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Abstract—In cognitive radio (CR) networks, “TTR”, a.k.a.
time-to-rendezvous, is one of the most important metrics for
evaluating the performance of a channel hopping (CH) ren-
dezvous protocol, and it characterizes the rendezvous delay when
two CRs perform channel hopping. There exists a trade-off of
optimizing the average or maximum TTR in the CH rendezvous
protocol design. On one hand, the random CH protocol leads to
the best “average” TTR without ensuring a finite “maximum”
TTR (two CRs may never rendezvous in the worst case), or a
high rendezvous diversity (multiple rendezvous channels). On the
other hand, many sequence-based CH protocols ensure a finite
maximum TTR (upper bound of TTR) and a high rendezvous
diversity, while they inevitably yield a larger average TTR. In
this paper, we strike a balance in the average-maximum TTR
trade-off for CR rendezvous by leveraging the advantages of
both random and sequence-based CH protocols. Inspired by the
neighbor discovery problem, we establish a design framework
of creating a wake-up schedule whereby every CR follows the
sequence-based (or random) CH protocol in the awake (or asleep)
mode. Analytical and simulation results show that the hybrid
CH protocols under this framework are able to achieve a greatly
improved average TTR as well as a low upper-bound of TTR,
without sacrificing the rendezvous diversity.

I. I NTRODUCTION

“Rendezvous” incognitive radio(CR) networks refers to the
process for two secondary users (SUs) to find each other on a
rendezvous/control channelprior to data communications [1].
A rendezvous failureoccurs between two SUs when the
rendezvous channel is unavailable due to the detection of
primary users (PUs) or interference signals.

To alleviate the rendezvous failure problem, two types of
channel hopping (CH)rendezvous protocols have been widely
used to create multiple rendezvous channels between two
SUs [3], [5], [10], [13]. In a random CH protocol, two SUs
hop across channels at random in search of each other. In a
sequence-based CH protocol, each SU starts a channel hopping
process according to its own CH sequence and local clock;
two SUs’ CH sequences are carefully chosen to spread out
rendezvous points over multiple pairwise common channels.
The time-to-rendezvous (TTR)or rendezvous delay, is usually
used for evaluating the performance of a CH rendezvous
protocol.

There exists a trade-off of optimizing the average or max-
imum TTR in the design of a CH rendezvous protocol.
The random CH protocol leads to the best “average” TTR
of N timeslots givenN channels. However, two SUs may
never rendezvous in the worst case, which implies that the

“maximum” TTR can be infinite. Besides, the random CH
protocol cannot guarantee multiple rendezvous channels, and
the number of rendezvous channels between two SUs is called
therendezvous diversity. In contrast, many sequence-based CH
protocols ensure a finite maximum TTR (upper bound of TTR)
with a high rendezvous diversity, at the expense of incurring
a large average TTR.

Naturally, we are particularly interested in the following
question:Is it possible for an SU to determine when to switch
to the random or sequence-based CH protocol for achieving
the best performance in terms of both average and maximum
TTR, while preserving a high rendezvous diversity?

In wireless sensor networks, the wake-up schedule approach
has been widely studied for addressing the neighbor discovery
problem, which allows each node to switch between two
modes (awake or asleep) such that two neighboring nodes can
maintain the link connectivity with energy constraints [2], [6],
[9]. Our research findings indicate that it is feasible to combine
the CH processes of random and sequence-based protocols by
enforcing each SU to mimic the behavior of switching between
two modes in a wake-up schedule.

In this paper, we strike a balance in the average-maximum
TTR trade-off for CR rendezvous by leveraging the advan-
tages of both random and sequence-based CH protocols. The
contributions of this work are summarized as follows.

1) We establish a design framework of creating a wake-
up schedule whereby every SU follows the sequence-
based (or random) CH protocol in the awake (or asleep)
mode, such that two SUs can achieve rendezvous with
significantly improved average TTR, while an upper-
bounded TTR and rendezvous channel diversity are
guaranteed as well.

2) We present a unified approach of devising a series of
hybrid CH rendezvous protocols that interleave random
and sequence-based CH processes, and show that such
protocols can achieve a high rendezvous diversity within
an average TTR ofN slots, givenN channels.

3) Analytical and simulation results confirm that the hybrid
protocols under the design framework are able to pre-
serve a small average TTR as well as a low upper-bound
of TTR, without sacrificing the rendezvous diversity.

The rest of the paper is organized as follows. We provide
the system model and formulate the problem in Section II.
In Section III, we describe the design framework of hybrid
CH rendezvous protocols based on interleaving techniques.
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We evaluate our proposed framework using simulation results
in Section IV, and conclude the paper in Section V.

II. PROBLEM FORMULATION

A. System Model

We assume a CR network where each secondary user/node
is equipped with a CR operating over a set of orthogonal
frequency channels that are licensed to primary users. We
denote each node in the network by its unique identifer (ID),
say i ∈ Λ, whereΛ is the set of all possible IDs —i.e.,
the secondary node with its IDi is termed node i. The
set of channels which the nodes in this network can sense
and operator over is called thesensible channel set, denoted
by C = {1, 2, 3, . . . , N}. The cardinality of the sensible
channel set is known as thesensible channel number, or simply
channel number, written asN = |C|.

CH sequence and clock drift. We consider a time-slotted
communication system in which time is divided into consec-
utive time slots of equal length2t0, where t0 is the time
necessary for link establishment. For example, as prescribed
by IEEE 802.22 [12],t0 = 10 ms and thus time is divided into
time slots of 20 ms in the IEEE 802.22 context. We double
the link establishment time to be the slot duration because
two nodes can still have slot overlap no less thant0, which
is adequate for link establishment, even if slot boundariesare
misaligned between them (please see Fig. 1) [8]. Thus we can
safely assume that slot boundaries are aligned between two
nodes.

��

CH sequence of node i ��0

2t0

1 2

CH sequence of node j 1 2 1

> t0

0

0

Figure 1: The CH sequences of nodesi and j are
{0, 1, 0, 2 . . .} and{1, 2, 0, 1 . . .}, respectively. They will ren-
dezvous in the third slot on channel 0. Although the boundaries
of their time slots are misaligned, since the duration of a slot
is 2t0, the slot overlap on channel 0 is greater thant0.

��

Clock of node i 

Clock of node j 

��0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

2 slots

Figure 2: Nodesi and j have their respective local clocks.
Time slots are divided in accordance with each node’s local
clock, numbered as slot 0, slot 1, slot 2, etc. Local clocks of
two nodes may differ from each other by a certain amount of
clock drift—i.e., if nodei’s clock is two slots behind that of
nodej, then nodej’s slot 2 will be its slot 0.

Each node has its local clock. Time slots are divided in
accordance with each node’s local clock, numbered as slot
0, slot 1, slot 2, etc. Local clocks of two nodes may differ

from each other by a certain amount ofclock drift—i.e., if
nodei’s clock is two slots behind that of nodej, then node
j’s slot 2 will be its slot 0 (see Fig. 2). In order to achieve
rendezvous, each node is capable of hopping across different
channels in accordance with its CH sequence and local clock.
We formulate nodei’s CH sequence as a function

θi : N ∪ {0} → C

t 7→ θi,t,

whereN ∪ {0} denotes the set of time slots that begin with
slot 0 andθi maps each slot to a channel inC, which means
that nodei hops onto the frequency channelθi,t at slot t.

Rendezvous. As aforementioned, there may be a certain
amount of clock drift between nodesi and j’s local clocks.
We denote it byσij , which means that nodei’s clock is σij

slots behind that of nodej. If σij < 0, nodei’s clock is ahead
of node j’s in fact. If σij = 0, they are synchronized. A
rendezvous between nodesi andj is said to occur if they hop
onto the same frequency channel simultaneously. Formally,a
rendezvous is said to occur at nodei’s slot t if θi,t = θj,t+σij

.
In this case, nodei’s slot t is called arendezvous slotand the
frequency channelθi,t is called arendezvous channel.

Let T (θi, θj , σij) denote the set of rendezvous slots given
that nodei’s clock isσij slots behind that of nodej. A note-
worthy problem is whether the serial numbers of rendezvous
slots should be with regard to the local clock of nodei or node
j. In our definition, rendezvous slots are indexed in accordance
with the local clock left behind. For example, if nodei’s clock
is behind that of nodej (σij > 0), then rendezvous slots in
T (θi, θj , σij) are with regard to the clock of nodei; otherwise,
the clock of nodej. If σij > 0, {2, 6} ⊆ T (θi, θj , σij) implies
that nodesi andj rendezvous at nodei’s 2nd and 6th slots; if
σij ≤ 0, it means that they rendezvous at the 2nd and 6th slots
with respect to nodej’s clock. This idea is natural because the
zeroth slot of the clock left behind denotes when both nodes
start channel hopping.

Given that nodei’s clock is σij slots behind that of node
j, let C(θi, θj , σij) denote the set of rendezvous channels
between nodesi andj.

B. CH Protocol Design Problem

CH protocol. A CH protocol is a fully distributed algorithm
whereby each node autonomously generates its CH sequence
only employing the information of its IDi. Formally, a CH
protocol is a map

θ : Λ → Θ

i 7→ θi,

whereΛ is the set of all possible IDs andΘ = {f : N∪{0} →
N} is the set of all CH sequences. Note thatθ only depends
on the ID i (i.e., θ is independent of the clock drift between
nodes, or the information of other nodes apart fromi.

Many existing CH protocols areperiodic in the sense that
there exists a (minimum) positive constant integerτ (known
as the period length) such that

∀i ∈ Λ, t ∈ N ∪ {0}, θi,t+τ = θi,t.
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The period lengthτ is a function of the channel numberN ,
denoted byτ(N). For example, CRSEQ [11] has a period
length of τ(N) = N(3N − 1) if N is prime; for the Jump-
stay (JS) algorithm in [10], the period length isτ(N) = 3N
if N is prime.

Performance metrics. We introduce three performance
metrics for evaluating the performance a CH rendezvous
protocol.

1) Maximum time-to-rendezvous (MTTR). The latency be-
fore nodesi andj’s first rendezvous can be characterized
by min T (θi, θj , σij), i.e., the minimal value in the
set T (θi, θj , σij). However, this latency relies on their
clock drift σij . In practical scenarios, we are unaware
of what the clock drift would be, which, in fact, is a
random variable. Thus we care about the worst-case
(maximum) latency given an arbitrary amount of clock
drift, which is exactly themaximum time-to-rendezvous
(MTTR). Formally, the MTTR between nodesi andj is
given by

MTTR(θi, θj) = max
σij∈Z

min T (θi, θj , σij).

MTTR is a bound for time-to-rendezvous. In the ran-
dom channel hopping protocol (RCH) [4], each nodei
randomly hops onto a channel at each time slot, and it
is easy to show thatMTTR = +∞ in this case—i.e.,
RCH fails to have a bounded time-to-rendezvous or a
guaranteed rendezvous diversity.

2) Average time-to-rendezvous (ATTR). Apart from MTTR,
we take into account the average (expected) latency
before the first rendezvous, termed asaverage time-to-
time (ATTR). Formally, the ATTR between nodesi and
j is given by

ATTR(θi, θj) = E[min T (θi, θj , σij)].

3) Rendezvous channel diversity rate. In practical applica-
tions, some channels may encounter problems such as
congestion, attack, eavesdropping etc., and thus become
inappropriate for rendezvous and information exchange.
Ideally, we want to maximize the rendezvous diversity in
hopes that the two nodes can attempt to rendezvous on
all channels. We introduce the metric calledrendezvous
channel diversity rate, which is defined for two nodesi
andj such as

div(θi, θj) = min
σij∈Z

|C(θi, θj , σij)|

N

and quantifies the minimum ratio of the number of
rendezvous channels to that of all sensible channels.
It follows immediately from the definition that the
rendezvous channel diversity rate ranges from 0 to 1.

CH protocol design problem. The CH protocol design
problem is how to devise a fully distributed CH protocolθ
whereby each nodei autonomously generate its CH sequence
θi such that the protocol can achieve bounded MTTR, small
ATTR and high rendezvous diversity rate in CR networks
environments, in spite of a random clock drift between two
nodes.

III. I NTERLEAVING-BASED FRAMEWORK FOR HYBRID CH
RENDEZVOUSPROTOCOLS

In this section, we propose a design framework for creating
hybrid CH rendezvous protocols that minimize the ATTR of
CH protocols while preserving their TTR bound. We begin
with introducing the neighbor discovery wake-up schedule
design problem. In accordance with a specified neighbor
discovery wake-up schedule, any existing CH protocol can be
easily extended to a hybrid protocol under our framework.

A. Definition of the Neighbor Discovery Wake-up Schedule

In energy-constraint wireless sensor networks (WSNs), a
neighbor discoverywake-up scheduleof node i is a binary
sequence that consists of only zeros and ones,

x
i = {xi

0,x
i
1, . . . ,x

t
Ti−1}

where ∀0 ≤ t ≤ Ti − 1, x
i
t ∈ {0, 1}. The length of the

sequence, i.e.,Ti, is termed theperiod lengthof the wake-up
schedulexi. At the t-th time slot, ifxi

t = 1, the node will be
active (awake); otherwise, it will be inactive (asleep).

The duty cycleof a wake-up schedule quantifies the per-
centage of slots in which the node is active—i.e., the duty
cycle ofxi is

∑Ti−1
t=0 x

i
t

Ti

.

Obviously, the duty cycle ranges from 0 to 1. For instance, for
x
i = {0, 0, 1, 1, 0}, its duty cycle will be 2

5 = 40%. For the
purpose of energy saving, the duty cycle is supposed to be as
small as possible.

We introduce the notion ofcyclic rotation to characterize
clock drift between nodes. For a wake-up schedulex

i, we
define rotate(xi, k) , {x′i

0 ,x
′i
1 , . . . ,x

′i
Ti−1} where ∀t ∈

[0, Ti − 1], x′i
t = x

i
(t+k) mod Ti

.
Given any clock drift, aneighbor discoverybetween nodes

i andj successfully occurs if and only if∀k ∈ Z, ∃t ≥ 0 such
that

x
i
t mod Ti

= rotate(x, k)jt mod Tj
= 1.

A neighbor discovery protocol, ν, assigns each node a wake-
up schedule in accordance with its desired duty cycle in order
to guarantee successful neighbor discovery between any two
neighboring nodes. If nodei’s desired duty cycle isδi ∈ [0, 1],
then it will be assigned the wake-up schedulex

i , ν(δi).
Formally, a neighbor discovery protocol is a mapν from ∆ ⊆
[0, 1] to the set of binary sequences, where∆, which is a
subset of[0, 1], is called the set of itssupported duty cycles,
andν is expected to satisfy that∀δi, δj ∈ ∆, ∀k ∈ Z, ∃t ≥ 0
such that

ν(δi)t mod Ti
= rotate(ν(δj), k)t mod Tj

= 1,

whereTi (or Tj) is the length ofν(δi) (or ν(δj)). Specifically,
∀δ ∈ ∆, ∀k ∈ Z, ∃t ≥ 0 such that

ν(δ)t mod T = rotate(ν(δ), k)t mod T = 1,

whereT is the length ofν(δ).



4

B. Hybrid CH Protocols by Interleaving Random and
Sequence-based CH Processes

Suppose thatν is an arbitrarily given neighbor discovery
protocol and thatθ is a periodic CH protocol with period
lengthτ(N).

Padding scheme. According to thepadding scheme, we
increase the channel numberN to some integerN ′ ≥ N . We
view the newly added(N ′ − N) channels as aliases of the
originalN channels. For example, if the channel number is 3,
we add a new channel, say, channel 4, so that the new channel
number amounts to 4. Channel 4 serves as a random channel
sampled from the originalN channels.

The first step of our proposed algorithm is to choose a
supported duty cycle, say,δ, of the neighbor discovery protocol
ν. Let x denoteν(δ) and we writeT for the length ofx. As
aforementioned,x satisfies that∀k ∈ Z, ∃0 ≤ t ≤ T − 1 such
that

xt = rotate(x, k)t = 1.

Then, by the padding scheme, the algorithm will slightly
increase the channel numberN to N ′ = min{N ′ ∈ N : N ′ ≥
N, gcd(τ(N ′),

∑T−1
t=0 xt) = 1}. GivenN ′ as the new channel

number, with the CH protocolθ at hand, every nodei has
its CH sequenceθi with period lengthτ = τ(N ′), where
gcd(τ,

∑T−1
t=0 xt) = 1.

CH sequence generation. We now present in Algorithm 1
how nodei generates its new CH sequence in accordance with
the wake-up schedulex and the original CH sequenceθi. Note
that with the padding scheme, we can safely assume that the
channel numberN satisfies thatgcd(τ,

∑T−1
t=0 xt) = 1, where

τ = τ(N) is the period length of the CH protocolθ—i.e.,
for convenience of notations, we simply useN to denote the
resulting slightly increased channel number (namelyN ′) after
the padding scheme is conducted.

As demonstrated in Algorithm 1, at thet-th timeslot, the
resulting new CH sequence generated by our proposed frame-
work uses a slot that comes from the original CH sequence
θi if the (t mod T )-th bit of x equals 1 (i.e.,xt mod T = 1);
otherwise, it uses a random channel. We eventually obtain an
interleaved new CH sequenceθ′i.

Fig. 3 illustrates an example of the proposed frame-
work. In the example, the original CH sequence is
{1, 2, 3, 1, 2, 3, 1, 2, 3, . . .} and the specified wake-up schedule
is {1, 1, 1, 0, 1, 0, 0, 0}. We demonstrate the resulting new
CH sequence generated in accordance with our proposed
framework, where “r” represents a randomly selected channel.

The average TTR of random channel hopping isN . By
interleaving the random CH process, we can improve the
average performance (i.e., ATTR) of the original CH pro-
tocol θ. By leveraging the properties of wake-up schedules,
the proposed framework maintains a bounded TTR and the
rendezvous diversity inherited from the original CH protocol.

Theorem 1 presents the main result regarding the ren-
dezvous performance improvement by the proposed method.

Theorem 1. The new CH sequence generated by Algorithm 1
has the following properties:

1) It can guarantee rendezvous withinτT slots (thus pre-
serves bounded TTR).

��Wake-up sched. x

New CH seq.

��

1 1 1 0 1 0 0 0

1 2 3 1 2 3 1 2 3Original CH seq.

1 2 3 r 1 r r r

1 1 1 0 1 0 0 0

1 2 3 1 2 3 1

2 3 1 r 2 r r r ��

Figure 3: This figure illustrates an example of the CH
sequence under the proposed framework. The original CH
sequence is{1, 2, 3, 1, 2, 3, 1, 2, 3, . . .} and the wake-up sched-
ule is {1, 1, 1, 0, 1, 0, 0, 0}. The resulting new CH sequence
is {1, 2, 3, r, 1, r, r, r, 2, 3, 1, r, 2, r, r, r . . .}, where “r” repre-
sents a randomly-selected channel.

Algorithm 1 CH sequence generating algorithm
Input: Wake-up schedule,x; original CH sequence,θi.
Output: New CH sequence,θ′i.

1: T ← |x|;
2: ⊲ T denotes the length of the wake-up schedule.
3: t← 0;
4: ⊲ In the first place, initializet to 0, which means that we

begins generating the CH sequence from timeslot0.
5: t′ ← 0;
6: ⊲ θi’s next slot that the algorithm is going to use isθi,t′ .
7: while not rendezvousdo
8: if xt mod T = 0 then
9: θ′i,t ← a random channel;

10: else
11: θ′i,t ← θi,t′ ;
12: t′ ← t′ + 1;
13: ⊲ Updatet′.
14: end if
15: Node i hops onto channelθ′i,t at thet-th time slot;
16: end while

2) It achieves at least the same rendezvous diversity as
the original CH protocol (thus preserves the rendezvous
diversity).

3) If the clock drift isk, let B be |{t ∈ [0, T − 1] ∩ N :
xt = rotate(x, k)t = 1}|, then the ATTR of the new CH
sequence, denoted byATTRθ′ will be B

T
· ATTRθ +

(1− B
T
) ·N (thus whenB

T
is small,ATTRθ′ ≈ N—i.e.,

it improves the ATTR).

Proof: Suppose that two arbitrarily given nodes, say,
nodesi andj, have their original CH sequenceθi andθj with
period lengthτ . Without loss of generality, we assume that the
local clock of nodei is k slots behind that of nodej—i.e.,
the 0-th slot of nodei is thek-th slot of nodej. Hereafter, we
number time slots in accordance with nodei’s clock. Sincex
is a wake-up schedule, we have∃0 ≤ t0 ≤ T − 1 such that

xt0 = rotate(x, k)t0 = 1.

We focus on the(aT + t0)-th slots,a = 0, 1, 2, . . .. Suppose
that in the t0-th slot, nodei hops onto channelθi,c1 while
nodej hops onto channelθj,c2 . Let A be

∑T−1
t=0 xt. In view

of Algorithm 1, nodei hops onto channelθi,c1+aA while node
j hops onto channelθj,c2+aA in the (aT + t0)-th time slot.
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Sincegcd(τ, A) = 1, we have

{((c1 + aA) mod τ, (c2 + aA) mod τ)}a=0,1,2,...,τ−1

is a permutation of

{(a, (c2 − c1) + a)}a=0,1,2...,τ−1.

Consider

{(θi,a, θj,(c2−c1)+a)}a=0,1,2,...,τ−1.

Since θ is a CH protocol, given a clock drift of(c2 − c1)
slots, two nodes that useθi and θj as their CH seequences
respectively will rendezvous, say, oñC different channels (̃C
is in fact the rendezvous diversity of the original CH protocol
θ) andT̃ different time slots inτ consecutive slots. Therefore
there areT̃ solutions to the equation

θi,a = θj,(c2−c1)+a

w.r.t. a = 0, 1, 2, . . . , τ − 1. For a = 0, 1, 2, . . . , τ − 1, when
θi,a = θj,(c2−c1)+a, θi,a can takeC̃ different values, which
implies that the new hybrid CH protocolθ′ under our proposed
framework achieves at least the same rendezvous diversity as
the original CH protocol.

Hence, we conclude that the new CH sequence can guar-
antee rendezvous withinτT slots and that it preserves the
rendezvous channel diversity of the original CH sequence.

Now we calculate the ATTR of the new CH sequence. Let
B be

|{t ∈ [0, T − 1] ∩ N : xt = rotate(x, k)t = 1}|.

SupposeX and Y are uniformly random in[1, N ] ∩ N and
independent, we have Pr[X = c] = Pr[X = Y ] = 1

N
for any

fixed c ∈ [1, N ]∩N. The ATTR of the new CH sequence will
be

ATTRθ′ =
B

T
·ATTRθ + (1 −

B

T
) ·N.

If B
T

is small, we haveATTRθ′ ≈ N .

IV. PERFORMANCEEVALUATION

A. Simulation Setup

In this section, we evaluate and compare the performance
of existing protocols (e.g., CRSEQ [11] and Jump-Stay (JS)
[10]) and those hybrid protocols extended from our proposed
framework (i.e., after the interleaving operation) via simulation
results.

In our simulations, there are a total number ofN = 11 fre-
quency channels and 20 pairs of nodes that need to rendezvous
via channel hopping. Meanwhile, each node determines its
clock time randomly and independently, yielding a stochastic
clock drift between each pair of nodes. We simulatedX < N
primary transmitters operating onX randomly chosen chan-
nels. A timeslot has a length of 10 ms. All secondary nodes
are within the transmission range of any primary transmitter.
In most existing work, it is assumed that a primary transmit-
ter follows a “busy/idle” transmission pattern on a licensed
channel [7], and we assume the same traffic pattern here—
i.e., the busy period has a fixed length ofb timeslots, and the
idle period follows an exponential distribution with a mean

of l timeslots. A channel is viewed as “unavailable” when
PU signals are present in it. The PU traffic is the probability
that PU signals are active in a channel under the specified
traffic pattern. Once two nodes hop onto a primary-user free
channel in the same timeslot, the rendezvous between them is
established.

We conduct simulations while varying the duty cycle of
wake-up schedules and the PU traffic. Specifically, we choose
wake-up schedules with duty cycles being5/14, 7/14, 9/14,
13/14 and1, under PU traffic of25% and50%. Note that if
the duty cycle of the wake-up schedule happens to be1, the
resulting CH protocol is exactly theoriginal CH protocol—
no random CH process interleaved. And we employ the three
metrics defined in Sec. II-B to evaluate the performance of
rendezvous protocols.

B. Maximum TTR

The results for MTTR of original CRSEQ/Jump-stay and
those resulting from our framework are shown in Fig. 4. Note
that if the duty cycle is1, the resulting CH protocol generated
by our framework is exactly the original CH protocol (the
original CRSEQ or Jump-stay).

We can observe that despite different PU traffic intensity
and for both CRSEQ and Jump-stay, a larger duty cycle
leads to an increased MTTR (i.e., worse performance). The
original CRSEQ/Jump-stay has the longest MTTR compared
with those generated by our framework.

This confirms that the proposed framework can preserve
bounded TTR (shown in Theorem 1) and improve MTTR in
addition. With the import of random channel hopping slots,
our framework achieves better worst-case performance.

C. Average TTR

We illustrate the results for ATTR of original CRSEQ/Jump-
stay and those resulting from our framework in Fig. 5. It is
noteworthy that a larger duty cycle positively correlates with
ATTR for both protocols and under different PU intensity.
Specifically, the original CRSEQ/Jump-stay (duty cycle equals
1) has the worst performance in ATTR. This validates the
theoretical analysis in Theorem 1. A smaller duty cycle implies
more stochastic ingredient (an increased number of random
slots are interleaved into the resulting CH sequence), which,
in turn, significantly improves the average performance. To
summarize, the CH protocols generated by our framework
outperform the original protocols (original CRSEQ/Jump-
stay).

D. Rendezvous Channel Diversity Rate

Rendezvous channel diversity rate is a metric for measuring
a CH protocol’s ability to establish rendezvous in varied chan-
nels. The results for diversity rates of original CRSEQ/Jump-
stay and those resulting from our framework are presented
in Fig. 6(a) and 6(b), respectively. It can be observed that
diversity rate declines as the duty cycle increases and that
the original CRSEQ/Jump-stay has the worst/smallest diversity
rate. This observation supports the conclusion of Theorem 1
that our proposed framework can preserve diversity rate. In
addition, it validates that by introducing stochastic CH slots,
we can obtain an improved diversity rate.
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Duty cycle of wake-up schedule
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(a) Interleaving CRSEQ and random CH

Duty cycle of wake-up schedule
5/14       7/14       9/14       13/14      JS(=1)     
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(b) Interleaving Jump-stay and random CH

Figure 4: Maximum TTR of hybrid
protocols (duty cycle smaller than 1)
and the original CRSEQ/Jump-stay
protocol (duty cycle equals 1). We
interleave CRSEQ (or Jump-stay) with
random channel hopping in Fig. 4(a)
(or Fig. 4(b)).
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Figure 5: Average TTR of hybrid pro-
tocols (duty cycle smaller than 1) and
the original CRSEQ/Jump-stay pro-
tocol (duty cycle equals 1). We in-
terleave CRSEQ (or Jump-stay) with
random channel hopping in Fig. 5(a)
(or Fig. 5(b)).
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Figure 6: Diversity rate of hybrid pro-
tocols (duty cycle smaller than 1) and
the original CRSEQ/Jump-stay pro-
tocol (duty cycle equals 1). We in-
terleave CRSEQ (or Jump-stay) with
random channel hopping in Fig. 6(a)
(or Fig. 6(b)).

V. CONCLUSION

In this paper, by leveraging the properties of neighbor
discovery wake-up schedules, we establish a design frame-
work for creating a series of hybrid CH protocols whereby
every SU employs the specified wake-up schedule to inter-
leave the sequence-based (or random) CH protocol in the
awake (or asleep) mode. Analytical and simulation results
show that the hybrid CH rendezvous protocols under the
proposed framework can significantly improve average time-
to-rendezvous and preserve a low upper-bound of TTR and
the rendezvous channel diversity simultaneously. It is also
validated by extensive simulation results that our method
remarkably outperforms existing CH protocols, CRSEQ and
Jump-stay.
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