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Abstract—With the rapid growth of Internet technologies, This cloud-based model owns some advantages, chief among
cloud computing and social networks have become ubiquitous which is the lowered costs in infrastructure. They can rent
An increasing number of people participate in social netwoks 15,4 computing services from other third part due to their
and massive online social data are obtained. In order to explt - . .
knowledge from copious amounts of data obtained and predict aCtlJ_"’_ll needs ar_ld _Scale up and down at any time without taking
social behavior of users, we urge to realize data mining in additional cost in infrastructurel[2]. Beyond that, theg able
social networks. Almost all online websites use cloud secés to choose different cloud computing services accordindnéo t
to effectively process the large scale of social data, whichre distribution of social data. Naturally, for social data ks
gathered from distributed data centers. These data are so tge- in cloud, a distributed online learning algorithm is needed

scale, high-dimension and widely distributed that we propse a . . . L .
distributed sparse online algorithm to handle them. Additionally, handle the massive social data in distributed scenarios [3]

privacy-protection is an important point in social networks. We Based on cloud computing, we equip each data center with
should not compromise the privacy of individuals in networks, the independent online learning ability and they can exghan
while these social data are being learned for data mining. Thswe  information with other data centers across the networkhEac
also consider the privacy problem in this article. Our simultions  45t5 center is urged to build a reliable model to recommend

shows that the appropriate sparsity of data would enhance ta . . . . . .
performance of our algorithm and the privacy-preserving mehod its local users without directly sharing social data witltlea

does not significantly hurt the performance of the proposed Other. In theory, this approach is a distributed optimoati

algorithm. technology and many researchels [4]-[6] have been devoted to
_Index Terms—Cloud computing, social networks, sparse, dis- jt. To estimate the utility of the proposed model, we use the
tributed online learning. notion “regret” [7] in online learning (see Definition 3).

In Big Data era, social big data are both large scale and high
dimension. A single person has a variety of social actigiire

A social network is referred as a structure of “Internet 85era social network, so the corresponding vector of his/heiasoc
interconnected through a variety of relatiohs [1]. For ag&n information is “long”. However, when a data miner studies th
user, he/she has some different relationships in diffesecial consumer behavior about one interest, some of the infoomati
networks such as friends and followers. Also, one user hiasthe vector may not be relevant. For example, a person’s
diverse social activities, e.g., post messages, photooted height and age cannot contribute to predicting his tastas;Th
media on Facebook and upload, view, share and commenthdgh dimension could enhance the computational complexity
videos on YouTube. According to statistics, alma&d TB so- of algorithms and weaken the utility of online learning misde
cial data are generated per day. It takes high operatiorséé colo deal with this problem, we introduce a sparse solution in
to store the data and it is a waste of resources without usisgcial big data. In this paper, we introduce two classicalips
them. Hence, we want to conduct the social big data analys$,effective methods for sparse online learnihg [B]-[10heT
in which the users active in a social, collaborative contefitst group (e.g.,[11]) induces sparsity in the weights dfron
to make sense of data. However, handling such a volumeleérning algorithms via truncated gradient. The secondigro
social data brings us many challenges. We next describe #tedies on sparse online learning follows the dual averagin
main challenges and the corresponding approaches to themlgorithm [12]. In this paper, we will exploibnline mirror

The social data are generated all around the world adescent [13] and Lasso-L; norm [14] to make the parameter
collected over distributed sources into different andrcte- updated in algorithm sparse.
nected data centers. Hence, it is hard to process the dat&urthermore, exchanging information contained in social
in a centralized model. Concerned with this problem, clowthta among data centers may lead to privacy breaches as it
computing may be a good choice. As is known, many socitbws across the social network. Once social data are mined
networking websites (e.g., Facebook, Twitter, LinkedIrd anwithout any security precautions, it is of high probabitibydi-
YouTube) obtain computing resources across a network.eThesilge privacy. Admittedly, preserving privacy consequeait
corporations host their social networks on a cloud platforfead to the lowered performance of knowledge discovery in
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cloud-based social data. Therefore, we intend to design an
algorithm, which protects the privacy while makes full uge o
the social data. Finally, we choose the “differential pciva
[15] technology to guarantee the safety of data centers in
cloud. At a high level, a differentially private online ledang
model guarantees that its output of data mining does not
change “too much” because of perturbations (i.e., add some §}
random noise to the data transmitted) in any individual &oci
data point. That means whether or not a data point being T@“\
the database, the mining outputs are difficult to distinyaisd o oy
then the miner cannot obtain the sensitive information dbas@
on search results. B, ,
In conclusion, we make three contributions: 1) we propose AN
a distributed online learning algorithm to handle decdizizd
social data in real time and demonstrate its feasibility; 2) >
sparsity is induced to compute the high-dimension social @}‘ Data Centerﬂ
data for enhancing the accuracy of predictions; 3) difféa¢n
privacy is used to protect the privacy of data without sesipu
weaken the performance of the online learning algorithm. . . . .
This paper is organized as follows. Section Il introduces LS local data center and then exchangasith neighbors. This

system model and propose the algorithm. The privacy amlygpmmunlcatlon mechams_m form_s a neywork tc_)pol_ogy. The
is done in Section Ill. We analyze the utility of the algonitfin hetwork topology can be fixed or time-variant, which is pive

Section IV. Numerical results and performance improvemse h?ve R;) great influence on the utility of our algorithm in
are shown in Section V. Section VI concludes the paper. ection 1v:

Fig. 1. Private Social Big Data Computing over Data Centetwdeks

A. Communication Graph

. . . . For our online learning social network, we denote the
In this section, the system model and our private online L . o

. . communication matrix byA and let a;; be the (i, j)-th
learning algorithm are presented.

Consider a social network, in which all online users ar%lement ofA. In the system; is the weight of the learning
' ameter which théth cloud node transmits to theth one.

. r
served on cloud platforms, e.g., Fig.1. These users oper(%?e(t) ~ 0 means there exists a communication between the

on their own personal page and the generated social dl@q}% andj-th nodes at round, while a;;(t) — 0 means non-

are collected and transmitted to the nearest data center on o e
. R communication between them. . For a clear description, we
cloud, just as shown in Fig.1, all data are collected by th

data centers marked withi — . Because of the hugeaeenote the communication graph for a nadat roundt by

network, many data centers are widely distributed. Each dat Gi = {(i,4) : a;; > 0}, (1)

center has its corresponding cloud computing node, where th

nearby social data are processed in real time . As a holonorffiaereai; € A.

system, the social network should have a good knowledge ofl© achieve the global convergence, we make some assump-

all data it owns, thus data centers should exchange infismattions aboutA. _ _

with each other. Since there are too many data centers an@Ssumption 1. For an arbitrary node, there exists a

most of them are located over the world, a data cent@linimal scalam, 0 <7 <1 such that

never can communicate with all other centers. To achie¥d@) a;; > 0 for (i, ) € G,

better economic benefits, each data center just can excharge Z;-n:l aij =1and) " a;; =1,

information with neighboring ones (e.gl is just connected (3) ai; > 0 implies thata;; > 7.

to its adjacent center§’ and GG). Furthermore, random noise Here, Assumptions (1) and (2) state that each node com-

should be added to each communication for protecting thetes a weighted average of neighboring learning parameter

privacy (yellow arrows in Fig.1). Since such social big datassumption (3) ensures that the influences among the nodes

need to be efficiently and privately processed with the Bahit are significant.

communications, we focus on distributed optimization and The above assumption is a necessary condition which

differential privacy technologies. presents in all researches (e.d.] [4]-[6]) about distebut
We next introduce how the communications among daggtimization. Fortunately, this technology can be usedtoes

centers on cloud are conducted. Recall that we intend dar distributed online learning in social networks.

realize knowledge discovery in social data in real time. A _ )

new parameter, e.qw, should be created to denote the onlin8- Sparse Online Learning

learning parameter (containing the knowledge mined from As described, a social data is high dimensional. Hence, its

data). At each iteration, each cloud node updatdsased on corresponding learning parameteris a long vector. In order

Il. SYSTEM MODEL



to find the factors most related to one predicting behavi@equencest and X’ that differ in one social data entry, the

we need to aggressively make the irrelevant dimensions zédialowing holds:

Lasso [14] is a famous method to produce some coefficients

that are lxactIyO. Lasso cannot lge directly used in the PriA(X)] < e“Pr[A(X)]. (4)

algorithm, we combine it with online mirror descent (see This inequality guarantees that whether or not an individua

Algorithm 1) which is a special online learning algorithm. participates in the database, it will not make any significan
For convenient analysis, we next make some assumptiatifference on the output of our algorithm, so the adversary i

about the mathematical model of online learning system ot able to gain useful information about the individualgmer.

social network. We assume to hawe data centers over the . _ . . .

social network. Each data center collects massive social dQ - Private Distributed Online Learning Algorithm

every minute and processes them on cloud computing. FoNVe present a private distributed online learning algorithm

the data generated from social networks, we uge denote for cloud-based social networks. Specifically, each clow-c

the social data of individual persom. (e.g., 7 = w”z) puting node propagates the parameter with noise added to

denotes the prediction for a user, which helps the onlifgighboring nodes. After receiving the parameters fronersth

website offer the user satisfying service. Then, the usér wgach node compute a weight average of the received and its

give a feedback denoted by telling the website whether 0ld parameters. Then, each node updates the parameter due

the previous prediction makes sense for him. Finally, due ¥ general online mirror descent and induce sparsity using

the loss function (e.g.f (w,x,y) = [1 _wa.y} ), we Lasso. The algorithm is summarized in Algorithm 1. Note

compare thej andy to find how many “mistakes” the online that w? denotes the parameter of tih cloud node at time

time and social networks, we obtain the regret of the whole__ i _ i i

system, based on which we can know the performance of Q4gorithm 1 Private Distributed Online Learning

algorithm. 1: Input: Cost functionsf(w) := £(w,xt,yi), i € [1,m)]
Assumption 2.Let IV denote the set ofy, we assuméV andt € [1,T]; double stochastic matri¥d = (a;;) €

and the loss functiorf satisfy: Rmxm;

(1) The setiV is closed and convex subset &f'. Let R 2 Initiaization: 6} =0, i & [1,m]

sup ||z —y|| denotes the diameter ¥ . fo:c(fr:e;éﬁ'#(;dg(i 1 mdo

receiver: € R"

pi = Vi (6})

wi = argminw% ||p§E - w”; + Aellwll;
predicty;

receivey; and obtainf; (w}) := {(w}, z},y;)

z,yeW
(2) The loss functiory is strongly convex with modulusy >
0. For all z,y € W, we have

(Viy=2) < fw - fi@-Fy-a @

© oo N o0 wd

(3) The subgradients of are uniformly bounded, i.e., there

existsL > 0 , for all z € W, we have 10: Oi1 = > aiity — atgg,Nwheregg = Vfi(w)
IV £i()|| < L. @) broadcast to neighbor8;_ , = 6;,, + ¢;
! - 12:  end for

Assumption (1) guarantees that there exists an optim&d: end for
solution in our algorithm. Assumptions (2) and (3) help us
analyze the convergence of our algorithm.

IIl. PRIVACY ANALYSIS

C. Differential Privacy As r_nentione_d, exploiting differential privacy (DL) protsc
_ o ) ~ the privacy while guarantees the usability of social date. |
_Dwork [_15] first proposed the definition of dlf'ferentlalstep 11 of Algorithm 1,0 is the parameter exchanged, to
privacy which makes a data miner be able to release sofgich we add a random noise. The added noise leads to the
statistic of its database without revealing sensitive rimfation perturbation off, so someone else cannot mine individual
about a particular value itself. In this paper, we realizeati priyacy according to an exact parameter. To recall, DL is de-
perturbation by adding a random noise denotedébyThis  fined mathematically in Definition 1, which aims at weakening
noise interferes some malicious data miners to steal sansiihe significantly difference betwees (X) and.A (X'). Only

information (e.g., birthday and contact info). Based on thgtisfying the inequality (4), can we ensure the privacy of
parameters defined above, we give the following definition.ggcial data in each data center.

Definition 1. Assume thatA denotes our differentially _ )
private online learning algorithm. Let = (x1,zo,...,27) A. Adding Noise
be a sequence of social data taken from an arbitrary node’'Since we add noise to mask the difference of two datasets
local data center. Lef = (0;,0-,...,07) be a sequence &F differing at most in one point, the sensitivity should be wmo
results of the node and = A(X). Then, our algorithm4 Dwork [15] proposed that the magnitude of the noise depends
is e-differentially private if given any two adjacent questioron the largest change that a single entry in data source could



have on the output of Algorithm 1; this quantity is referred t Having described the method and magnitude of adding
as thesensitivity of the algorithm. The sensitivity of Algorithm noise, we next prove how to guarantedifferentially private
1 in defined. for 6. First, we demonstrate the privacy preserving at each
Definition 2 (Sensitivity). Based on Definition 1, for any time ¢.

X and &”, which differ in exactly one entry, we define the Lemma 2. At the ¢-th round, thei-th cloud node’s output
sensitivity of Algorithm 1 att-th round as of A, i, is e-differentially private.

. , Proof. Let i = 0 + 0! and 6’ = 0!’ + o/, then by the

S(t)= ;EIE/HA(X) A@X- ©) definition of differential privacy (see Definition 1)) is e-

Lemma 1.Under Assumption 1, if thd.;-sensitivity of the differentially private if _

i € ni!
parameted is computed as (5), we obtain Pr{f] < e Pr(f; ]. ©)
S(t) < 2a,v/nL, (6) We have |
wheren denotes the dimensionality of the vectors. Pr (5;) ﬁ exp (—W)

Proof. See Algorithm 1,0 is the exchanged parameter and Pr (5-/) - e|6i’ [1-0L)]
added with the noisé. According to Definition 1, we have TSP T TS0

i i ) )
A4 () =A@, = |6 - 6]|| oo 0 1j] - il
e B I e |
Assuming that the only differenct social data comes at time - e P S (t)
we have
gi oi i gi ' _ b i e||6i" - i
e Zj @i — g and b1y = Zj 4% T MGt 5 = exp S (1) L] <exp(e),
where (zf,yi) and (zi’, y') lead tog! and ¢!’ due to Step 9
and 10 in Algorithm 1. where the first inequality follows from the triangle ineqtal
Then, we have and the last inequality follows from Lemma 1. O

/

McSherry [16] has proposed that the privacy guarantee
does not degrade across rounds as the samples used in the

% %
9t+1 - 9t+1

~ . ~ .y
- H(Zj aij0; — ugi) — (Zj aijf; — oug; )Hl rounds are disjoint. Obviously, our system model is an @nlin
<a \/E(H 1H +’ i ) processing website, where thg social _data is flowing. _We
= Itll2 9t ], dynamically serve the users with favorite recommendations
< 2a4\/nL. (7) due to users’ recent social behavior. Hence, during The
o rounds of our Algorithm 1, the social data are disjoint. As
By Definition 2, we know Algorithm 1 runs, the privacy guarantee will not degradeeTh
S(t) < ‘ i — o’ g we obtain the following theorem.

_ . ) Theorem 1 (Parallel Composition).On the basis of Defini-
Finally, combining (5) and (7), we obtain (6). U tion 1 and 3, under Assumption 1 and Lemma 2, our algorithm

We determine the magnitude of the noise as followsz IS ¢-differentially private. _
R” is a Laplace random noise vector drawn independentIvFor details of proof of Theorem 1, readers are advised to
according to the density function: 16].

Lap (xl1) = 1 exp (_@) 7 ®) IV. UTILITY ANALYSIS
2p H We have mentioned the notion regret, which is used to
wherep = S (t)/e. After this, we useLap (1) to denote the estimate the utility of online learning algorithms. The netg
Laplace distribution. of our online learning algorithm represents a sum of migtake
) ) ) ) which are made by all data centers during the learning and
B. Guaranteeing c-Differentially Private predicting process. When social websites conduct perigewal

In our system model, as an independent cloud node, eaekommendations (e.g., songs, videos and news etc.) fos,use
data center should protect the privacy at every moment.ribt all recommendations make sense for individuals. But we
there is a data center invaded by a malicious user, this “batsh that with the system working and more social data
kid” is able to get some information about other users’ docibeing learnt, the predictions used for recommending become
data stored in other data center across the network. Henu®yre accurate. That means the regret should have an upper
every data transmitted should be processed by DL (i.esfgatibound. Therefore, lower regret bounds indicates better and
(4)). Recalling from Fig.1, we add random noise to everaster distributed online learning algorithms. Firstlye \give
communication in the data center network. the definition of “regret”.



Definition 3. We propose Algorithm 1 for social websites According to Lemma 1 of Wang et al.l[9], we know
over data center networks. Then, we measure the regret of the

algorithm as wi" e < Vi (00" 90+ Mllgely (16)
T m T m . . .
i . i Finally, using (16) and (17), we obtain (12). O
=2 filw)—mind > fi(w).  (10)
=1 i=1 weW Based on Lemma 3, we easily have the regret bound of our

wherew, = = 3", wi, denotes the average of parameters of system model. _ o
all data centers at time Hence,R is computed with respect Theorem 2. We propose Algorithm 1 for social big data
to an average ofn parameterSwt', which approximately computing over data center_ networks. Under Assump2t|on 1
estimates the actual performance of the whole system. = and 2, we define regret function as (11). $etw) = 3 [[wl)>.

For analyzing the regre® of Algorithm 1, we firstly present Which is 1-strongly convex. Let\, = a;A, then the regret
a special lemma. bound is

Lemma 3. Let ¢; be g-strongly convex functions, which 2v/2m*nTL 1
have the normg:||,, and dual normg-||”. . When Algorithm R< RV(L+A)mTL+ —— VT — =) @7)

1 keeps runnlng We have the foIIowmg inequality Proof. For convex functions, we know that

22”f i (we) = £ (w) < (wi = w)" g
| Im Intuitively, due to (11) and (12), we obtain
< mer (w)/ow + o Z [@7 (6:) — i_1 (6:)
t=11=1 R < mor (w)/ag + — Z Z ©r (0¢) — i1 (01)
+ S ol + adddy + Aol v P
- ——W%H+QM@M+AH%M} (18
Proof. We define®: = of (0:41) — ©i_, (6;), wheref; = B

1 7 .
i bt - since ¢ (w) = L [lw|Z, we havey; (6;) — v}, (6;) = 0

Orp1 = — Z 01 = Zl (ZJ ai;0] — atgi) andj = 1.
1 i 1 2
= Zj (ZZ aij) 9',5 - Zl gy R<2 [|wll5 i mTL? Ozt t)\mTL+mTZZ (E21PY

1 ~ 1 ; X t=1 i=1
T m Zj b - m Zz et S1 52
1 ; ; 1 -
= > (9€ + 5?) - > g where||g;|| < L is defined previously.
1 ! _ _ We first computeS1: settinga; = ﬂ, we have
_ 0t+% Z (5§ _ Oztgi) 20/(L+\)mTL
J
— 0,46, — cugr, (12) S1< R(L+ N mTL~O (\/T) , (19)
where intuitivelys, = L > 8] andg, = L 3" gl whereR is defined in Assumption 2.
First, according to Fenchel-Young inequaI]ity, we have Then, forS2, we have
2\/_an 1
Z‘bz o1 (Or41) — 905 (01) = @7 (O141) ZZ ot | < <\/__ 5) ,
t=1 i=1
— 2v2m?*nTL 1
2w 0ri1 = pr (). (13) g2 < V2 TL (\F— 5) ~0(VT). (20
Then, . ‘ .
O = o (O101) — 0F (0) + 05 (01) — i1 (04) Combining (20) and (21), we obtain (18). O

o According to Th 2, th t bound b th
< 0" (0,) — o (0,) — uVor () g, + S 2 4 ayll5,||,. According to Theorem 2, the regret bound becomes the
< @1 (00) = i1 (00) — Vi () g1 lgellz + clloelly classical square root regrél(v/T) [L7], which means less

(14) mistakes are made in social recommendations as the aligorith
Combining (14) and (15), summing ov&r = 1,...T and runs. This result demonstrates that our private onlineniagr

t=1,..,m, we get algorithm for the social system makes sense. Further, due to
(18), we find: 1) a higher privacy level can enhance the

D> (Vi (6:) —w) ' g regret bound; 2) the number of data centers gets more, the

t=1i=1 regret bound become higher; 3) the communication maigix

seems not to affect the bound, but we think it may affect
the convergence. All the observations will be simulatechia t
(15) following numerical experiments.

T m 2
* (0%
<mer (w)+ > |:90t 6) = @i1 (00) + 55 llgels + el

t=1 i=1



non-sparse computing does. Fig.5 studies the performance

0.1 0.1
< 008 N 5 0.08 ?313}33; with respect to the number of data center nodes. More centers
éﬁoos el ) E’Dooe —™e¥ | can have a little decline (as much 4% per 4 nodes) in the
= = accuracy.
%‘004 %D 0.04
Z 002 Z o002 VI. CONCLUSION
0 0 Internet has come into Big Data era. Social networks
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challenges, we proposed a private distributed online legrn
algorithm for social big data over data center networks.
We demonstrated that higher privacy level leads to weaker
utility of the system and the appropriate sparsity enhances
the performance of online learning for high-dimension data

Furthermore, there must exist delay in social networksgtvhi
we did not consider. Hence, we hope that online learning with
delay can be presented in the future work.
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