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Abstract—This paper considers a iterative Linear Minimum
Mean Square Error (LMMSE) detection for the uplink Multiuser
Multiple-Input and Multiple-Output (MU-MIMO) systems with
Non-Orthogonal Multiple Access (NOMA). The iterative LMMSE
detection greatly reduces the system computational complexity
by departing the overall processing into many low-complexity
distributed calculations. However, it is generally considered to
be sub-optimal and achieves relatively poor performance. In
this paper, we firstly present the matching conditions and area
theorems for the iterative detection of the MIMO-NOMA systems.
Based on the proposed matching conditions and area theorems,
the achievable rate region of the iterative LMMSE detection is
analysed. We prove that by properly design the iterative LMMSE
detection, it can achieve (i) the optimal sum capacity of MU-
MIMO systems, (ii) all the maximal extreme points in the capacity
region of MU-MIMO system, and (iii) the whole capacity region
of two-user MIMO systems.

Index Terms—MU-MIMO, Non-Orthogonal Multiple Access,
Iterative LMMSE detection, low-complexity, achievable rate,
capacity region achieving.

I. INTRODUCTION

Recent research investigations [1]–[5] show that Multiuser
Multiple-Input and Multiple-Output (MU-MIMO) will play a
vital role in the fifth generation (5G) mobile networks. MU-
MIMO has become a key technology for wireless commu-
nication standards like IEEE 802.11 (Wi-Fi), WiMAX (4G)
and Long Term Evolution (4G). Especially, the massive MU-
MIMO has attracted a lot of attentions [3]–[8] because of its
improvement both in throughput and energy efficiency [6]–
[8]. In addition, Non-Orthogonal Multiple Access (NOMA)
has also been identified as one of the key radio access
technologies to further increase system spectral efficiency and
reduce latency in the 5G communictions systems [1], [9]–[13].

The costs are more physical space at Base Station (BS),
higher complexity, and higher energy consumption of the
signal processing at both ends [4], [5]. Low-complexity signal
uplink detection for MIMO-NOMA is one of these current
challenging problems [4]. The optimal multiuser detector
(MUD), such as the maximum a posterior probability (MAP)
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detector or maximum likelihood (ML) detector, was proven
to be an NP-hard and non-deterministic polynomial-time com-
plete (NP-complete) problem [14], [15]. Thus, the complexity
of optimal MUD grows exponentially with the number of users
or the number of antennas at the BS and polynomially with
the size of the signal constellation [16]. Many low-complexity
linear detections such as Matched Filter, Zero-Forcing receiver
[17], Minimum Mean Square Error (MMSE) detector and Mes-
sage Passing Detector (MPD) [18], [19] are proposed for the
practical systems. Although these linear MUDs are attractive
from the complexity view point, they achieve relatively poor
performance for MU-MIMO systems.

The iterative detections that exchange soft information of
the low-complexity detector with the user decoders are mostly
used as an efficient receivers for practical MIMO-NOMA
systems [20]–[22]. This is a fundamental technology for the
NOMA like the Code Division Multiple Access (CDMA)
[17], [23] and the Interleave Division Multiple Access IDMA
systems [24]. Various iterative detectors, such as the iterative
Linear MMSE (LMMSE) detector, iterative BP detector and
iterative MPD, were proposed to achieve a good system perfor-
mance [25]–[27]. The iterative detection is a low-complexity
parallel joint iterative decoding method, which further reduces
the detection complexity by departing the overall receiver into
many distributed processors. However, in general, the joint
iterative detection structure cannot achieve the perfect perfor-
mance and is considered to be sub-optimal [23]. Therefore,
the achievable rate region of the MIMO-NOMA systems with
iterative detection is an intriguing problem.

The Extrinsic Information Transfer (EXIT) [30], [31], MSE-
based Transfer Chart (MBTC) [27]–[29], area theorem and
matching theorem [27]–[31] are the main methods of the
system achievable rate or the BER performance analysis. It
is proved that a well-designed single-code with linear precod-
ing and iterative LMMSE detection achieves the capacity of
the MIMO systems [27]. In this paper, we consider a low-
complexity iterative LMMSE detection for the uplink MIMO
systems with NOMA. The achievable rate analysis of the
iterative LMMSE detection is provided, which shows it is
rate region optimal for the MU-MIMO systems if properly
designed. The contributions of this paper are listed as follows:
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Fig. 1. Block diagram of the multiuser MIMO system. ENC is the encoder
and DEC is the decoder. Πi denotes the interleaver and Π−1

i denotes the
de-interleaver. ESE represents the elementary signal estimator. H′ contains
the channel H and Kx = diag{w2

1 , · · · , w2
Nu
}, and Kx denotes the power

constraint or the large scale fading of the users.

1) For the MU-MIMO systems, matching conditions and area
theorems for iterative detection are proposed.

2) With the matching conditions and area theorems, the
iterative LMMSE detection design and its achievable rate
analysis for the MIMO-NOMA systems are provided.

3) We prove that the designed iterative LMMSE detection (i)
is sum capacity achieving for the MU-MIMO systems, (ii)
achieves all the maximal extreme points in the capacity
region of MU-MIMO system, and (iii) achieves the whole
capacity region of two-user MIMO systems.

This paper is organized as follows. In Section II, the MIMO-
NOMA system model is introduced. The matching conditions
and area theorems for the MU-MIMO systems are elaborated
in Section III. Section IV provides the achievable rate region
analysis for the MIMO-NOMA systems with iterative LMMSE
detection. Some special cases are shown in Section V, and we
end with conclusions in Section VI.

II. SYSTEM MODEL

Consider a uplink MU-MIMO system with NOMA as
showed in Fig 1. In this system, Nu autonomous single-antenna
terminals simultaneously communicate with an array of Nr
antennas of the base station (BS) in the same frequence and
at the same time [4], [6]. At user i, an information sequence
Ui is encoded by a channel code with rate Ri into a N -length
coded sequence x′i, i ∈ Nu, Nu = {1, 2, · · · , Nu} and then
interleaved by an N -length independent random interleaver Πi

and get xi = [xi,1, xi,2, · · · , xi,N ]T . We assume that xi,t is
randomly and uniformly taken over the points in a discrete
signaling constellation S = {s1, s2, · · · , s|S|}. After that, the
xi is scaled with wi, which denotes the power constraint or
the large-scale fading coefficient of each user, and we then get
the transmitting xtri , i ∈ Nu.

Then the Nr × 1 received signal vector yt at time t is

yt = HK1/2
x x(t) + n(t) = H′x(t) + n(t), t ∈ N (1)

whereN = {1, · · · , N}, H is a given Nr×Nu channel matrix,
n(t) ∼ CNNr (0, σ2

n) is the Nr × 1 Gaussian noise vector at
time t, and xtr(t) = [xtr1 (t), · · · , xtrNu

(t)]T is the message
vector from Nu users.

At the BS, the received Y = [y1, · · · ,yN ] and message
αi from the decoder are sent to a low-complexity elementary

signal estimator (ESE) to estimate the extrinsic message βi,
which is then deinterleaved with Π−1

i into β′i. The correspond-
ing single-user decoder employs β′i as the prior message to
calculate the extrinsic message α′i. Similarly, this extrinsic
message is interleaved by Πi to obtain the prior information αi
for the ESE. Repeat this process until the maximum number of
iteration is achieved or the messages are recovered correctly.

III. MATCHING CONDITIONS AND AREA THEOREMS FOR
MU-MIMO SYSTEMS

In this section, we proposed the matching conditions and
area properties for the iterative MU-MIMO systems from their
SINR-Variance transfer functions. It should be noted that the
results in this section are generalized based on the I-MMSE
theorem and the area theorems that proposed for the single
user MIMO systems [27]–[29].

A. Characterization of ESE

We first define the SINR-Variance transfer function of user
i of element signal estimator as

φi(vx̄) = v−1
x̂i
− v−1

i , for i ∈ Nu, (2)

where vx̄ = [v1, · · · , vNu ], vx̂i is the ith diagonal element of
covariance matrix Vx̂, vi is the input variance (αi) of user i,
i.e., the ith diagonal element of Vx̄, and φi(v) denotes the
output extrinsic SINR of user i at the estimator. The variance
vi varies from 0 to 1 as the signal power is normalized
to 1. Similarly, the total MSE of user i at the estimator is
mmseesetot,i(vx̄) = vx̂i . The next Gaussian assumption is used
to simplify the system analysis, which is a common assumption
in many works [32], [33].

Assumption 1: Let ρ = [ρ1, · · · , ρNu
], φ(vx̄) =

[φ1(vx̄), · · · , φNu
(vx̄)]. The outputs [β1, · · · ,βNu

] of the
estimator can be approximated as the observations from AWGN
channels and the related SINR is denoted by ρ = φ(vx̄).

B. Characterization of APP Decoder

From Assumption 1, the input of the each decoder β′i are
equivalent as the independent observations over an AWGN
channel with SNRi = ρi. For any i ∈ Nu, we define the
SINR-Variance transfer function of the decoder as

vi = ψi(ρi). (3)

Let ψ(ρ) = [ψ1(ρ1), · · · , ψNu
(ρNu

)], and we get vx̄ = ψ(ρ).

C. SINR-Variance Transfer Chart

The LMMSE estimator is described by ρ = φ(vx̄), and
the decoders can be described by vx̄ = ψ(ρ). Therefore, the
iterative detection performs iteration between the estimator and
the decoders and can be tracked by the values of ρ and vx̄.
The estimator and decoders are matched if

φ (vx̄) = ψ−1 (vx̄) , for 0 < vx̄ ≤ 1. (4)

It means that φi(vx̄) = ψ−1
i (vi) for any i ∈ Nu. The

matched transfer function not only maximizes the rate of the
code, but also ensures the transmitting signals can be perfectly



recovered. Note that: φi(1) > 0 as the estimator always use the
information from the channel; and φi(0) > 1 as the estimator
cannot remove the uncertainty introduced by the channel noise.
Therefore, we have the following proposition.

Proposition 1: For any i ∈ Nu, the matching conditions of
the iterative MU-MIMO systems can be rewritten as

ψi(ρi) = φ−1
i (φi(1)) = 1, for 0 ≤ ρi < φi(1); (5)

ψi(ρi) = φ−1
i (ρi), for φi(1) ≤ ρi < φi(0); (6)

ψi(ρi) = 0, for φi(0) ≤ ρi <∞. (7)

Similarly, φ−1
i (·) denotes the inverse of φi(·).

D. Area Properties

Let snrdecap,i denote the SNR of the prior input messages in
decoder i, snreseext,i be the SNR of the output extrinsic messages
in estimator to the decoder i, mmsedectot,i(·) represent the total
variance of the messages for user i at the LMMSE estimator,
and mmsedectot,i(·) indicate the total variance of the messages
in decoder i. In addition, snreseext,i = [snreseext,1, · · · , snreseest,Nu

].
The area properties is given as follows.

Proposition 2: The achievable rate Ri of user i and an
upper bound of Ri are given as

Ri=

∞∫
0

mmsedectot,i(snr
dec
ap,i)dsnrdecap,i , R

max
i =

∞∫
0

mmseesetot,i(snreseext)dsnreseext,i,

(8)
and Ri ≤ Rmax

i , i ∈ Nu, where the equality holds if and only
if the SINR-Variance transfer functions of the element signal
estimator and decoders for any user are matched with each
other, i.e., (4) and the matching conditions (5)∼ (7) hold.

In our MU-MIMO system model, from (2) and (3) and
with the Gaussian assumptions , we have snrdecap,i = ρi,

snreseext,i = φi(vx̄), mmsedectot,i(snrdecap ) =
(
ρi + ψi(ρi)

−1
)−1

and mmseesetot,i(snreseext,i) = vx̂i
(vx̄). Therefore, (8) can be

rewritten as the following proposition.
Proposition 3: With the SINR-Variance transfer functions

ρ = φ(vx̄) and vx̄ = ψ(ρ) and the Gaussian assumptions,
the achievable rate Ri of user i and an upper bound of Ri are

Ri =

∞∫
0

(
ρi + ψi(ρi)

−1
)−1

dρi, R
max
i =

∞∫
0

vx̂i
(vx̄)dφi(vx̄). (9)

and Ri ≤ Rmax
i , i ∈ Nu, where the equality holds if and only

if the SINR-Variance transfer functions of the element signal
estimator and decoders for any user are matched with each
other i.e., (4) and the matching conditions (5)∼ (7) hold.

All the users’ transfer functions interact with each other at
the estimator since every output of the estimator depends on
the variances of the input messages from all the decoders. In
addition, all the users’ transfer functions are unknown and need
to be properly designed. Therefore, it is very hard to calculate
the achievable rates directly with (9).

IV. ACHIEVABLE RATE REGION ANALYSIS OF ITERATIVE
LMMSE DETECTION

In this section, based on the proposed matching conditions
and area properties, the achievable rates of users are given for

MIMO-NOMA systems with iterative LMMSE detection. In
the iterative LMMSE detection, we use the LMMSE estimator
as the ESE estimator and the Superposition Code Modulation
(SCM) codes as the channel codes.

A. LMMSE ESE

LMMSE is an alternative low complexity ESE. Let x̄(t) =
[x1,t, · · · , xNu,t] and Vx̄(t) = Vx̄ = diag{v1, v2, · · · , vNu

}.
The LMMSE detector [17] is

x̂(t) =
(
σ−2
n H′HH′+V−1

x̄

)−1[
V−1

x̄ x̄(t)+σ−2
n H′Hyt

]
(10)

= x̄(t)+Vx̄H′H
(
σ2
nINr

+H′Vx̄H′H
)−1

(yt−H′x̄(t))

where Vx̂ = (σ−2
n H′HH′ + V−1

x̄ )−1, which denotes the
deviation of the estimation to the initial sources.

Therefore, with GMP2, we get βi,t = xi,t + n∗i,t, and

n∗i,t=
vi
vx̂iρi

v2
x̄i

h′i
H(
σ2
nINr+H′Vx̄H

′H)−1[
H′
(
x\i(t)−x̄\i(t)

)
+n(t)

]
(11)

where x\i(t) (or x̄\i(t)) denotes the vector whose ith entry of
x(t) (or x̄(t)) is zero. We rewrite Assumption 1 as follows.

Assumption 2: The equivalent noise n∗i,t is independent of
xi,t and is Gaussian distributed ni,t ∼ CN (0, 1/φi(vx̄)), i.e.,
the output of the LMMSE estimator is the observation from
AWGN channel, i.e., β(t) = x(t) + n∗t with SNRs ρ = φ(vx̄).

B. A Posteriori Probability Decoders: SCM Decoder

As the SCM code is capacity-achieving and easily analyzed
[34], [35], a property is established in [27] and the area
theorems [28], [29], which builds the relationship between the
rate of the SCM code and its transfer function ψi(ρi).

Property of SCM Codes: There exists such an n-layer SCM
code Γn whose transfer function can approach the function
ψ(ρ) with arbitrary small error if n is large enough and ψ(ρ)
satisfies the following conditions:
(i) ψ(0) = 1 and ψ(ρ) ≥ 0, for ρ ∈ [0,∞);
(ii) monotonically decreasing in ρ ∈ [0,∞);
(iii) continuous and differentiable in [0,∞) except for a
countable set of values of ρ;
(iv) lim

ρ→∞
ρψ(ρ) = 0.

C. Sum Capacity Achieving of Iterative LMMSE Detection for
MU-MIMO Systems

The area theorem tells us the achievable rate of every user
is maximized if and only if its transfer function matches with
that of the estimator and codes with that transfer function
are existent. Therefore, we can arbitrarily choose the input
variances of the estimator from the decoders and get users’
achievable rate by matching the decoders’ transfer functions
with the estimator. To simplify to calculation, we let the input
variances of the estimator satisfy the following constraints.

γi(v
−1
i − 1) = γj(v

−1
j − 1), for any i, j ∈ Nu. (12)

Without loss of generality, we assume γ1 = 1 and γi > 0 ,
that is, v−1

i = 1 + γ−1
i (v−1

1 − 1) for any i ∈ Nu. Actually,
the different γ = [γ1, · · · , γNu ] values give the different
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variance track during the iteration. Fig. 2 and Fig. 3 presents
the variance tracks of the different γ for the two users and three
users cases respectively. As we can see, when (12) concluded
the symmetric case (when w1 = · · · = wNu ) and all the
SIC points (maximal extreme points of the capacity region).
If γki/γki−1

→ ∞, for any i ∈ Nu/{1}, we can get the SIC
points with the decoding order [k1, k2, · · · , kNu

], which is a
permutation of [1, 2, · · · , Nu]. The blue curve and green curves
in Fig. 2 and Fig. 3 are corresponding to some of the maximal
extreme points. We will also show that the user’s achievable
rate can be adjusted by the parameter γ.

With (12), we have

V−1
x̄ = INu

+ γi(v
−1
i − 1)Λ−1

γ = V−1
x̄ (vi) (13)

and

Vx̂ = (σ−2
n H′HH′ + V−1

x̄ (vi))
−1 = Vx̂(vi) (14)

for any i ∈ Nu, where Λγ = diag(γ) is a diagonal matrix
whose diagonal entries are γ. Thus, we have

φi(vx̄) = vx̂i
(vi)

−1 − v−1
i = φi(vi) = ρi, (15)

For example, if we take i = 1, we have

V−1
x̄ = V−1

x̄ (v1), Vx̂ = Vx̂(v1), φi(vx̄) = φi(v1). (16)

Proposition 5: Based on (15), for any i ∈ Nu, the matching
condition (4) can be rewritten as

ψi(ρi) = φ−1
i (φi(1)) = 1, for 0 ≤ ρi < φi(1); (17)

ψi(ρi) = φ−1
i (ρi), for φi(1) ≤ ρi < φi(0); (18)

ψi(ρi) = 0, for φi(0) ≤ ρi <∞. (19)

Then, we can give users’ achievable rates of the iterative
LMMSE detection for the MIMO-NOMA systems.

Lemma 1: For the MIMO-NOMA systems with iterative
LMMSE detection, the achievable rates of the users are

Ri =

v1=0∫
v1=1

[
v1 − γ−1

i [Vx̂(v1)]i,i

]
dv−1

1 − log(γi), (20)
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where Vx̂(v1) =
(
σ−2
n H′HH′ + INu

+ (v−1
1 − 1)Λ−1

γ

)−1

and [·]i,i denotes the i-th column and i-th row entry of the
corresponding matrix.

Proof: The achievable rate of user i can be given by (9)
with the matching condition.

Ri =

∞∫
0

(
ρi + ψi(ρi)

−1
)−1

dρi

(a)

≤
φi(0)∫
φi(1)

[
ρi +

(
φi
−1(ρi)

)−1
]−1

dρi +

φi(1)∫
0

(1 + ρi)
−1dρi

(b)
=

vi=0∫
vi=1

(
v−1
i + φi(vi)

)−1
dφi(vi) + log (1 + φi(vi))

(c)
=

vi=0∫
vi=1

vx̂i
(vi)dvx̂i

(vi)
−1−

vi=0∫
vi=1

vx̂i
(vi)dv

−1
i − log vx̂i

(vi = 1)

(d)
= −

v1=0∫
v1=1

γ−1
i [Vx̂(v1)]i,i dv

−1
1 − lim

v1→0
log [Vx̂(v1)]i,i

(e)
=

v1=0∫
v1=1

[
v1 − γ−1

i [Vx̂(v1)]i,i

]
dv−1

1 − log(γi). (21)

The inequality (a) is derived by (17)∼(19) and the equality
holds if and only if there exists that code whose transfer func-
tion satisfies the matching condition. The equations (b) ∼ (d)
are given by ρi = φi(vi), (15) and (16), equation (e) comes
from (13) and (14).

Next, we show the existence of such codes whose transfer
functions match the transfer functions of the LMMSE estima-
tor. From the “Property of SCM Codes”, in order to show the
existence of such code, it only needs to check the matched
transfer function meets the conditions (i)∼(iv). It is easy to
see that conditions (i) and (iv) are always satisfied by (17) and
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(18) respectively. From (15)∼(19), we can see that ψi(ρi) is
continuous and differentiable in [0,∞) except at ρi = φi(0)
and ρi = φi(1). Thus, Condition (iii) is satisfied. To show the
monotonicity of the transfer function, we first rewrite (2) as

φi(vi) = 1
/(
f−1
i (vi)− 1

)
, (22)

where fi(vi) = w2

σ2
n
hHi

(
v−1
i INr

+ w2

σ2
n
HHH

)−1

hi. As fi(vi)
is a decreasing function of vi, φi(vi) is a decreasing function
of v. With the definition of ψ(ρ) from (17)∼(19), we can see
that ψi(ρi) is a monotonically decreasing function in [0,∞).
Therefore, the matched transfer function can be constructed
by the SCM code, i.e., there exists such codes that satisfy the
matching condition.

It should be noted that although the Lemma 1 gives the
achievable rate of the users with respect to Λγ , we cannot
see the specific relationships between the achievable rates
and Λγ because of the complicated integral structure of (20).
Therefore, it is very hard to analyse the achievable rate region
of the iterative LMMSE detection. However, its sum rate can
be shown by the following theorem.

Theorem 1: The iterative LMMSE detection achieves the
sum capacity of the MU-MIMO systems, i.e., Rsum =
log det

(
INu

+ σ−2
n H′H′H

)
.

Proof: With (20), the achievable sum rate is

Rsum =

Nu∑
i=1

Ri

(a)

≤ −
v1=0∫
v1=1

Nu∑
i=1

(
γ−1
i [Vx̂(v1)]i,i

)
dv−1

1 −lim
v1→0

log(vNu
1

Nu

Π
i=1

γi)

= −
v1=0∫
v1=1

Tr{Λ−1
γ Vx̂(v1)}dv−1

1 − lim
v1→0

log(vNu
1

Nu

Π
i=1

γi)

(b)
=−lim

v1→0
log(vNu

1

Nu

Π
i=1
γi)−

[
logdet

(
(v−1

1 −1)INu
+
(
INu

+σ−2
n H′HH′

)
Λγ

)]v1=0

v1=1

=−lim
v1→0

log(vNu
1

Nu

Π
i=1
γi)−lim

v1→0
logdet(v−1

1 INu
)+logdet

((
INu

+σ−2
n H′HH′

)
Λγ

)
= log det

(
INu

+ σ−2
n H′HH′

)
(23)

which is the exact sum capacity of the system. The inequality
(a) is derived by (23), and equation (b) is based on (14) and
the law

∫
Tr{(sI + A)

−1}ds = log det(sI+A). It means that
the iterative detector can achieve the system sum capacity with
different kinds of user rate combinations.

Theorem 2 shows that for a general MIMO-NOMA system,
from the sum rate perspective, the iterative detection structure
is optimal and the LMMSE estimator is an optimal estimator
without losing any useful information during the estimation.

V. SPECIAL CASES OF THE MIMO-NOMA SYSTEMS

In the last section, we proved the iterative LMMSE detec-
tion achieves the sum capacity of the MU-MIMO systems,
but whether it can achieve the whole capacity region is still
unkown. In this section, we analyse some special cases of the
MIMO-NOMA systems.

A. Maximal Extreme Points Achieving

In this subsection, we analyse the maximal extreme points
in the achievable rate region of the iterative LMMSE detection.

Corollary 1: The maximal extreme points in MU-MIMO
capacity region are achieved by the iterative LMMSE detection.

Proof: The proof is omitted due to the page limit.
These corollary shows that as the parameter Λγ be properly

chosen, the iterative LMMSE detection can be degenerated to
the SIC methods, i.e., the SIC methods are some special cases
of the proposed iterative LMMSE detection.

B. Capacity Region Achieving for Two-user MIMO Systems

As it is mentioned, it is hard to calculate the specific achiev-
able rates of users for the general MIMO-NOMA systems. In
this subsection, we show that the iterative LMMSE detection
is capacity region achieving for two-user MIMO systems.

Theorem 2: The iterative LMMSE detection achieves the
whole capacity region of two-user MIMO systems as follows.

R1 ≤ log(1 + 1
σ2
n
h′
H
1 h′1),

R2 ≤ log(1 + 1
σ2
n
h′
H
2 h′2),

R1 +R2 ≤ log det
(
I2 + σ−2

n H′HH′
)
.

(24)

Proof: The proof is omitted due to the page limit.



For two-user case, the R1 and R2 is given as follows.
Corollary 2: The user rates of the proposed iterative

LMMSE detection for two-user MIMO system are{
R1 = 1

2 log(γ det(A)) + a22γ−a11
2η log a22γ+a11−η

a22γ+a11+η ,

R2 = 1
2 log(γ−1 det(A))− a22γ−a11

2η log a22γ+a11+η
a22γ+a11+η

(25)
where A = σ−2

n H′HH′ + I2 =
[
a11 a12a21 a22

]
and η =√

a2
22γ

2 + 2(2a21a12 − a22a11)γ + a2
11. It is easy to find that

η is a real number as A is positive definite and γ ≥ 0.
Remark 2: It should be noted from (25) that R1 and R2 are

not linear functions of γ. It is easy to check that R1 + R2 =
log det

(
I2 + σ−2

n H′HH′
)
, and when γ → 0 (or γ →∞), the

limit of (R1, R2) in (25) converges to the maximal point B
(or A) in Fig. 4. When the parameter γ changes from 0 to ∞,
the point (R1, R2) can achieve any point on the segment AB
in Fig. 4. It also shows another proof of Theorem 3. Fig. 5
presents the rate curves of R1 and R2 respect to the parameter
γ. It verifies that R2 increases monotonously with the γ and
R1 +R2 always equals to the system sum capacity.

VI. CONCLUSION

An iterative LMMSE detector for the MIMO-NOMA sys-
tems has been studied, which has a low-complexity as the dis-
tributed processors replace the overall receiver. The achievable
rate of the iterative LMMSE detector has been analysed, which
shows that the iterative LMMSE detector is sum capacity
achieving for the MU-MIMO systems. In addition, we proved
that with the carefully designed iterative LMMSE detector, all
the maximal extreme points in the capacity region of MU-
MIMO systems are achievable, and the whole capacity region
of two-user MIMO systems are also achievable.
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