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Abstract—In this paper, we investigate the resource allocation
algorithm design for full-duplex simultaneous wireless informa-
tion and power transfer (FD-SWIPT) systems. The considered
system comprises a FD radio base station, multiple single-antenna
half-duplex (HD) users, and multiple energy harvesters equipped
with multiple antennas. We propose a multi-objective optimiza-
tion framework to study the trade-off between uplink transmit
power minimization, downlink transmit power minimization, and
total harvested energy maximization. The considered optimiza-
tion framework takes into account heterogeneous quality of
service requirements for uplink and downlink communication
and wireless power transfer. The non-convex multi-objective
optimization problem is transformed into an equivalent rank-
constrained semidefinite program (SDP) and solved optimally by
SDP relaxation under certain general conditions. The solution
of the proposed framework results in a set of Pareto optimal
resource allocation policies. Numerical results unveil an interest-
ing trade-off between the considered conflicting system design
objectives and reveal the improved power efficiency facilitated
by FD in SWIPT systems compared to traditional HD systems.

I. INTRODUCTION

Next generation communication systems aim at providing
self-sustainability and high data rates to communication net-
works with guaranteed quality of service (QoS). A promising
technique for prolonging the lifetime of communication net-
works is energy harvesting (EH). Among different EH tech-
nologies, wireless power transfer (WPT) via electromagnetic
waves in radio frequency (RF) enables comparatively control-
lable EH at the receivers compared to conventional natural
source, such as wind, solar, and tidal. Recent progress in the
development of RF-EH circuitries has made RF-EH practical
for low-power consumption devices [1]–[3], e.g. wireless
sensors. In particular, RF-EH enables simultaneous wireless
information and power transfer (SWIPT) [4]–[7]. Thereby,
as a carrier of both information and energy, the RF signal
unifies information transmission and power transfer. Besides,
RF-EH advocates energy saving by recycling the energy in the
RF radiated by ambient transmitters. In SWIPT systems, the
amount of harvested energy is an equally important QoS metric
as the data rate and the transmit power consumption which
are traditionally considered in communication networks. Thus,
resource allocation algorithms for SWIPT systems should
also take into account the emerging need for energy transfer
[8]–[10]. In [8], energy-efficient SWIPT was investigated in
multicarrier systems, where power allocation, user scheduling,
and subcarrier allocation were considered. In [9], the authors
proposed a power allocation scheme for energy efficiency

Robert Schober is also with the University of British Columbia. This work
was supported in part by the AvH Professorship Program of the Alexander
von Humboldt Foundation.

maximization of large scale multiple-antenna SWIPT systems.
In [10], multi-objective optimization (MOO) was applied to
jointly optimize multiple system design objectives to facilitate
secure SWIPT systems. Although SWIPT has been already
considered for various system setups, the power efficiency of
SWIPT systems [8]–[10], has not been fully investigated and
is still unsatisfactory due to the traditional half-duplex (HD)
operation.

Recently, full-duplex (FD) communication has become a
viable option for next generation wireless communication
networks. In contrast to conventional HD transmission, FD
communication allows devices to transmit and receive simul-
taneously on the same frequency, thus potentially doubling
the spectral efficiency. In practice, the self-interference (SI)
caused by the own transmit signal impairs the simultaneous
signal reception in FD systems severely which has been a
major obstacle for the implementation of FD devices in the
past decades. Fortunately, breakthroughs in analog and digital
self-interference cancellation (SIC) techniques [11] have made
FD communication more practical in recent years. However,
various practical implementation issues, such as protocol and
resource allocation algorithm design, need to be reinvestigated
in the context of FD communications [12]–[15]. In [12], the
authors proposed a suboptimal beamformer design to maxi-
mize the spectral efficiency of FD small cell wireless systems.
In [13], resource allocation and scheduling was studied for FD
multiple-input multiple-output orthogonal frequency division
multiple access (MIMO-OFDMA) relaying systems. More-
over, the energy efficiency of FD-OFDMA relaying systems
was investigated in [14]. The authors of [15] proposed a multi-
objective resource allocation algorithm for FD systems by
considering the trade-off between uplink and downlink trans-
mit power minimization. Although FD communication has
drawn significant research interest [12]–[15], research on FD
SWIPT systems is still in its infancy. Lately, the notion of FD
communication in EH systems has been pursued. Specifically,
the combination of FD and WPT was first considered in [16].
The authors optimized the resource allocation in a system with
WPT in the downlink and wireless information transmission in
the uplink. In [17], the performance of a dual-hop full-duplex
relaying SWIPT system was studied. However, simultaneous
uplink and downlink communication has not been studied
thoroughly for SWIPT systems. In fact, uplink and downlink
transmission occurs simultaneously in FD systems and the
associated information signals can also serve as vital energy
sources for RF energy harvesting. As a result, different trade-
off naturally arise in FD-SWIPT systems when considering the
aspects of uplink and downlink transmission as well as EH.
These observations motivate us to design a flexible resource
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Fig. 1. Multiuser FD SWIPT system with a FD radio base station, M =
1 uplink user, K = 1 downlink user, and J = 1 roaming user (energy
harvester).

allocation algorithm for FD SWIPT systems which strikes a
balance between the different system design objectives.

The rest of the paper is organized as follows. In Section
II, we outline the system model for the considered FD
SWIPT networks. In Section III, we formulate the multi-
objective resource allocation algorithm design as a non-convex
optimization problem and solve this problem by semidefinite
programming relaxation. In Section IV, we present numerical
performance results for the proposed optimal algorithm. In
Section V, we conclude with a brief summary of our results.

II. SYSTEM MODEL

In this section, we first introduce the notation adopted in
this paper. Then, we discuss the signal model for FD SWIPT
networks.

A. Notation

We use boldface capital and lower case letters to denote
matrices and vectors, respectively. AH , Tr(A), and Rank(A)
represent the Hermitian transpose, trace, and rank of matrix A,
respectively; diag(A) returns a diagonal matrix containing the
diagonal elements of matrix A on its main diagonal; A−1 and
A† represent the inverse and Moore-Penrose pseudoinverse
of matrix A, respectively; A � 0 indicates that A is a
positive semidefinite matrix; IN is the N ×N identity matrix;
CN×M denotes the set of all N ×M matrices with complex
entries; HN denotes the set of all N ×N Hermitian matrices;
|·| and ‖·‖ denote the absolute value of a complex scalar
and the Euclidean vector norm, respectively; E{·} denotes
statistical expectation; [x]+ = max{x, 0}; the circularly sym-
metric complex Gaussian distribution with mean vector µ and
covariance matrix Σ is denoted by CN (µ,Σ); and ∼ stands
for “distributed as”.

B. Signal Model

We focus on a multiuser wireless communication system.
The system consists of an FD radio base station (BS), K HD
downlink users, M HD uplink users, and J roaming users,
cf. Figure 1. The BS is equipped with N > 1 antennas
that can simultaneously perform downlink transmission and
uplink reception in the same frequency band [11]. All uplink
and downlink users are single-antenna devices to limit the
hardware complexity. On the other hand, to facilitate efficient

EH, we assume that the roaming users are multiple-antenna
devices, which are equipped with NEH > 1 antennas.

For downlink FD communication, K independent signal
streams are transmitted simultaneously at the same frequency
to the K downlink users. The transmitted signal at the FD
radio BS is given by

x =

K∑
k=1

wkd
DL
k + q, (1)

where dDL
k ∈ C is the information bearing signal intended

for downlink user k ∈ {1, . . . ,K}. Without loss of generality,
we assume E{|dDL

k |2} = 1. Besides, a beamforming vector
wk ∈ CN×1 is employed to assist downlink information
transmission. On the other hand, in order to facilitate efficient
WPT1 to roaming users, a dedicated energy beam, q ∈ CN×1,
is transmitted concurrently with the information signal. The
energy signal q is modeled as a complex pseudo-random
sequence with covariance matrix Q = E{qqH}. In general,
both pseudo-random signals and constant amplitude signals
are potential candidates for implementing the energy signal.
However, pseudo-random energy signals can be shaped more
easily to satisfy certain requirements on the spectrum mask
of the transmit signal and are thus adopted in this paper.
In particular, we assume that q is generated at the BS by
a pseudo-random sequence generator with a predefined seed.
This seed information is known at the downlink users. Thus,
the interference caused by the energy signal can be completely
cancelled at the downlink users before decoding the desired
signals.

C. Channel Model
We consider a narrow-band slow fading channel. The re-

ceived signal at downlink user k is given by

yDL
k = hHk x +

M∑
m=1

√
Pmfm,kd

UL
m︸ ︷︷ ︸

co-channel interference

+nDL
k , (2)

where hk ∈ CN×1 denotes the channel vector between the
BS and downlink user k. The second term in (2) denotes
the co-channel interference (CCI) caused by simultaneous
uplink transmission in the FD system. fm,k ∈ C is the
channel gain between uplink user m and downlink user k.
dUL
m and Pm denote the uplink transmit signal from uplink

user m and the corresponding transmit power, respectively.
We assume E{|dUL

m |2} = 1 without loss of generality.
nDL
k ∼ CN (0, σ2

DL,k) denotes the additive white Gaussian
noise (AWGN) at downlink user k.

At the same time, the FD BS receives signals from M uplink
users simultaneously. The corresponding received signal is
given by

yUL =

M∑
m=1

√
Pmgmd

UL
m

+ c︸︷︷︸
self-interference cancellation noise

+nUL, (3)

where gm ∈ CN×1 denotes the channel vector between uplink
user m and the BS. Vector nUL ∈ CN×1 represents the

1 In this paper, we adopt a normalized unit energy, i.e., Joule-per-second.
Thus, the terms “energy” and “power” are interchangeable.



AWGN distributed as CN (0, σ2
ULIN ). Due to the concurrent

uplink reception and downlink transmission at the FD radio
BS, the SI caused by the downlink transmit signal impairs
the uplink signal reception. In practice, different interference
mitigation techniques such as antenna cancellation, balun
cancellation, and circulators [18], [19] have been proposed
to alleviate the impairment caused by SI. In order to iso-
late the resource allocation algorithm design from the spe-
cific implementation of self-interference mitigation, we model
the self-interference cancellation induced noise by vector
c ∼ CN (0, %diag(E{HSI(xxH)HH

SI})) [19, Eq. (4)], where
HSI ∈ CN×N is the self-interference channel and 0 ≤ %� 1
is a constant indicating the noisiness of the self-interference
cancellation at the FD BS.

In the considered system, both downlink and uplink signals2

act as energy sources to the roaming users (energy harvesters).
The received signal at energy harvester j ∈ {1, . . . , J} is

yEH
j = ΩH

j x +

M∑
m=1

φj,m
√
Pmd

UL
m + nEH

j , (4)

where matrix Ωj ∈ CN×NEH

and vector φj,m ∈ CNEH×1

denote the channel between the BS and energy harvester j,
and the channel between uplink user m and energy harvester
j, respectively. Vector nEH

j ∈ CNEH×1 represents the AWGN
at energy harvester j distributed as CN (0, σ2

EHINR).
We note that all channel variables, i.e., hk, fm,k, gm, HSI,

Ωj , and φj,m, capture the joint effect of path loss and small
scale fading.

III. PROBLEM FORMULATION

In this section, we first introduce the adopted QoS metrics.
Then, from the perspectives of uplink power consumption,
downlink power consumption, and EH, we formulate three
single objective optimization problems. In practice, these three
system design objectives are all desirable but conflicting. Thus,
we apply a MOO framework to study multi-objective resource
allocation algorithm design.

A. Quality of Service Metrics
We assume that full channel state information (CSI) is avail-

able at the FD BS for resource allocation. The receive signal-
to-interference-plus-noise-ratio (SINR) at downlink user k is
given by

ΓDL
k =

|hHk wk|2
K∑
i 6=k

|hHk wi|2 +

M∑
m=1

Pm|fm,k|2 + σ2
DL,k

, (5)

where the interference from the energy beamforming signal,
i.e., Tr(hHk Qhk), has already been cancelled since energy
signal q is known to the downlink users.

For uplink transmission, we adopt zero-forcing beamform-
ing (ZF-BF) for detection at the BS. In contrast to optimal min-
imum mean square error beamforming (MMSE-BF) detection,
ZF-BF facilitates the design of resource allocation algorithms
in the considered problem. Additionally, the performance of
ZF-BF converges to the performance of MMSE-BF in the high
SINR regime [20], which is the desired operating region of the

2In general, the adopted system model can be extended to scenarios in
which the uplink users also transmit energy signal to facilitate EH. However,
it may increase the peak-to-average power ratio and is not suitable for uplink
users equipped with low cost power amplifiers.

considered system. Therefore, the receive SINR at the BS with
respect to uplink user m ∈ {1, . . . ,M} can be expressed as

ΓUL
m =

Pm|gHmzm|2
M∑
i 6=m

Pi|gHi zm|2+ SUL
m + σ2

UL‖zm‖2
, (6)

where

SUL
m = %zHm

(
diag

(
HSI

( K∑
k=1

wkw
H
k + Q

)
HH

SI

))
zm (7)

is the noise caused by SI cancellation and zm ∈ CN×1 denotes
the ZF-BF receive vector for decoding the signal of uplink user
m. The ZF-BF matrix is given by

Z = [z1, . . . , zM ]T = (GHG)−1GH , (8)
where G = [g1, . . . ,gM ].

On the other hand, the total amount of harvested energy at
energy harvester j ∈ {1, . . . , J} is given by

PEH
j =ηj

[
Tr
(
ΩH
j (

K∑
k=1

wkw
H
k +Q)Ωj

)
+

M∑
m=1

Pm‖φj,m‖2
]
, (9)

where 0 ≤ ηj ≤ 1 is the energy conversion efficiency of
energy harvester j. It represents the energy loss in converting
the received RF energy to electrical energy for storage. Note
that the thermal noise power is ignored in (9) for EH as it is
negligibly small compared to the power of the received signals.

B. Optimization Problem Formulation
In FD SWIPT systems, downlink transmit power minimiza-

tion, uplink transmit power minimization, and total harvested
energy maximization are all desirable system design objec-
tives. Now, we first propose three single-objective optimization
problems with respect to these objectives.

Problem 1: Downlink Transmit Power Minimization:

minimize
Q∈HN ,w,P

K∑
k=1

‖wk‖2 + Tr(Q)

s.t. C1 :

K∑
k=1

‖wk‖2 + Tr(Q) ≤ PDL
max,

C2 : Pm ≤ PUL
max,m, ∀m,

C3 : ΓDL
k ≥ ΓDL

req,k, ∀k,
C4 : ΓUL

m ≥ ΓUL
req,m, ∀m,

C5 : PEH
j ≥ Pmin,j , ∀j,

C6 : Pm ≥ 0, ∀m, C7 : Q � 0, (10)

where w = {wk,∀k} and P = {Pm,∀m} denote the down-
link beamforming vector policy and the uplink transmit power
policy, respectively. In (10), we minimize the total downlink
transmit power by jointly optimizing downlink information
beamforming vectors wk,∀k, the covariance matrix of energy
signal, Q, and uplink transmit power Pm,∀m. Constants PDL

max
and PUL

max,m in C1 and C2 denote the maximum downlink
transmit power for the FD BS and the maximum transmit
power of uplink user m, respectively. QoS requirements of
reliable communication are taken into account in C3 and C4.
In particular, ΓDL

req,k > 0,∀k, and ΓUL
req,m > 0,∀m, are the

minimum required SINRs for the downlink and uplink users,



respectively. Pmin,j ,∀j, in C5 is the minimum required amount
of harvested energy for energy harvester j. In addition, C6 and
C7 enforce the non-negative uplink transmit power constraints
and the positive semidefinite Hermitian matrix constraint for
covariance matrix Q, respectively.

On the other hand, for the system designs with the objectives
of uplink transmit power minimization and total harvested en-
ergy maximization, respectively, we have the same constraint
set as for Problem 1. Therefore, the problem formulations
for these two other system design objectives are given as,
respectively,

Problem 2: Uplink Transmit Power Minimization:

minimize
Q∈HN ,w,P

M∑
m=1

Pm

s.t. C1− C7, (11)

Problem 3: Total Harvested Energy Maximization:

maximize
Q∈HN ,w,P

J∑
j=1

PEH
j

s.t. C1− C7. (12)

The interdependency between the aforementioned objectives is
non-trivial in the considered FD SWIPT system. For instance,
although a large transmit power ensures high received SINRs
at the downlink users, the strong SI impairs the reception
of the uplink signals at the FD BS. Similarly, increasing
the uplink transmit power to satisfy a more stringent uplink
SINR requirement will lead to severe CCI which degrades
the downlink signal reception. On the other hand, the EH
QoS requirement has to be fulfilled by transferring a sufficient
amount of power in both uplink and downlink. Yet, minimizing
either uplink or downlink transmit power conflicts with the
objective of having a higher power for EH. Hence, a non-
trivial trade-off between these three system design objectives
naturally arises in the considered FD SWIPT system. Thus, a
flexible resource allocation algorithm which can accommodate
diverse system design preferences is desired. To this end, we
apply MOO to systematically address this resource allocation
problem.

In the literature, MOO is commonly adopted as a math-
ematical framework to study the trade-off between multiple
desirable but conflicting system design objectives. The optimal
solution of a MOO program (MOOP) is defined by a Pareto
optimal set; a set of points that satisfy the concept of Pareto
optimality [10]. In the following, we formulate a MOOP
based on the weighted Tchebycheff method [10], in which
the preferences for the aforementioned single system design
objectives are quantified by a set of pre-specified weights. In
fact, compared to other approaches to formulate MOOPs, the
weighted Tchebycheff method can provide a complete Pareto
optimal set by varying the weights, even if the MOOP is
non-convex. For the sake of notational simplicity, we denote
the objective functions of Problems 1–3 as Fn(Q,w,P),
n ∈ {1, 2, 3}, respectively. Then, the MOOP is given by

Problem 4: Multi-Objective Optimization:

minimize
Q∈HN ,w,P

max
n=1,2,3

{
λn

(
Fn(Q,w,P)− F ∗n

)}
s.t. C1− C7, (13)

where F ∗n is the optimal objective value with respect to
Problem n ∈ {1, 2, 3}. In order to represent the three single

system design objective functions in a unified manner, without
loss of generality, the maximization in Problem 3 was rewritten
as an equivalent minimization. As a result, F3(Q,w,P) in
Problem 4 is given by F3(Q,w,P) = −

∑J
j=1 P

EH
j . Constant

λn is a weight imposed on the n-th objective function subject
to 0 ≤ λn ≤ 1 and

∑
n λn = 1, which indicates the preference

of the system designer for the n-th objective function over the
others. We can obtain a set of resource allocation policies
by solving Problem 4 for different predefined weights. In the
extreme case, when λn = 1 and λl = 0,∀l 6= n, Problem 4 is
equivalent3 to the n-th single-objective optimization problem.

C. Optimal Solution
Problems 1-4 are non-convex optimization problems due

to the non-convex constraints C3 and C4. To overcome the
non-convexity, we recast these problems as SDPs via SDP
relaxation. To this end, we define new variables

Wk = wkw
H
k ,Hk =hkh

H
k , Gm=gmgHm, (14)

Zm = zmzHm, and Φj,m=φj,mφHj,m. (15)

Thus, the considered problems can be equivalently transformed
as follows:

Transformed Problem 1:

minimize
W,Q∈HN ,P

Tr
( K∑
k=1

Wk + Q
)

s.t. C2,C6,C7,

C1 : Tr
( K∑
k=1

Wk + Q
)
≤ Pmax,

C3 :
Tr(HkWk)

ΓDL
req,k

≥ IDL
k + σ2

DL,k, ∀k,

C4 :
Pm Tr

(
GmZm

)
ΓUL
req,m

≥ IUL
m + σ2

UL Tr(Zm), ∀m,

C5 : PEH
j ≥ Pmin,j , ∀j,

C8 : Wk � 0, ∀k, C9 : Rank(Wk) ≤ 1, ∀k, (16)

where

IDL
k =

K∑
i 6=k

Tr(HkWi) +

M∑
m=1

Pm|fm,k|2, (17)

IUL
m =

M∑
i 6=m

PiTr(GiZm)

+ %Tr
(
Zm diag

(
HSI

( K∑
k=1

Wk + Q
)
HH

SI

))
, (18)

PEH
j = ηj

[
Tr
(
ΩH
j

( K∑
i=k

Wk+Q
)
Ωj

)
+

M∑
m=1

PmTr(Φj,m)
]
, (19)

and W = {Wk,∀k} is the set of downlink beamforming ma-
trices to be optimized. Constraints C8, C9, and Wk ∈ HN are
introduced due to the definition of Wk. Similarly, Problems
2-4 are equivalently transformed to

Transformed Problem 2:

minimize
W,Q∈HN ,P

M∑
m=1

Pm

s.t. C1− C9. (20)

3Here, equivalent means that both problems have the same solution.



Transformed Problem 3:

maximize
W,Q∈HN ,P

J∑
j=1

PEH
j

s.t. C1− C9. (21)

Transformed Problem 4:

maximize
W,Q∈HN ,P,τ

τ

s.t. C1− C9,

C10 : λn

(
Fn(Q,W,P)−F ∗n

)
≤ τ, n∈{1,2,3}, (22)

where τ is an an auxiliary optimization variable [21].
Evidently, Transformed Problem 4 is a generalization of

Transformed Problems 1-3. Hence, we focus on the method-
ology for solving Transformed Problem 4 in the following.
Transformed Problem 4 is non-convex due to the rank-one ma-
trix constraint C9. To obtain a tractable problem formulation,
we apply SDP relaxation. Specifically, we relax constraint C9
in (22) by removing it from the problem. Then, the considered
problem becomes

maximize
W,Q∈HN ,P,τ

τ

s.t. C1− C8,

C10 : λn

(
Fn(Q,W,P)−F ∗n

)
≤ τ, n∈{1,2,3}.(23)

We note that the rank constraint relaxed problem in (23) is
a convex SDP which can be solved by standard numerical
convex program solvers such as CVX [22]. In particular, if
the obtained solution of the relaxed problem satisfies the rank-
one constraint, i.e., Rank(W∗

k) ≤ 1, then the solution of (23)
is the optimal solution of the original Problem 4. Thus, the
optimal beamforming vector w∗k of the original problem can
be retrieved by solving the relaxed problem. Now, we reveal
the tightness of the SDP relaxation by the following theorem.

Theorem 1: Assuming that the channels Ωj , HSI, and hk,
are statistically independent, the optimal beamforming matrix
for (23) is a rank-one matrix, i.e., Rank(W∗

k) = 1,∀k, and
the energy beamforming matrix satisfies Rank(Q∗) ≤ 1 with
probability one for ΓDL

reqk
> 0.

Proof: Please refer to the Appendix.
In other words, whenever the channels satisfy the general

condition stated in Theorem 1, the adopted SDP relaxation is
tight. Hence, the optimal solution of the original MOOP can be
obtained by solving the relaxed SDP problem in (23). Besides,
information beamforming, i.e., Rank(W∗

k) = 1, and energy
beamforming, i.e., Rank(Q∗) ≤ 1, is optimal for optimizing
the considered conflicting objective functions. On the other
hand, the optimal solutions of the single-objective problems
can be achieved by solving special cases of (23). For instance,
the solution of single-objective Problem 1 can be obtained by
solving (23) with λ1 = 1, λ2 = 0, and λ3 = 0.

IV. RESULTS

In this section, we investigate the performance of the
proposed multi-objective resource allocation algorithm. The
important simulation parameters are summarized in Table I.
We evaluate a system with an FD radio BS located at the
center of a cell. Furthermore, K = 3 downlink users and
M = 8 uplink users located in the range between the reference
distance of 10 meters and the maximum distance of 50 meters.

TABLE I
SIMULATION PARAMETERS.

Carrier center frequency 915 MHz
Bandwidth 200 kHz
Antenna gain at FD BS 10 dBi
Antennas gain at users 0 dBi
Downlink user noise power -71 dBm
BS noise power -83 dBm
SI cancellation constant % -110 dB
Energy conversion efficiency, ηj 0.8

J = 2 energy harvesters are located close to the FD BS at a
distance of between 2 to 10 meters in order to facilitate EH.
Each energy harvester is equipped with NEH = 3 antennas.
The small scale fading of the uplink and downlink channels is
modeled as independent and identically distributed Rayleigh
fading. The EH channel and the SI channel are modeled as
Rician fading channels with Rician factor 6 dB. The maximum
transmit power supply in downlink and uplink are PDL

max = 46
dBm and PUL

max,m = 23 dBm, ∀m, respectively. Without loss of
generality, we assume that the required SINRs at all downlink
users are identical. Besides, we specify ΓUL

req,m = 15 dBm,
∀m, for uplink users. At the energy harvesters, the minimum
required harvested energy is Pmin,j = −20 dBm, ∀j.

A. Trade-off Region of Multiple Design Objectives
Figure 2 depicts the trade-off region for uplink transmit

power minimization, downlink transmit power minimization,
and total harvested energy maximization achieved by the
proposed optimal scheme. There are N = 8 transmit antennas
at the BS and the minimum required downlink SINR is
ΓDL
req,k = 21 dBm, ∀k. The points shown for the trade-off

region were obtained by solving the SDP relaxed problem for
different sets of weights 0 ≤ λn ≤ 1, n = 1, 2, 3 subject
to
∑
n λn = 1. As can be seen, there is a nontrivial trade-

off between uplink and downlink transmit power minimization
and total harvested energy maximization. In particular, for a
fixed weight λ3 for EH maximization, the downlink trans-
mit power monotonically decreases for an increasing uplink
transmit power which suggests that downlink transmit power
minimization and uplink transmit power minimization conflict
with each other. On the other hand, the objective of total
harvested energy maximization does not align with the ob-
jectives of uplink and downlink transmit power minimization.
It can be seen that the amount of harvested energy can only be
increased by transmitting with higher uplink and/or downlink
transmit power. In particular, the resource allocation policy
maximizes the harvested energy using the maximum downlink
and uplink transmit power allowances, which corresponds to
the top corner point in Figure 2. In fact, this is the optimal
solution of single objective optimization Problem 3 which
can be found by solving (23) with λ1 = λ2 = 0 and
λ3 = 1. Similarly, the other two extreme points in the left and
right corners correspond to the solutions of single-objective
Problems 1 and 2, which are obtained from the extreme cases
of (23) for λ1 = 1 and λ2 = 1, respectively.

B. Average Uplink and Downlink Transmit Powers
In Figure 3, we show the trade-off between uplink and

downlink transmit power minimization for different minimum
required downlink SINRs, ΓDL

req,k. In particular, we select
resource allocation policies with λ3 = 0 and λ1+λ2 = 1. The
points are obtained by solving (23) for different pairs of λ1
and λ2. For comparison, we adopt a baseline scheme based
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Fig. 2. Trade-off region between uplink transmit power minimization, down-
link transmit power minimization, and total harvested energy maximization
for N = 8.

on HD communication, where a HD radio BS is employed
for transmission and reception in alternating time slots. In
other words, for a given time interval, the required data
rates for uplink and downlink transmissions in each HD slot
are given by RateHD−UL

m = 2 log(1 + ΓUL
req,m),∀m, and

RateHD−DL
k = 2 log(1 + ΓDL

req,k),∀k, respectively. Thus, the
required uplink and downlink SINRs in HD transmission are
given by ΓHD−UL

req,m = (1 + ΓUL
req,m)2 − 1 and ΓHD−DL

req,k =

(1 + ΓDL
req,k)2 − 1, respectively. Additionally, both SI and CCI

can be avoided in the HD scenario. The baseline scheme
is designed to achieve the optimal trade-off between the
three considered objectives in a HD system with identical
sets of weights as for the proposed FD algorithm. In the
baseline scheme, we optimize the same variables {Q,w,P}
and impose the same QoS requirements as in the FD case,
and also apply ZF-BF detection. As shown in Figure 3,
significant power savings can be achieved by the proposed
FD resource allocation algorithm compared to the HD system,
as indicated by the double-sided arrows. Furthermore, when
the downlink SINR required becomes less stringent, e.g. from
ΓDL
req,k = 21 dB to ΓDL

req,k = 15 dB, both the uplink and
downlink transmit powers can be reduced simultaneously. This
is due to the following two reasons. First, a smaller downlink
transmit power is required to satisfy the less stringent downlink
SINR requirements. Second, the decrease in downlink transmit
power reduces the self-interference impairing the uplink signal
reception which improves the uplink transmit power efficiency.

C. Average Total Harvested Power

In Figure 4, we show a trade-off between total harvested
power maximization and downlink transmit power minimiza-
tion. In particular, we select resource allocation policies with
λ2 = 0 and λ1 + λ3 = 1. The points are obtained by solving
(23) for different pairs of λ1 and λ3. Besides, the HD baseline
scheme is adopted again for comparison. As can be observed,
the proposed FD scheme is able to provide a larger trade-
off region compared to the baseline scheme. In particular,
although the FD scheme suffers from self-interference, it can
facilitate power-efficient SWIPT via the proposed resource
allocation optimization. Besides, a more stringent downlink
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Fig. 3. Average downlink transmit power (dBm) versus average uplink
transmit power (dBm). The double-sided arrows indicate the power saving
due to FD communication.
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Fig. 4. Average total harvested power (dBm) versus the average downlink
transmit power (dBm). The double-sided arrows indicate the system perfor-
mance gain due to FD communication.

minimum SINR requirement reduces the size of the trade-off
region achieved by the proposed FD communication scheme.
In fact, the more stringent downlink minimum SINR require-
ment reduces the feasible solution set of optimization problem
(23) which yields a less flexible resource allocation.

V. CONCLUSION

In this paper, we designed a resource allocation algorithm
for multiuser FD SWIPT systems. We proposed a MOO frame-
work based on the weighted Tchebycheff method to study
the trade-off between uplink transmit power minimization,
downlink transmit power minimization, and total harvested
energy maximization. The non-convex optimization problem
was transformed into an equivalent rank-constrained SDP and
solved optimally by SDP relaxation. The proposed algorithm
provided a set of resource allocation policies and demon-
strated a remarkable performance gain in power consumption
compared to a baseline algorithm employing conventional HD
transmission.



APPENDIX-PROOF OF THEOREM 1

Theorem 1 can be proved by following a similar approach
as in [7] via investigating the Karush-Kuhn-Tucker (KKT)
optimality conditions of the SDP relaxed problem (23). The
proof can be divided into two parts. In the first part, we
prove that the optimal energy beamforming signal satisfies
Rank(Q∗) ≤ 1. First of all, we introduce the Lagrangian of
the problem as follows

L(W,Q,P, τ, α,β,γ, δ,µ,ν,X,Y, ρ1, ρ2, ρ3) (24)

= τ + α
[
Tr
( K∑
k=1

Wk+Q
)
−PDL

max

]
+

M∑
m=1

νm(Pm−PUL
max,m)

−
K∑
k=1

βk

(Tr(HkWk)

ΓDL
req,k

−IDL
k −σ2

DL,k

)
−

K∑
k=1

Tr(XkWk)−Tr(YQ)

−
M∑
m=1

γm

(PmTr
(
GmZm

)
ΓUL
req,m

−IUL
m −σ2

ULTr(Zm)
)
−

M∑
m=1

µmPm

−
J∑
j=1

δj

(
PEH
j −Pmin,j

)
+ρ1

[
λ1

(
Tr
( K∑
k=1

Wk+Q
)
−F ∗1

)
−τ
]

+ρ2

[
λ2

( M∑
m=1

Pm−F ∗2
)
−τ
]
+ρ3

[
λ3

( J∑
j=1

PEH
j −F

∗
3

)
−τ
]
,

where α,β,γ, δ,µ,ν,X,Y, ρ1, ρ2, and ρ3 are dual variables
corresponding to the associated constraints. βk, γm, δj , µm,
and νm are the elements of dual variables β,γ, δ,µ, and
ν, respectively. Since the SDP relaxed problem satisfies
Slater’s constraint qualification and is convex with respect to
the optimization variables, strong duality holds. Denote the
optimal primal solution as {W∗,Q∗,P∗}, and the optimal
dual variables as {α∗,β∗,γ∗, δ∗,µ∗,ν∗,X∗,Y∗, ρ∗1, ρ∗2, ρ∗3}.
Then, the KKT conditions used for the proof are given by:

Y∗= (α∗ + ρ∗1λ1)I−V, where (25)

V = η

J∑
j=1

(δ∗j+ρ
∗
3λ3)ΩjΩ

H
j

−
M∑
m=1

γ∗mHH
SI diag(Zm)HSI, (26)

X∗k = Y∗ +

K∑
i6=k

β∗i Hi −
β∗k

ΓDL
req,k

Hk, ∀k, (27)

Y∗Q∗= 0, X∗kW
∗
k = 0, ∀k. (28)

Since we have for the Lagrangian multiplier Y∗ � 0, inequal-
ity α∗ + ρ∗1λ1 ≥ ξmax must hold, where ξmax is the largest
eigenvalue of V. If α∗ + ρ∗1λ1 = ξmax, then Rank(Y∗) =
N − 1. According to the complementary slackness condition
in (28), Q∗ lies in the null space spanned by the column
vectors of Y∗. Thus, Rank(Q∗) ≤ 1. On the other hand,
when α∗+ ρ∗1λ1 > ξmax holds, we have Rank(Y∗) = N and
Q∗ = 0. As a result, Rank(Q∗) ≤ 1 must be satisfied. In
other words, at most one energy beam is needed to achieve
the system design objectives.

Next, we prove the second part, i.e., Rank(W∗
k) = 1,∀k.

It can be verified that β∗k > 0 for ΓDL
req,k > 0. Besides, as

proved in the first part, we have Rank(Y∗) ≥ N−1. Since all
channel variables in the system are statistically independent,
Y∗ and

∑K
i 6=k β

∗
i Hi span the whole signal space leading to

Rank(Y∗ +
∑K
i 6=k β

∗
i Hi) = N . Then, based on the basic

property of the rank of matrices, we obtain

Rank(X∗k)+Rank(
β∗k

ΓDL
req,k

Hk)≥Rank(Y∗+

K∑
i 6=k

β∗i Hi)

=⇒ Rank(X∗k) ≥ N − 1. (29)

As W∗
k lies in the null space of X∗k according to (28),

Rank(W∗
k) ≤ 1 holds. Considering W∗

k 6= 0 must hold to
fulfill the downlink SINR requirement, we finally conclude
that Rank(W∗

k) = 1 holds for the optimal solution. �
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