for the Gaussian distribasyo;, v1; — oo, the local decisions made by each local node

tion. Then we do not uség, or v;. Thus, Xq; ~ N(/L(){,O’?)
under Ho and Xy; ~ N(py,07) under ;. Also, Z; ~
N (#5751 ,52) underH, and Z; ~ N (552 52) under#;.

are correct with probability .
‘We will use the following notation:
6§7Fc £ mean drift of the FC procesgV;} underH;, when

2 . . . . .
Now, Rj = $4%. Assuming that the means and variancek'0cal nodes are transmitting.
l

are the same at each node, iy = w; and o = o
2
for i = 0,1, we get Ry = 3%3. Now log¢e: (ag) =

poco + 30%a3. We need to check if there exists an< Ry

such thatlog ¢¢- (ag) < 1. Thus, we need to findy, such
that log ¢¢- (o) < %% This translates to findingy, such

t; = time at which the mean drift oW} changes from
] ,

03 pe 10 0] pe-

W; £ E[Wy, ).

Under#;,

W, =W, 1 + 6/ 5o (B(t;) — E(tj-1)), Wo = 0.



Based on the fact thaPr4 and Py;p of each local node Equations[(1l7) and(18) suggest that(N' < ¢;) should
I — 0 as~g;,v1; — oo for eachl, we get serve as a good approximation fé*4. Similar arguments
show thatP; (N° < t;) should serve as a good approximation
Lemma 1. P;(decision of the local node at timg is H; for Py p. In the following, we provide approximations for
and t is the k" order statistics of N{,..., N:}) — 1 as these.

o, B — 0, VI [ ] Let Z; beforet; have mean 0 and probability distribution
symmetric abou®. This will happen ifE[Z;] = 0, distribution

Lemma 2. Under#,, whenq; and3; are small, of Z;, is symmetric aboud and i + ©1 = 0. Then, from the

9 Markov property of the random walkivV;. }, beforet;,
NO NN(—|701| *|V01|P0,z) :
! 50_1 ’ 58,l ’ P()(N < tl) ~

where §y; £ Eo[Xy,], and p2, 2variance of[X} ;] under e~

Ho. ’ > Py[{Wi > —logc}

Proof: See Theorem.1, Chapter3 in [39]. ] -

A similar result holds forH; as well. (VW < —logc}lts > K Po(ts > k)
n=1

Based on the above lemmas, in the following we provide

. . 0 k—1
an approximation fof;[N],i = 0, 1. _
Let = ];Po[{Wk > —logc}l Ol{W" < —logc}]
. W k—1
Iy 2 min{j : § pe < 0 andwjij < E(tj41)—E(t))}. P () {Wa < —logc}|Po(t1 > k)
0,FC n=1

Then we can have the approximation

M

Py[Wy, > —logc|(Wi—1 < —logc)]

B
Il

1

- (16) Po( sup W, < —logc)[l — &y, (k)]
e 1<n<k—1

The first term in approximatiofi (16) corresponds to the mean _ - /OO P> 1 —w)d
time till the mean drift of{W,.} becomes negative (fdk,), Z[ 0(Z > u)fwi-, (= loge —u)dul

and the second term corresponds to the mean time from ;
. . . P, S W, < —logec).[1 — @4, (k)]
then on till it crosses the threshold. Using the Gaussian 0(19}5,1 ge) | u(F)

approximation of Lemma, thet,’s are the order statistics Ofwhere@ is the CDF oft,. We can find a lower bound to
i.i.d. Gaussian random variables and hence, ilhls can be the abO\j:a expression by lljsmg

computed. (See, for example, [43]). A similar approxmatlop W,
< -1 >1—=2FPy(Fip—1 > —1
can be written foi; [N]. (1;‘;2_1 ogc) = 0(Fr—1 > —logc)

Next, we compute approximate expressions fgr4 and ([44], pages25) and an upper bound by replacingsup 1,
Puyp. 1<n<k-1
Under the same setup of largg:, 1, 5o, 81, for Pra by Wi_1.
analysis, we assume that all local nodes are making correcBimilarly, Pp;p can be approximated as
decisions. Then for false alarm, the dominant everftNg <
t1}. Also, for reasonable performancg;(N° < t;) should
be small. Then, the probability of false alarii4, can be Pyvp 2 Z / Py(Zy, < —u) fw,_, (log B + u)du]
approximated as

Yor — Wl*
Eo[N] ~ E(ty;) + 1%

o L 1 9P (Wi s < log B[ — @0, (b)),
PFA:PO(N <N)ZP0(N <t;,N >ﬁ1)

and
- 1
~ Py(N™ < ty). 17) Pup < Z / Py( 7 < —u) fw,_, (log 8 + u)du]
Also,
Pl(WzH > log B)[1 — ¢, (K)].
Py(N' < NY) < Py(N' < 0)
— Py(NY < )+ Polts < N' < to) 4+ (18) In the above expressionsyf , stands for the probability

density function ofiVj,_;.

The first term in the RHS of{(18) should be the dominant Figured¥ anfl8 show the comparison of simulation, approx-
term since aftert;, the drift of F), will have the desired imation and asymptotics foE;[N]. (Please see Secti¢n VI
sign (will at least be in the favourable direction) with a lnig for details on the simulation setup). Figuké 7 shows the
probability. results when there is no fading and Figlite 8 shows the case
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©
»g 3d HO: X ~ N(0,1) B
o HL: X =HS +Z
c where S ~ Unif{a,-a}
20 P ~ N(O, 4
. . . . QZO ‘i‘v‘, Ef Ln’;ﬁ?(;é.se)
wherein there is fading, EMI and outliers. We see that tt g b oy Z=000
approximation explains the simulation results much beftan <100 e e . ]
the asymptotics. We also get approximation f@rand see (in Nowceo R :“'{; """" g
Figures[® and10) that the approximations are close to t 0 002 004 006 008 01 012 014 016 018 0.2

simulation results for smalP..
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Fig. 11: Energy detection in the presence of Gaussian noise.
Top: Without fading. Bottom: Log\V shadowing - Rayleigh
fast fading.

VIl. SIMULATION RESULTS FORDISTRIBUTED
ALGORITHM

We have considered. = 5 local nodes reporting their
decisions to the FC. The distributions of fading, EMI and
outliers at the local nodes and the FC are the same as in
Section[TIl. Also, by = 1,b; = 1. The receiver noise at
the local nodes isV(0,1) and at the FC is\V(0,5). From
Figures[Il and—12, we see that the distributed algorithm
performs much better than the single node algorithm using
M?-random walk, especially in the low probability of error

Fig. 9: Performance of distributed algorithm under Gaussiq\egime_ Figur&1 shows the comparison when the local nodes
noise at the FC

run M?2-random walk and FC rund/-random walk in the



Energy detection for BPSK at -5dB in SaS noise and block shadowing-fast fading

channel. We have performed simulations to demonstrate this

6 T T B . . )
¥ *Single node = M2 random walk and have theoretically validated the observations.

s * <-Distributed algorithm - fast fading at FC I
QQ “:; +Distributed algorithm under 5% outliers at FC
% 4 % Distributed algorithm - slow fading at FC || IX. APPENDIX
s HO:X=Z+A . . . .
S where+Z~'N(('],1) The proofs of Theoremb—4 are provided in this appendix.
g3 A Sasdsit We will use the following notation:
% . HLX=HS+Z+A
c X here S ~ Uniffa,-a}| | 0 _ .
52 Wrenop) Ny =inf{n: Ty < =y},
< : P ~ LogN(0,0.36) 1 .

1 A ?’_”'--;.,_ N} =inf{n: Tn > v},

—_ &2 — 71(—701) = the last time random wallf’,; is above— ~,,

0 005 01 015 02 025 03 035 04 045 05
Probability of error T = max Tl(f’yol),
1

Energy detection at -5dB in Sa$S noise, 5% outliers, block shadowing—fast fading
5 T T T

e = rting fromo, the first tim r
-+Single node - M2 random walk V(a) Starting from0, the first ime iV, C -OSSGSR
& -+ Distributed algorithm - fast fading at FC when all local nodes are transmitting b,

o
<@

'1‘ 7(c) = mlaxn(f’yl|logc|).

w
<@
*

: | Proof of Theorem 1. We showP,)[N < oo] = 1. Similarly
" we can show forP; [N < co] = 1.

UnderH,, T, is a random walk with finite negative mean,
for eachl. Thus,T,; — —oo a.s. and hence(—vg;) < oo a.s.
for any finitey;. Thereforer < co a.s. Afterr, all local nodes

w w w w w w w w w transmit —by and hence increments 6¥; have a negative
0 005 01 015 02 025 03 035 04 045 05
Probability of error mean & Ag). Therefore,

n
o

Average no. of samples

=
<@

Fig. 12: Energy detection in the presence of Gaussian ai&l S N <7+ v(=Wri1 — fo). (19)
noise,5% outliers and block LogV shadowing - Rayleigh fast

fading. Top: Without outliers at local nodes. Bottom: Withoince ™ < oo a.s. andE[|Yx|] < oo, [Wri4| < oo a.s. and
outliers at local nodes. hencev(—W- 1 — fo) < oo a.s. Therefore) [V < oo] = 1.

presence of Gaussian noise and fading. From Figure 12 we segrOOf of Theorem 2. We prove for#iy. From [9),

that the distributed algorithm performs better in the pneseof N 7(c) v(=Wr(e)+1 — |logcl)

EMI (along with shadowing-fading) at the local nodes and the [loge| ~ |logd]| |log ¢ ‘

FC. It also shows that the presence>&f outliers (along with Also, from [39]

shadowing-fast fading) at the FC does not make a considerabl ' =

difference in the performance of the distributed algorithm - 71(c) _ R

We have considered the presence of outliers only when the c¢—o0|loge| DY,

signal is present (unde}; at local nodes and under bothgrthermore,

the hypotheses at the FC). With all these impairments, the

reporting channel becomes bad and the improvement over the v(—[loge| = Wr()41) < v(—|logc|)

single node case is seen for small probability of error only | log c| ~ |logc|

(Figure[I2 bottom). N V(=Wrey+1) Wre)+1 7(c) + 1
We see that the distributed algorithm performs much better W41 7(c)+1 [logc]

than th_e_ single nodd\_/[Q—random_ walk, especially at low and from [39],

probability of error. It is also quite robust to the effects o

a.s.

fading, EMI and outliers at the local nodes and the FC. lim v(—|loge)) _ 1 a.s.
c—0  |log¢| Ay
VIIl. CONCLUSION Also, by Strong Law of Large Numbers (SLLN) (sineé&) —

o ] . ooas.axl}0)
We propose a distributed algorithm for spectrum sensing in

Cognitive radio. Various impairments such as additive @ois 1imM < E[¢!] a.s.
EMI, shadowing and multipath effects and outliers weremake <0 T(c)+1 7

into account while designing the algorithm. The local nodeghus,
perform energy detection for lack of knowledge about the _ «
primary’s transmission parameters and the FC is signalied v lim HWr@ 1) Wi 7(c) < (_—1) ]E“gl I
BPSK. We find that robust versions of random walk algorithm ¢ Wr(o+1 7(c) +1logc| Bo/ Diy
developed recently, perform well in case of energy detadio |
the local nodes and binary signalling over the reporting MAC

a.s.



Proof of Theorem 3. We prove the result foPg 4. It holds
for Py;p in the same way.
We have,

Pra = Py[DeclareH; upto7(c)|+Py[DeclareH; after r(c)].
The first term on theRH S,
Py {DeclareHl UptO’T‘(C):|
<P [ U; {1"" random walk crosses;| log c| upto T(C)}:|
+ P [WO = 0, W) crosseg log¢| upto7(c)

.
with W, = Zg;;}

n=1

< ZPO{ sup )Tkl > 'yl|1ogc|} (20)
0<k<Tt(c
+ PO[ sup Wi > |log c|} (21)
0<k<7(c)
The first term on the RHS il _(21),
PO[ sup Ty > villog c|} < P[MOZ > | log ¢|

0<k<7(c)
<e

—Toryi|logc|
)

whereMy; = supyo T andEq[elotX1t] = 1. Sincel'y; > 0,
this goes down exponentially t with |logc| — co at rate
Coryi- .

Now consider Po[supg<< () Wk > [logc]], the second
term on the RHS of[(21). From Theorehd in [45], since
{Wy} is a submartingale, we get, for an> 0 with E[e*¢i] <
oo (by taking functiong(z) = e** — 1, > 0 in Theorem10
of [45]),

E[eWn] — 1

P[sup Wy, > x] <
exr — 1

k<n

Therefore, since(c) is independent of 1.},

S P[ sup Wi > [loge Pir(c)
0<k<n

n]

n=1

< Z Plr(e)

— (efolosel _

_ n](%*(ao)" — 1)

eolloge|l _ 1

1)71E[er(c) log ¢pex (o) _ 1]

(22)

< (ecollosel _ 1)=1R[(e7(€) —1)].

if log@ex (o) < m. Thus, we have from Lemma below,
exponential decay ify < «p.
Next consider, for am, 0 < r < 1,

P, {Declare’Hl afterr(c)}
<P [Declare?—[l after 7(c) it W, (¢)41 < r|log c@

P [WT(C)H > 7 1ogc|] .

Since,

Po[Wr(e)+1 > r|loge|]] < P[ sup Wi, > r|log ],

0<k<7(c)+1
from 22) and Lemma3,

¥ [en(T((’)Jrl)] —1

—0
1 k/ eraolloge| _

Po[Wr(ey41 > r|logc]]

exponentially in|log¢| if rag > ko for some0 < r < 1.
Next consider

Py {DeclareHl after 7(c) if Wr()41 <rllog c@
<P {Declare?—[l afterr(c) if Wr()41 = r[log c@
< P[random walk starting with zero

and increments;, — Lby has max> (1 — r)|log c|}
< ¢~ Tol=n)lloge| _, o

exponentially becaus€, > 0 where E[elo(Z1—Lbo)] = 1,
Thus,

Pra Sk/,lefao\ log c\ekg\ log c| + k/,iefaoﬂ log c|ek2| log c|

L
+ e—FO(l—r)|logc\ + 2 e—Fm'yl\logc\
=1

< oo wherer’ < min{aor — k2, To(1 —
L}. n

v

and lim, o Iz“
T)7Ibl7hl :zla“w

Lemma 3. Let there be am such thatRy > n > 0
and ] is the smallest positive constant with;(v;) = e "

for all I = 1,..,L. Also, there isay > 0 such that
bi(a1) = ElewXu] < oo for all [ = 1,..,L and
7(e)
n + log ¢oi(a1) < 0. Then, hmsupcw% < 1 when
ki is a constant and, = >, ;.
Proof. For anyc, fori=1,...,L
7771(6) Z e Plr(c) = n]
< Z e P(T(ny1y < —mllogc])
n=0
=e "ZG""P T = | logcl)
0o n=1 —
d)zl 041
nm T8N
< e (23)

by Markov mequallty. Also, RHS of[23) is finite if n +
log ¢oi(cv1) < 0. Thus, under our assumptions, from [[46],
there exist positive); such that
E[enTl(c)]
cl0 fl(fyl)eVl“OgCW{

when f;(y;) is a constant provided in_[46]. Thus, since
71(¢), m2(c), ..., 7r.(c), are independent,

L
] = H E[e ()]
=1

=1 for eachi,

E[e"" ()] < E[e" Zizi mi(©)



Therefore,

E[enT(C)]

<1
fil)el e T

lim
L
cl0 Hl:l
[ ]
Proof of Theorem 4. Define

A; = {local nodel makes a wrong decision some tifne
Then,

Pra = Py( declareH;)

L and
P[random walk with mean-A, and initial condition| log |
crossed log c|]

< Py( declarety | ny AY)P(MAT) + ) Po(Ay).
=1

From the text below equatiofid),

Py[A)] < PO[S‘iP T = pi| log c|]
n>0

~ filpi|log cl)(pi| log )~
where f; is a slowly varying function. Thus,

Py(Declaret1) 3 Po(NiAf) Py (Declaret| N; A7)

fi Pz|10g0| 1
(> ) Tz

(24)

Consider ]
Py(Declaret1| N; A7) = Py(DeclareH upto 7(c)| N; A7)

+ PO(DecIareHlafter T(c)| Nt A7) (2]

< Py( sup ZZk>|1ogc|

0<k<'r(c)k 1
+ Py(DeclareH;after (c)| Ny Af)

(25) W
Also, from [42], sinceZ;, distributione R(—ry — 1), [5]
- 6]

Py su Zn, > |loge

0[1§k<g(c) Z | & ”
~ Elr(c ]gl(llogcl)llogcl el g
- 8
~ [log | ~"gi | log ]). 26)
whereg; is a slowly varying function. [9]
The second term o H S of @3)), forad,0 < < 1, (10
11
Py (Declare?{, afterr(c)| N; Af) (]
< P[random walk at FC with mean, (12]

7(c)+1
and initial condition » " Z; crosseg logc|] (23]

k=1

P[FC random walk with mear\, and initial conditiori14]
T(c)+1 [15]

5|logc| crosseglogel] + P[ > Zx > (1 - 0)|logc]].
k=1

Also, for slowly varying functiongys, gs,

7(c)+1
P Z Z > (1 —9)|1log|]
k=1

< P[ sup ZZ > (1—9)|logc]

0<k<‘r(c)+1 =0

~ g2((1 = 0)[log c|)E[7(c) + 1]|log | 77"

~ g2((1 — &)[log c[)|log ¢| 7" (27)

< g3((1 = d)|logc|)[log c|~". (28)

From B4), 23), (26), @0 and [28),

fi Pl|10gC| 1
Pea 3 () Mgy

+ g1(|logc]) IlogCI‘”) +9g2(1 =
+ g3(1 —9)|logc|)|logc| ™"

d)|log cf)|log e[~
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