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Abstract—Network Coding is a packet encoding technique
which has recently been shown to improve network performance
(by reducing delays and increasing throughput) in broadcast and
multicast communications. The cost for such an improvement
comes in the form of increased decoding complexity (and thus
delay) at the receivers end. Before delivering the file to higher
layers, the receiver should first decode those packets.

In our work we consider the broadcast transmission of a large
file to N wireless users. The file is segmented into a number
of blocks (each containingK packets - the Coding Window
Size). The packets of each block are encoded using Random
Linear Network Coding (RLNC). We obtain the minimum coding
window size so that the completion time of the file transmission
is upper bounded by a used defined delay constraint.

I. I NTRODUCTION

Over the past decades, with the constantly increasing use
of cellular and wireless networks for data transmission, the
efficient utilization of the network and its resources has be-
come crucial. Bandwidth-intensive applications such as video
and music downloading and delay sensitive applications such
as real-time video streaming and IPTV are widely deployed
in wireless, unreliable, networks. Most of these applications
involve the need of transmission of packets from one (or more)
senders to multiple receivers. This has intensified the needfor
more reliable data transmissions with increased data ratesin
such scenarios.

Network Coding may improve the network performance
in such cases and contribute towards achieving these goals
([1],[2],[3]). In the standard approach for data transmission,
information is transmitted to a receiver based on a scheduling
policy and the channel conditions. With network coding, infor-
mation can be transmitted to multiple receivers simultaneously
even when each of the receivers expect different packets.
This can be greatly beneficial in multicast and broadcast
transmissions, where the same information must be sent to
a large number of receivers. In network coding, each encoded
packet is generated from a given numberK of packets (also
know as the coding window) based on an encoding scheme.
Most of the schemes introduce redundancy to the network,
thus increasing reliability, without decreasing the network
performance.

Many forms of network coding can be found in the litera-
ture, each one with its own benefits and drawbacks. Two of

the most promising techniques are Random Linear Network
Coding (RLNC) and Instantly Decodable Network Coding
(IDNC). RLNC is one of the simplest forms of network coding
that can approach system capacity with negligible feedback
overhead [4]. RLNC linearly combines packets within the
coding window. After the successful reception ofK such
packets (given that the linear combinations they represent
are independent) the receivers can successfully decode the
packets, with Gaussian elimination. This technique achieves
asymptotically optimal completion time of a block of packets
and higher throughput than any scheduling strategy ([2],[5]).
However, the receivers must have receivedK packets be-
fore the decoding process thus the decoding delay increases.
Moreover, the authors in [6] have proven that the coding
window sizeK has to scale with the number of receivers
resulting in increased decoding complexity and decoding delay
in large networks. IDNC is another form of network coding for
minimizing decoding delay ([7]). Different concepts of IDNC
can be found in the literature depending on the application
requirements for which they were developed ([8],[9]). The
main advantage of IDNC over RLNC is the reduction of
decoding delay (instant decoding by some or all receivers)
at the cost of increased block completion time [10].

Relevant research by Eryilmaz focused on quantifying the
gains of network coding in terms of throughput and delay
([5],[6]) in an unreliable (e.g., wireless) single-hop broadcast
network. The improvement in network performance of network
coding versus traditional scheduling strategies is provenand
both asymptotic and close form expressions for the delay
and throughput are provided. The effects of delay constrained
traffic on the user admission rate are analysed in [11] as an
extension of the previous work. In [2], the authors focus on
how must the Coding Window sizeK scale when the number
of receivers is increased. In such a case, the distribution of the
delay is characterized.

In [12], two schemes were proposed and analysed in order
to minimize the decoding delay and feedback overhead while
keeping the throughput intact. In [13], the randomness is
dropped from the encoding procedure and with the integration
of an ARQ strategy, the successful decoding is guaranteed.
The authors of [14] combine RLNC and IDNC through
partitioning, in order to improve throughput, decoding delay,
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coding complexity and feedback frequency. Koller et al [15],
investigates the optimum number of blocks that the source
must use, given the file size and a finite Galois field size
from which the coefficients are picked, when using RLNC. In
[16], the authors try to find a linear network coding scheme
that outperforms RLNC in terms of minimum average packet
decoding delay while keeping the throughput intact. Their
work is very interesting but it assumes already received packets
by the receivers from previous transmissions and erasure-free
NC transmissions.

The system we focus on in this paper is similar with the
one studied in [5]. The main difference from [5] and [6]
lies in the Coding Window SizeK. In our work, we are
interested in a)finding the mean file transfer completion time
(broadcast toN receivers) when RLNC is not performed over
the whole fileand b)find a relationship between the coding
window size (K) and the expected file transfer completion
time. In particular, we will develop a closed form formula
for the minimum Coding Window SizeK in the case of a
user defined delay constraint. The constraint will be in the
form of the relative increase in the delay over the smallest
achievable (optimal) delay. This objective might seem similar
with the one in [15], but our system has some fundamental
differences. First, in [15], the authors assume that the receivers
will, on average, need more thanK packets for successful
decoding. In our work, we assume a large enough field size
(from where the coefficients for the linear combinations are
picked) thus guaranteeing linear independence. As a result,
only K encoded packets are needed for successful decoding.
Second, in [15], the file is split into blocks and coding is
performedover those blocks(i.e. the encoded block is the
sum of each block multiplied by a coefficient). In our work,
coding is performedwithin each block. By doing so, packets
of earlier blocks are made available (for delivery to the higher
protocol layers) faster. This way, we keep the advantages
of asymptotically optimal completion time of RLNC while
reducing the decoding delay and complexity at the receiver.

The remainder of the paper is organized as follows : In
Section II, the system model is introduced. In Section III,
mathematical formulas for the completion time of a file for
a given coding window size ofK are derived. In Section IV,
we develop the formula for the smallest Coding Window Size
K under user defined delay constraints. In Section V we show
our results and comparisons. Finally, in section VI we provide
our conclusions and future research directions.

II. SYSTEM MODEL

Our system is a one hop transmission system, where a base
station transmits a single file (containingF packets) toN
receivers. The connection between the base station and each
receiver is described by a randomly varying ON/OFF channel,
where theith receiver’s channel state is represented by a
Bernoulli random variable with meanpi. In our simulations
and mathematical formulations (section III and IV), we as-
sume, for simplicity, thatpi = p, ∀i ∈ {1, ..., N}. However,

extensions to non-symmetric channels can be easily imple-
mented. The Bernoulli r.v’s are independent across time and
across receivers. Furthermore, we assume that a base station, at
each time slot, has knowledge of the connected receivers and
in this case, a transmitted packet will be successfully received
by all such (connected) receivers. Time is slotted and only
one packet can be transmitted at each time slot. Our system
is static in the sense that no arrivals occur.

We now introduce the necessary notation. IntegerK (K ≤
F ) represents the coding window size, i.e., the number of
packets that will be linearly combined using RLNC.F is the
file size and we assume thatK always exactly dividesF (i.e.,
F
K

is an integer). Theith batch refers to packets(i−1)∗K to
i∗K−1. Each batch containsK packets which will be linearly
combined/encoded to one packet. The number of batches is
b = F/K, for a file ofF packets and coding window sizeK.

At each time slot, the base station selects a batch ofK
packets to encode via RLNC. The encoded packet is then
broadcast to the connected receivers. The batch to be encoded
is based on a policy (Random Selection or Least Received).
Such policies are described, in detail, later in this section.

Each receiver has a queue for storing the received encoded
packets. As soon as a receiver receivesK packets, the packets
are decoded and deleted from that queue. Linear independence
of the encoded packets is assumed1. The coding overhead (the
coefficients of the linear combinations must be transmitted
with the packet) is considered negligible. As shown in [5],
if the packet sizem is a lot greater than the coding window
size K, this overhead can be ignored. Moreover, by using
synchronized pseudo-random number generators at the sender
and the receivers, this overhead can be made very small [15].

Furthermore, each receiver is assigned an attribute, namely
the batch ID. This attribute represents the batch from which
the receiver expects the encoded packets. At the beginning of
the system (i.e. whent = 0) the batch ID is set to 1, for all
receivers. As soon as a receiver decodes a batch, its batch ID
increases by 1. Any out of order packets (encoded packets of
batchi received by a receiver with batch IDj, wherei 6= j)
are discarded by the receiver.

When, at a given time slot, a subset of the connected
receivers have successfully decoded a batch (received allK
encoded packets) that another disjoint subset of the connected
receivers has yet to decode, a decision has to made by the base
station as to which batch will be encoded and sent at that time
slot. We propose and use the following two batch scheduling
heuristic policies in order to dissolve these conflicts.

1) Random Selection (RS): This heuristic is based on
randomly selecting one batch to encode. Each batchi
is selected with probabilityNi

Nc
, whereNi is the number

of connected receivers with batch IDi and Nc is the
number of connected receivers. This heuristic will not be
analysed - it is developed only for evaluation purposes in
our experimentation process.

1Linear independence is justified due to a large enough fieldFq from where
the coefficients will be picked [5]



BSBS

R3R2R1

Packet 0

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Batch 1

Batch 2

Batch 1

Batch 2

ppp

Figure 1: System at timet. K = 3, N = 3

2) Less Received (LR): This heuristic aims at balancing the
queue size of the receivers. The batch ID of the receiver
that has received the least number of packets defines the
batch that will be selected for encoding (i.e., batchi is
selected when the receiver with the least received packets
has batch IDi).

In figure 1, we show an example of our system at time slot
t. The shaded boxes at the receivers represent the received
packets. The coding window size, for this example, is 3. As
we can see, receivers 1 and 2 have successfully decoded batch
1 (received 3 packets), thus their batch ID is 2. Receiver 3 has
yet to decode batch 1 (received 2 packets), thus its batch ID is
1. Assume that in time slott+1, all receivers are connected.
When using the RS heuristic, batch 1 will be selected with
probability 2

3 and batch 2 will be selected with probability13 .
When using the LR heuristic, batch 1 will be selected, since
R3 has the least received number of packets. Note here, that at
time t+2, no conflicts will arise (when using the LR heuristic).

III. E XPECTEDFILE COMPLETION TIME COMPUTATION

When the coding window consists of the whole file (K =
F ), the expected completion time of the file can be found in
[5]. For our analysis we introduce the following :

Let E[TF ] be the mean completion time of a file of sizeF
under coding windowF . Xi is the additional slots needed for
correct file reception by receiveri, due to possible channel
disconnections (Xi is also referred as failures), i.e.Xi + F
shows the total number of slots required by receiveri to
decode the file. TheXi’s are independent and identically
distributed and follow a negative binomial distribution. Let
fXi

(x) and FXi
(x) be the pdf and cdf ofXi, respectively

andZ = max
1≤i≤N

Xi. Then, [5] has shown the following :

E[TF ] = F + E[Z]
(a)
= F +

∞∑
z=0

P (Z > z) =

F +
∞∑
z=0

(1− P ( max
1≤i≤N

Xi ≤ z))
(b)
= F +

∞∑
z=0

(1−
N∏
i=1

FXi
(z))

= F +
∞∑
z=0

(1−
N∏
i=1

(
z∑

t=0
fXi

(t)))
(c)⇒

E[TF ] = F +

∞∑

z=0

(1 − (

z∑

t=0

fX1(t))
N ) (1)

The following notes are in order : (a) is true sinceXi’s (and
Z) are non-negative discrete random variables, (b) is true due
to independence ofXi’s and (c) is valid because the channel
is symmetric, i.e. all the receivers have the same probability
of being ON.

Eq. (1) refers to the completion time of the file if we
encode over the whole file. By analogy, ifK = F , E[TK ]
will represent the completion time of one batch ofK packets.
For our LR batch scheduling heuristic we defineE[TF

K ] to be
the completion time of the file under a coding window size
K. We let b = F

K
and argue that

E[TF
K ] ≈ b ∗ E[TK ] (2)

The justification is as follows : Formula 2 would be exact if
the base station will transmit an encoded packet from batchi,
only when all receivers have successfully decoded batchi− 1
(as a counter example consider the case of Figure 1 where at
t+1 R3 is OFF and R1,R2 are ON). Furthermore, we note that
the LR heuristic aims at balancing the receiver queues. In a
perfectly balanced system and whenp = 1, the differences
between the batch IDs will be zero (i.e. all receivers will
receiver batchi at the same time slot). However, whenp < 1,
the LR heuristic gives priority to the receiver with the least
number of received packets, thus striving to balance the system
through minimizing differences between the batch IDs of the
receivers.

Furthermore, we should stress that once the file is segmented
into blocks and RLNC is applied at each block, the random
variables representing the file transfer completion time for each
receiveri are not independent. In order to proceed with our
analysis, we will assume independence. The simulation results,
in section V, demonstrate that our approximation represents the
completion time of the file reasonably accurate.

A. Approximations for Expected File Completion Time

Based on the Central Limit Theorem, a negative binomial
random variable (representing the number of failures untilthe
correct reception ofK packets), with parametersK andp, can
be approximated by a Gaussian random variable, for largeK2

and moderatep3[17].
The approximating Gaussian random variable will have a

mean value ofK
p

− K and a standard deviation ofσ =√
K(1−p)

p2 and it will represent the number of failures until
the completion of the file transfer. Since we are interested in
calculating the mean number of slots (trials) for the file transfer

2The accuracy of the approximation increases as we increaseK.
3In our numerical simulations, section V, we assumep ∈ [0.2, 0.8]



completion time, a constantK can be added to the Gaussian
random variable. Thus, the new, shifted, random variable will
remain Gaussian with a mean value ofµ = K

p
.

The approximating Gaussian variableX represents the
number of total slots for the transfer file completion time,
for a single receiver (in a symmetric system). Therefore,X
is assumed to be positive(with the negative tail carrying
negligible probability). Then by following the same steps as
for eq. (1) (forF = K), we get :

E[TK ] =
∫∞
0

(1− (
∫ z

0
fX(t)dt)N )dz ≈

∫ ∞

0

(1− (FX(z))N )dz, (3)

whereX is a Gaussian random variable withµ = K
p

, σ =√
K(1−p)

p2 , fX(t) andFX(z) represent the pdf and cdf of the
Gaussian random variableX , respectively.

In order to simplify eq. 3, we assume the following :
For a Gaussian random variableX , FX(µ + nσ) − FX(µ −
nσ) = erf( n√

2
). Whenerf( n√

2
) ≈ 1, thenFX(µ+ nσ) ≈ 1

andFX(µ − nσ) ≈ 0. In our case, we wish to find̃n such
that whenz ≥ µ + ñσ then (FX(z))N ≥ 1 − α, for small
α; typically in our studyα ≈ 0.01. Thus, the desired valuẽn
will need to satisfy :

ñ = min
n

{(erf( n√
2
))N ≥ 0.99} (4)

The range ofX will be within µ± ñσ. Furthermore, sinceX
is assumed to be positive,̃n should satisfyµ− ñσ > 0.

Based on the aforementioned assumptions, we can conclude
the following :
(a) For the desired valuẽn, FX(z) ≈ 1 (and also

(FX(z))N ≈ 1), for z ≥ µ+ ñσ.
(b) By symmetry,FX(z) ≈ 0 (and (FX(z))N ≈ 0), for z ≤

µ− ñσ.
Then from eq. 3 and 4 and using facts(a) and (b), we get :

E[TK ]
(a)
≈

∫ µ+ñσ

0 (1 − (FX(z))N )dz
(b)
=

∫ µ−ñσ

0
1dz +

∫ µ+ñσ

µ−ñσ
(1 − (FX(z))N )dz =

µ− ñσ +
∫ µ+ñσ

µ−ñσ
(1 − (

∫ z

0
fX(t)dt)N )dz =

µ− ñσ+
∫ µ+ñσ

µ−ñσ
(1− (

∫ µ−ñσ

0
fX(t)dt+

∫ z

µ−ñσ
fX(t)dt)N )dz

≈ µ− ñσ+
∫ µ+ñσ

µ−ñσ
(1− (FX(µ− ñσ) +

∫ z

µ−ñσ
fX(t)dt)N )dz

(b)
≈ µ− ñσ +

∫ µ+ñσ

µ−ñσ
(1−

∫ z

µ−ñσ
fX(t)dt)N )dz

Therefore,

E[TK ] ≈ µ+ ñσ −
∫ µ+ñσ

µ−ñσ

((

∫ z

µ−ñσ

fX(t)dt)N )dz, (5)

when assumingµ− ñσ > 0. This condition will be true for a
given ñ from eq. 4 and a particular selection ofK as follows:

K

p
− ñ

√
K(1− p)

p2
> 0 ⇒ K > ñ2(1 − p) (6)

N ≤ 3, 4 ≤ N ≤ 158

ñ = 3 ñ = 4

p = 0.2 K = 8 K = 13

p = 0.4 K = 6 K = 10

p = 0.6 K = 4 K = 7

p = 0.7 K = 3 K = 5

p = 0.8 K = 2 K = 4

Table I: Minimum Coding Window Size for satisfying the
constraint (6).

In table I, in the second row, we can see the value ofñ
for eachN . For those values, and for eachp, we can see
the minimum coding window that satisfies the constraint (6).
We observe that the smallest coding window size required to
satisfy the constraint (6) is small enough for all values ofñ
andp. In our subsequent analysis, we assume thatK is equal
or larger than the values shown in table I.

IV. D ELAY CONSTRAINTS AND SELECTION OFCODING

WINDOW SIZE (K )

When K satisfies the constraint (6), the expected file
transfer completion time of the LR heuristic is given by eq. (2).
In this case, our goal is to find the smallest Coding Window
sizeK that results into an acceptable delay. Coding over the
whole file (K = F ) will minimize the file transfer completion
time ([15]). We denote this byE[Topt]

△

= E[TF ], and can be
found by eq. (1). From our experimentation (in section V), we
observed that near optimal file transfer completion time canbe
achieved using an appropriate coding window sizeK ≪ F .
Therefore, givenǫ > 0, we wish to determineK so that :

E[TF
K ]− E[Topt]

E[Topt]
≤ ǫ, (7)

where ǫ is the user defined delay constraint in terms of
a percentage ofE[Topt]. As an example, we will see later
(section V) that forN = 6, F = 10000 and p = 0.2, for
ǫ = 10% the minimum coding window size isK = 400 (4%
of F ).

Starting from eq. (2) and using eq. (5), the completion time,
under a coding windowK, can be approximated as follows :

E[TF
K ] = E[TK ] ∗ b = b(µK + ñσK)−

− b

∫ µK+ñσK

µK−ñσK

((

∫ z

µK−ñσK

1

σK

√
2π

e
− (t−µK )2

2σ2
K dt)N )dz), (8)

whereµK = K
p

, σK =
√

K(1−p)
p2 andbK = F

K
.

Furthermore, the minimum completion timeE[Topt] can be
also approximated by :

E[Topt] = µF + ñσF−

−
∫ µF+ñσF

µF−ñσF

((

∫ z

µF−ñσF

1

σF

√
2π

e
− (t−µF )2

2σ2
F dt)N )dz, (9)



whereµF = F
p

andσF =
√

F (1−p)
p2 . SinceF = KbK , µF =

bKµK andσF =
√
bKσK , we can substitute these values in

eq. (8) and (9) and get4 :

E[TF
K ] = bµ+bñσ−b

∫ µ+ñσ

µ−ñσ

((

∫ z

µ−ñσ

1

σ
√
2π

e−
(t−µ)2

2σ2 dt)N )dz)

(10)

E[Topt] = bµ+
√
bñσ−

−
∫ bµ+

√
bñσ

bµ−
√
bñσ

((

∫ z

bµ−
√
bñσ

1

σ
√
2bπ

e−
(t−bµ)2

2bσ2 dt)N )dz, (11)

whereµ = K
p

, σ =
√

K(1−p)
p2 andb = F

K
.

Furthermore, it can be readily shown that :

∫ bµ+
√
bñσ

bµ−
√
bñσ

((
∫ z

bµ−
√
bñσ

1
σ
√
2bπ

e−
(t−bµ)2

2bσ2 dt)N )dz =
√
b
∫ µ+ñσ

µ−ñσ
((
∫ z

µ−ñσ
1

σ
√
2π

e−
(t−µ)2

2σ2 dt)N )dz and
∫ µ+ñσ

µ−ñσ
((
∫ z

µ−ñσ
1

σ
√
2π

e−
(t−µ)2

2σ2 dt)N )dz =

σ
∫ ñ

−ñ
((
∫ z

−ñ
1√
2π

e−
t2

2 dt)N )dz

LetA =
∫ ñ

−ñ
((
∫ z

−ñ
1√
2π

e−
t2

2 dt)N )dz. Eq. (10) and (11) can
be rewritten as :

E[TF
K ] = bµ+ bñσ − bσA (12)

E[Topt] = bµ+
√
bñσ −

√
bσA (13)

Substituting 12 and 13 into 7 and noting thatb is a function
of K and A, ñ are functions ofN , we have the following
lemma for the selection of the coding window sizeK.

LEMMA : For givenF , N , p andǫ > 0, the coding window
sizeK that results in eq. 7 satisfies :

√
1− p(ñ−A)√

F +
√
1− p(ñ− A)

(
√
bK − 1) ≤ ǫ, (14)

wherebK = F
K

, ñ = minn{(erf( n√
2
))N ≥ 0.99},

A =
∫ ñ

−ñ
((
∫ z

−ñ
1√
2π

e−
t2

2 dt)N )dz

Therefore, the smallestK that satisfies eq. (14) will also min-
imize the decoding delay at the receivers end while achieving
near optimalfile transfer completion time (i.e., according to
(7)). Thus, this value ofK will result in balancing the file
transfer completion time and the decoding complexity/delay
at the receivers end. Moreover, eq. (14) shows that,under
suitable conditions (large enoughF ) the minimum required
coding window size is the same regardless of the file size.
Furthermore, by using a much smaller coding window sizeK
as compared to the entire file sizeF , packets of the earlier
blocks are made available to receivers (for delivery to higher
protocol layers or forwarding) much faster.

4we suppress subscripts to simplify the presentation

V. EXPERIMENTS - RESULTS

We performed our simulations with various values for all
the system parameters to verify the correctness of the above
formulas. Below is an overview of all those values :

• Number of Receivers (N ) : 3, 6, 12, 25, 50, 100
• File Size in Packets (F ) : 400, 500, 1000, 1500, 2000,

2500, 5000, 10000
• Coding Window Size (K) : for each file size, the coding

window takes as values all the integer numbers that fully
divide the file size, beginning from 2.

• Connectivity probabilityp is assumed to be the same for
all receivers and is equal to : 0.2, 0.4, 0.6, 0.7, 0.8.
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Figure 2: Heuristics vs equation 2 whenp increases
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Figure 3: Heuristics vs equation 2 whenN increases
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Due to space restriction, we now present some represen-
tative results. Figures 2 - 4 show the completion time of
the file versus the coding window sizeK. In each figure
two out of the three parameters (N , F and p) were kept
constant and we compared the improvement in the accuracy
of eq. (2) (Theoretical Delay), when the third parameter was
varied. It can be seen that eq. (2) represents the completion
time of the LR heuristic, reasonably accurate. In general, we
observe thatE[TF

K ] rapidly decreases as a function ofK
and closely approachesE[Topt] for values of coding window
size K that are a fraction ofF . As we mentioned in the
introduction, this is desirable because, for smaller coding
window sizeK, the decoding delay is significantly less with
a cost of slight increase of the file transfer completion time.
Additionally, the storage and computational requirements for
the receivers are relaxed, since each receiver only needs to
store a maximum ofK packets and solve aK × K linear
system (by Gaussian elimination). Furthermore, it is worth
noting that the LR heuristic largely outperforms the Random
Selection (RS) heuristic.

In the upper part of figures 5 - 7, we plot the completion
time based on the Gaussian Approximation (eq. (12)) vs
the completion time based on the negative binomial random
variable (eq. (2)). As we can see, the Gaussian approximation
represents the negative binomial reasonably accurate, espe-
cially when K is increased. In the lower graphs within the
same figures we can see the approximation errors. The solid
lines represent the percent difference between eq. (12) and(2)
and the Gaussian ErrorF represents the percent difference
between eq. (13) and (1). The error of the approximation of
E[Topt] is reasonably low with a maximum value of 0.36%
in our experiments. The corresponding maximum error of
the approximation ofE[TF

K ] increases somehow (up to 8%
in some experiments). But as we can see, the error rapidly
drops in levels much below 1% asK grows a little larger.
The approximations were derived in order to find a balance
between the completion time and decoding delay under RLNC.
The values of the coding window sizes for which the error
percentage is high (above 1%) will not affect our objective,
because as we can see from figures 5 - 7, for such valuesK,
the file transfer completion time is far fromE[Topt].

Tables II - IV show the percentage ofF (the coding window
K is expressed as a percentage of the file size) that can be
used as a coding window size in order to achieve completion
time of at most(1+ǫ)E[Topt]. Each cell of the tables contains
two entries, one for each set of experiments shown in figures 2
- 4. The first two columns are theF% for our heuristics. The
third, fourth and fifth column are derived using the formulas
2, 12 and 14 respectively. As we can see from table II,
when increasingp, theF% of the heuristics increases whereas
those of the theoretical formulas decrease. Tables III and
IV show a similar trend - when increasing the number of
receivers, theF% is increasing and when increasing the file
size, the percentage is decreasing. The latter isthe essential
contribution of our work, showing that for large files, coding
window sizes that are a small fraction ofF can achieve near

optimal file transfer completion time.
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Figure 5: Gaussian Approximation vs Negative Binomial and
approximation errors - highp
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Figure 6: Gaussian Approximation vs Negative Binomial and
approximation errors - lowp
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Figure 7: Gaussian Approximation vs Negative Binomial and
approximation errors - midp

Moreover, from tables II to IV, we can see that as either
p or N or F increases the difference between the theoretical
results (last three columns) and our heuristic LR decreases.
This is of great importance, since it shows that as the load
of the system increases, the accuracy of our approximation
increases. Furthermore, it is evident, from table III, thatcoding
is preferable in large systems. An increase of almost 9 times
at the number of the receivers results in an increase of a
maximum of 3 times in the minimum coding window size.
Table V, shows the minimum coding window size (in packets
and as a percentage ofF ) to achieve completion time of at
most (1 + ǫ)E[Topt] for large file sizes. As we can see, in
most cases, the minimum required coding window size is the
same regardless of the file size. In the rest of the cases, the



differences mainly occur because not all file sizes have the
same possible coding windows (i.e.F/K must be an integer).

ǫ RS LR Eq (2) Eq. (12) Eq. (14)

p p p p p

0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

10% 25% 50% 4% 4% 20% 5% 20% 4% 20% 4%

5% 50% 100% 10% 20% 25% 20% 25% 20% 25% 20%

1% 100% 100% 50% 50% 100% 100% 100% 100% 100% 100%

0.5% 100% 100% 50% 100% 100% 100% 100% 100% 100% 100%

Table II: Percentage of minimum Coding Window Size -
p = 0.2 & 0.8, N = 6, F = 500

ǫ RS LR Eq (2) Eq. (12) Eq. (14)

N N N N N

6 50 6 50 6 50 6 50 6 50

10% 12.5% 50% 0.25% 2% 1.25% 4% 1.25% 4% 1.25% 4%

5% 20% 100% 0.8% 5% 4% 10% 4% 10% 4% 10%

1% 50% 100% 10% 50% 50% 50% 50% 50% 50% 50%

0.5% 100% 100% 20% 100% 50% 100% 50% 100% 50% 100%

Table III: Percentage of minimum Coding Window Size -
p = 0.2, N = 6 & 50, F = 10000

ǫ RS LR Eq (2) Eq. (12) Eq. (14)

F F F F F

0.4K 2K 0.4K 2K 0.4K 2K 0.4K 2K 0.4K 2K

10% 20% 10% 2.5% 0.8% 6.25% 2% 6.25% 2% 6.25% 2%

5% 25% 20% 6.25% 2% 20% 6.25% 20% 6.25% 20% 6.25%

1% 100% 50% 50% 12.5% 100% 50% 100% 50% 100% 50%

0.5% 100% 100% 50% 20% 100% 100% 100% 100% 100% 100%

Table IV: Percentage of minimum Coding Window Size -
p = 0.4, N = 3, F = 400 & 2000

ǫ F = 8K F = 10K F = 12K F = 14K

10% 160 (2%) 200 (2%) 160 (1.33%) 175 (1.25%)

5% 500 (6.25%) 500 (5%) 500 (4.17%) 560 (4%)

1% 4000 (50%) 5000 (50%) 4000 (33.3%) 7000 (50%)

0.5% 8000 (100%) 10000 (100%) 12000 (100%) 7000 (50%)

Table V: Minimum Coding Window Size (and percentage) -
p = 0.6, N = 50

VI. CONCLUSIONS

In this paper, we applied Random Linear Network Coding
in a single-hop network for broadcast communications where
a base station transmits one file toN receivers. We presented
two batch scheduling heuristic policies namely Random Selec-
tion (RS) and Least Received (LR). The performance of the LR
was approximated and simulated. Furthermore, we provided a

formula for balancing the file transfer completion time and
decoding delay based on a user defined delay constraint, for
the LR heuristic. We concluded that moderate coding window
sizeK can achieve almost optimal performance using the LR
heuristic policy. By using a moderate/smaller coding window
size, the decoding complexity and delay at the receivers ends
can decrease substantially. Moreover, we showed that for
large enough files, the coding window size that achieves near
optimal performance is the same regardless of the file size.

Our future research will be focused on finding the char-
acteristics of the optimal scheduling policy. Furthermore, the
asymptotic performance of the LR asN , F , p grows large
will be investigated.
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