
Congestion Control in the
Recursive InterNetworking Architecture (RINA)

Peyman Teymoori∗, Michael Welzl†, Stein Gjessing‡, Eduard Grasa§,
Roberto Riggio¶, Kewin Rausch‖, Domenico Siracusa∗∗

∗†‡Department of Informatics, University of Oslo, Norway. Email:{peymant, michawe, steing}@ifi.uio.no
§i2CAT, Barcelona, Spain. Email: eduard.grasa@i2cat.net

¶‖∗∗CREATE-NET, Trento, Italy. Email: {roberto.riggio, kewin.rausch, domenico.siracusa}@create-net.org

Abstract—RINA, the Recursive InterNetwork Architecture, is
a novel “back to basics” type approach to networking. The
recursive nature of RINA calls for radically different approaches
to how networking is performed. It shows great potential in many
aspects, e.g. by simplifying management and providing better
security. However, RINA has not been explored for congestion
control yet. In this paper, we take first steps to investigate how
congestion control can be performed in RINA, and demonstrate
that it can be very efficient because it is applied close to where
the problem happens, and through its recursive architecture,
interesting effects can be achieved. We also show how easily
congestion control can be combined with routing, enabling a
straightforward implementation of in-network resource pooling.

I. INTRODUCTION

In the Internet, congestion control is embedded in a pro-
tocol at the transport layer or above – most commonly in
TCP (which we will refer to in the following), but also in
SCTP, DCCP and in certain RTP-based applications. The
TCP protocol operates “end-to-end”, where “end” is the host
the application is running on. Although this might ensure
scalability since interior network elements do not have to
worry about congestion control,1 the control is potentially
executed far from where congestion appears in the network.

The Recursive Network Architecture (RINA) [2], [3], is a
back to basics approach learning from the experience with
TCP/IP [4] and other technologies in the past. In RINA, every
layer (called a “Distributed InterProcess Communication (IPC)
Facility” (DIF)) has the same set of mechanisms and goal:
providing and managing the communication among its entities
(called the “IPC Processes” (IPCPs)). All DIFs have the same
internal structure. For example, each DIF has one transport
protocol (the “Error and Flow Control Protocol” (EFCP));
this is a mechanism that cannot be changed. However, how
this mechanism performs flow control, retransmission control
or congestion control is defined as “policies” and can be
programmed differently in various DIFs.

Many cases can be found in which there are layers in the
network stack that do not follow the traditional “transport/net-
work/data link/physical” architectural model (Fig. 1(a)). For

1It has been said that this design of TCP matches the end-to-end argument.
This is true, but the end-to-end argument really only prohibits implementing
application-specific functions inside the network [1]. Much like routing,
congestion control addresses a problem that occurs inside the network (the
end-to-end argument does also not forbid complex routing algorithms).

The model in theory 
(simple) 

The model in practice 
(complex) 

RINA 

… 
DIF (IPC) 

DIF (IPC) 

10GBASE-ER (L1) 
IEEE 802.1ah (L2) 
IEEE 802.1q (L2) 

MPLS (L2.5) 
IEEE 802.3 (L2) 

IP (L3) 
IP (L3) 

UDP (L4) 
VXLAN(L2) 

IEEE 802.3 (L2) 
IP(L3) 

TCP(L4) 

Physical (L1) 
Data Link (L2) 
Network (L3) 

Transport (L4) 

Shim DIF (IPC to PHY) 

(a) The TCP/IP stack
in theory

The model in theory 
(simple) 

The model in practice 
(complex) 

RINA 

… 
DIF (IPC) 

DIF (IPC) 

10GBASE-ER (L1) 
IEEE 802.1ah (L2) 
IEEE 802.1q (L2) 

MPLS (L2.5) 
IEEE 802.3 (L2) 

IP (L3) 
IP (L3) 

UDP (L4) 
VXLAN(L2) 

IEEE 802.3 (L2) 
IP(L3) 

TCP(L4) 

Physical (L1) 
Data Link (L2) 
Network (L3) 

Transport (L4) 

Shim DIF (IPC to PHY) 

(b) The TCP/IP stack
in practice

The model in theory 
(simple) 

The model in practice 
(complex) 

RINA 

… 
DIF (IPC) 

DIF (IPC) 

10GBASE-ER (L1) 
IEEE 802.1ah (L2) 
IEEE 802.1q (L2) 

MPLS (L2.5) 
IEEE 802.3 (L2) 

IP (L3) 
IP (L3) 

UDP (L4) 
VXLAN(L2) 

IEEE 802.3 (L2) 
IP(L3) 

TCP(L4) 

Physical (L1) 
Data Link (L2) 
Network (L3) 

Transport (L4) 

Shim DIF (IPC to PHY) 

(c) RINA Stack

Fig. 1. Protocol stacks. (In RINA, shim DIF is the bottom DIF designed to
operate on the physical layer, link layer, or any other specific technology.)

example, in Fig. 1(b) we can see L2 over L2 (MAC-in-MAC),
L2 over L3 (Ethernet over MPLS), L2 over L4 (VXLAN,
L2TP), L3 over L3 (IP in IP, GRE, LISP), and so on. RINA
allows theoretically an indefinite number of stacked DIFs to
provide IPC services to each other (Fig. 1(c)). This is how
it shows the ability to solve long-standing network problems
of the Internet architecture (complexity, scalability, security,
mobility, QoS or management, see [2], [5]–[7]). However,
previous work on RINA has just focused on the above issues
and did not investigate it on congestion control research.

In this paper, we take a first look at how a congestion control
method can work in this new architecture; by implementing
a TCP-like congestion control policy, we compare it with
similar approaches in the Internet, and discuss its benefits.
We also elaborate how a range of different optimizations
in congestion control can fit within a single framework. In
RINA, recursion arises from the ability to arbitrarily arrange
structurally-equivalent DIFs. Through simple topologies, we
show that improvements that have been done to TCP such
as Split-TCP on the internet “naturally appear” with RINA
without their side effects; we present some DIF layouts to
show how they solve some congestion control problems in
the Internet. We also show that in RINA, each DIF can
detect and manage the congestion for its resources, pushing
back to higher layer DIFs when resources are overloaded.
There, the “Relaying and Multiplexing” (RMT) task – another
mechanism in every DIF – is in charge of forwarding the EFCP
PDUs; it can load-balance the traffic by sending it on other
paths, or recursively pushback upwards to achieve in-network
resource pooling.

We will elaborate on the design of RINA congestion control



C1 C2,1 C2,2 C3 

S1 R1 

A1 A3 

B1 B2 B3 

L
ay

er
 1

 
L

ay
er

 1
 

L
ay

er
 2

 

S1 R1 

A1 A2 A3 1-DIF 

Sender Relay Receiver 

(a) End-to-end

C1 

B1 

C2,1 

B2,1 

C2,2 C3 

S1 R1 

B3 B2,2 

A1 A2 A3 

L
ay

er
 1

 

1-DIF 

2-DIF 

Sender Relay Receiver 

1-DIF 

(b) Split

Fig. 2. Two possible RINA stack configurations by different organizations of
“Distributed InterProcessCommunication Facilities” (DIFs).

in Section II. In Section III, we will take a look at how a TCP-
like mechanism would play out in RINA, focusing on some
simple “toy” scenarios. Section IV discusses RINA congestion
control in the context of prior work, and Section V concludes.

II. CONGESTION CONTROL IN RINA

In RINA, every function is bound to one DIF, and DIFs can
be of different sizes, e.g. two nodes connected to each other
can form a DIF, or a public DIF can contain all the nodes of
a network. Every DIF can have a different type of congestion
control (or none at all). DIFs can also be stacked; the lower
DIF serves the upper one based on a list of requirements that
the upper DIF needs for its flows. This provides the flexibility
of mapping several upper flows with the same requirements
(e.g. QoS) to just one lower flow. Here, we only discuss
congestion control-related modules of RINA; however, for
further information on RINA, see [2].

As a simple starting point, consider a path with one inter-
mediate hop, given by a physical setup of 3 nodes: a sender,
a relay/router node in the middle, and a receiver, as shown
in Fig. 2. S1 and R1 are the application instances sending
and receiving packets, respectively. Ai (or Bi) is called IPC
Process (IPCP); it is an application process that is a member of
a DIF and locally implements the functionality to support and
manage IPC using multiple sub-tasks. In Fig. 2(a), there is one
DIF for the network that performs congestion control with a
control loop from A1 to A3. The module controlling congestion
in A1 and A3 is called EFCP. If congestion appears in the relay
IPCP (in the RMT module of A2 which is responsible for
relaying PDUs), the RMT can, for example, set the Explicit
Congestion Notification (ECN) field of PDUs. The sender’s
window or rate is a function reacting to congestion in this
network. This scenario has its advantages in simplicity and
scalability, but it has some obvious disadvantages too: A1
cannot benefit from the knowledge specific to the two links
below A1–A2 and A2–A3 (just like TCP can usually not benefit
from link-layer knowledge), and if congestion appears in one
of these links, EFCP needs a full round-trip-time (from A1 to
A3 and back) to react.

The diagram in Fig. 2(b) shows two separate DIFs at layer 1
and hence two separate congestion controllers. Although the
two DIFs have the same set of mechanisms, each one can
have different policies for flow or congestion control that are
tailored to the underlying link layer technology or physical
link characteristics. The programmable functions inside DIFs
are called policies. For example, EFCP can be seen as a family

… 2-DIF 

1-DIF 

…
 

1-DIFs 

RMT 
RA 

EFCP 

(N-1)-DIFs 
 
 

2-DIFs 
 
 
 
 
 

1-DIFs 

N-DIF 

Sender Receiver 

RMT 
RA 

RMT 
RA 

EFCP 

RMT 
RA 

EFCP 

RMT 
RA 

RMT 
RA 

EFCP 

RMT 
RA 

EFCP 

RMT 
RA 

EFCP … … 

Node 1 Node n Node i Node j 

…
 

Node j+1 

(N-1)-DIFs 
 
 

2-DIFs 
 
 
 
 
 

1-DIFs 

…
 

Fig. 3. Recursive congestion control in RINA: the recursive interactition of
IPCP modules “Error and Flow Control Protocol” (EFCP), “Relaying and
Multiplexing Task” (RMT), and “Resource Allocation” (RA).

of congestion/flow control protocols, and policy is a specific
implementation. In the figure, we have another DIF on top. The
top DIF’s EFCP connection includes no congestion control
in our example. EFCP connections inside the layer 1 DIFs
include IPC processes B2,1 and B2,2, which are not directly
visible to the layer 2 IPCP A2. However, A2 is connected to
each one through a logical interface similar to a buffer, called
port. If A2 does not receive PDUs from B2,1 as quickly as
B2,2 drains it, A2 is able to tell B2,1 that it can speed up. B2,1
can then allow B1 to send faster via EFCP’s flow control. If,
on the other hand, B2,2 is sending data slower than it arrives
at B2,1, B2,2’s buffer will become full. A2 is then not able to
forward PDUs anymore and, therefore, will have to stop taking
them from B2,1. Thus, B2,1 will again obtain the information
it needs to make B1 slow down via EFCP’s flow control.

We see that the way RINA controls congestion is a gener-
alization of how it is done in the Internet: if there is only one
DIF doing congestion control in the network, it operates in
an end-to-end fashion. If two or more congestion controlled
DIFs are concatenated, the end-to-end control loop is broken
into shorter loops. As another interesting capability, RINA
allows DIFs to be stacked, and upper DIFs can have their own
congestion control policies. If, in Fig. 2(b), there are several
flows from S1 to R1 through several EFCP connections from
A1 to A3, packets of all of them are mapped to only one
EFCP connection in the DIFs below; this means that at the
lower DIFs, there is only one aggregated flow, and congestion
control in these DIFs operates on aggregates. As we consider it
an important feature, we generally refer to RINA’s congestion
control as “Aggregate Congestion Control” (ACC).

A general architecture of N layers is illustrated in Fig. 3.
The dashed, curved arrows in the figure represent notification
transmission between modules, and IPCPs are shown as cir-
cles. In case of congestion in the 1-DIF between nodes j and
j+1, the Resource Allocation entity (RA) of the transmitting
IPC Process sends a notification to the IPCP of the EFCP
instance sending the PDU. This EFCP instance is located in
the same IPCP. Congestion causes queue growth in this EFCP
instance; when the queue reaches its maximum size limit, the
EFCP instance shuts down its incoming port, and PDUs are



S1 R1 
Router1 

T
C

P 
St

ac
k 

Sp
lit

-T
C

P 
 S

ta
ck

 

L1 
L2 
L3 
L4 

R
IN

A
 

St
ac

k 2-DIF 

1-DIF 1-DIF 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

L1 
L2 
L3 
L4 

L1 
L2 
L3 
L4 

L1 
L2 
L3 

L1 
L2 
L3 
L4 

L1 
L2 
L3 
L4 (a) Network topology

S1 R1 
Router1 

T
C

P 
St

ac
k 

Sp
lit

-T
C

P 
 S

ta
ck

 

L1 
L2 
L3 
L4 

R
IN

A
 

St
ac

k 2-DIF 

1-DIF 1-DIF 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

L1 
L2 
L3 
L4 

L1 
L2 
L3 
L4 

L1 
L2 
L3 

L1 
L2 
L3 
L4 

L1 
L2 
L3 
L4 

(b) TCP stack

S1 R1 
Router1 

T
C

P 
St

ac
k 

Sp
lit

-T
C

P 
 S

ta
ck

 

L1 
L2 
L3 
L4 

R
IN

A
 

St
ac

k 2-DIF 

1-DIF 1-DIF 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

L1 
L2 
L3 
L4 

L1 
L2 
L3 
L4 

L1 
L2 
L3 

L1 
L2 
L3 
L4 

L1 
L2 
L3 
L4 

(c) Split-TCP stack

S1 R1 
Router1 

T
C

P 
St

ac
k 

Sp
lit

-T
C

P 
 S

ta
ck

 

L1 
L2 
L3 
L4 

R
IN

A
 

St
ac

k 2-DIF 

1-DIF 1-DIF 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

L1 
L2 
L3 
L4 

L1 
L2 
L3 
L4 

L1 
L2 
L3 

L1 
L2 
L3 
L4 

L1 
L2 
L3 
L4 

(d) RINA stack. Only EFCP and RMT modules are shown in IPCPs.

Fig. 4. The topology used for comparison and its correspoding stacks in
end-to-end TCP, Split-TCP, and RINA.

backlogged in the upper RMT output port (the port will be
unblocked again when the queue length decreases). Next, the
output queue of the RMT in 2-DIF will reach its maximum
threshold, and this continues; it sends a slow-down signal
to the Resource Allocator (RA) module, and the RA sends
a notification to the sending EFCP instance. This continues
until the signal reaches the source of congestion, generating a
“pushback” behavior that emerges due to recursion.

A full implementation of the scenario in Fig. 3 requires
upstream notifications within a DIF, which can have im-
plications on efficiency (probably positive) and scalability
(probably negative) that are beyond the scope of the pre-
liminary investigation presented here. We note, however, that
scalability constraints are not as prohibitive here as they are
in the Internet: because the Internet architecture essentially
limits congestion control to the setup in Fig. 2(a), upstream
notifications become impossible to use [8], whereas they
merely constrain the maximum size of a DIF in RINA.

III. SIMULATIONS WITH TCP-LIKE CONGESTION
CONTROL

To better understand the implications of placing congestion
controlled DIFs next to or above each other, we have carried
out simulations of a few “toy” scenarios using the OMNeT++
RINA module [9]. The simulator and scenarios can be found
in the provided URL ([9]). We implemented a simple TCP
Tahoe-like congestion control policy in EFCP (and, for the
simulations in Sections III-A and III-B, nothing else: the
effects were entirely achieved by configuring how DIFs are
stacked). As we will see, TCP-like congestion control in RINA
plays out in ways that are similar to certain functions that
are getting deployed as “hacks” to the Internet infrastructure
today (e.g. in performance-enhancing proxies (PEPs) [10])
as well as mechanisms that are proposed in the academic
literature. In RINA, this behavior naturally appears as a result
of layering, whereas the very design of PEPs illustrates the
difficulty of overhauling the Internet’s base architecture. In
the next subsections, we will continue our discussions on three
different arrangement types of DIFs which RINA allows us to
do: consecutive DIFs, stacked DIFs, and “side-by-side” DIFs.

0

20

40

60

80

100

0 20 40 60

C
W

N
D

 (K
B

)

Simulation time (s)

TCP:Sender
RINA-ACC:Relay
Split-TCP:Splitter

(a) CWND size of a run with RTT
= 200ms (in Kilo Bytes)

10

11

12

13

14

10 50 100 150 200 250 300

Tr
an

sm
is

si
on

 (M
B

)

RTT (ms)

RINA-ACC
Split-TCP
TCP

(b) Transmitted volume of data (in
Mega Bytes)

Fig. 5. Comparison results of a single flow in TCP, Split-TCP, and RINA.

A. Horizontal: Consecutive DIFs

If we consider the description of Fig. 2(b) in the previous
section and assume that the congestion control in the Layer 1
DIFs is TCP-like, what we have described is very similar to a
PEP function called Connection Splitting [10]. TCP splitters
divide TCP connections by “lying” to the end systems, acting
as the receiver towards the sender and as the sender towards
the receiver. As one significant difference to RINA-ACC, a
TCP splitter must take care of end-to-end reliability, thereby
breaking the end-to-end reliability semantics of TCP. While
retransmitting packets from within the network can also have
benefits and would easily be possible with RINA, it is not
automatically tied to dividing the control loops as it is with
TCP, and we do not consider it further here.

To compare RINA-ACC with Split-TCP and see the perfor-
mance gain over end-to-end TCP, we simulated data transfers
in the topology shown in Fig. 4; Router1 acts as a splitter
while using Split-TCP, which we have added to the OMNeT++
INET framework as implemented in [11]. The protocol stacks
of the three approaches are also shown for clarity. The traffic
sent by S1 was a single large file, so there was only one flow
from S1 to R1 in the network. The simulation was run for one
minute, and after that we collected the total volume of data
transmitted. The capacity of the link between the sender and
the router was 10 Mbps, and for the link between Router1 and
R1 it was 2 Mbps. Congestion appeared in the interface on
the right-hand side of Router1. We limited the output queue
of this interface to the bandwidth-delay product (BDP) in the
end-to-end TCP case. In the Split-TCP and RINA-ACC cases,
we used the BDP of the Router1–R1 link for this buffer as
well as the RMT’s output buffer at the layer above.

The performance of end-to-end TCP, Split-TCP, and RINA
with TCP per DIF is illustrated in Fig. 5. This diagram shows
two separate and expected things: 1) Fig. 5(a) shows conges-
tion window (CWND) sizes of the sender in end-to-end TCP
(“TCP:Sender”) and the second connections of Split-TCP and
RINA (“Split-TCP:Splitter” and “RINA-ACC:Relay”) between
Router1 and R1; this implies that our implementation of TCP
in RINA indeed performs very similar to Split-TCP (with a
small throughput improvement because its pushback mecha-
nism prevents packet drops and timeout), and 2) referring to
Fig. 5(b), Split-TCP performs better than end-to-end TCP at
large RTTs. The latter fact is known from earlier literature but
it shows that our implementation of Split-TCP is correct.



1-DIF 

S1 

Sn 

R1 

Rn 

Router1 Router2 

 
 

 
 

R
IN

A
 S

ta
ck

 

1-DIF 1-DIF EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

 
 

 
 S1 

Sn 

R1 

Rn 

2-DIF 
EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

(a) Network topology

1-DIF 

S1 

Sn 

R1 

Rn 

Router1 Router2 

 
 

 
 

R
IN

A
 S

ta
ck

 

1-DIF 1-DIF EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

 
 

 
 S1 

Sn 

R1 

Rn 

2-DIF 
EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

EFCP 
RMT 

(b) RINA stack: there is one 1-DIF between every pair of adjacent
nodes, and a single 2-DIF on top which connects all the nodes.

Fig. 6. Network topology for multiple flows and its RINA stack.

B. Vertical: Stacked DIFs

In the simplistic example above, the traffic carried by RINA
came from one single end-to-end flow in the network. In
a real RINA network where DIFs are stacked above each
other, an N-DIF would carry an aggregate of flows from the
(N+1)-DIF sitting above it. Edge router pairs would then only
keep the congestion state of active flow aggregates between
them. Here, RINA-ACC automatically avoids the competition
between multiple end-to-end flows that occurs in the Internet
today: when many end-to-end or Split-TCP flows individually
push up the queue at the bottleneck, they harm each other
via increased delay and loss, and it can be better to combine
them [12], [13]. We simulated multiple flows competing in
the network using the network topology shown in Fig. 6.
Senders S1 through Sn sent a large file to receivers R1
through Rn, respectively. All the links had the same bandwidth;
the Router1–Router2 link was the bottleneck. For RINA, the
DIF structure is also indicated in Fig. 6: there were some
consecutive lower DIFs and one upper-layer DIF on top. We
compared RINA-ACC against the better Internet case from our
previous simulations – Split-TCP, but with no aggregation.

In Fig. 7(a), end-to-end delay results of RINA-ACC and
Split-TCP are shown in a box-and-whisker diagram; it shows
the range and 10th percentile/median/90th percentile boxes of
all packets in one simulation. Although the median of delay is
almost the same, we observe that due to the competition among
the TCP connections in the Router1–Router2 segment, some
packets had much longer end-to-end delays, which also causes
a higher jitter at receivers. In RINA-ACC, all traffic from
the senders was carried through one flow between Router1
and Router2 with no competition. The effect of competition
can be mitigated to some extent by employing Active Queue
Management (AQM) in Split-TCP. However, AQM does not
resolve the high jitter problem arisen by competition.

With RINA-ACC, we see a slight reduction in peak delay as
the number of flows increases because at the start, more flows
translate into more packets to be sent by the aggregated flow
between Router1 and Router2, keeping its send buffer from
draining and allowing its congestion window to grow faster.

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

5 5 10 10 15 15

E
nd

-t
o-

en
d 

de
la

y 
(s

)

Number of flows

RINA-ACC

Split-TCP

(a) End-to-end delay

0.97

1.926

3.671

0 2 4 6 8 10 12 14 16 18 20

File 1

File 2

File 1

File 2

File 1

File 2

Time (s)
TCP Split-TCP RINA-ACC

(b) Transmitting two files from one
sender to one receiver.

Fig. 7. Benefits of RINA ACC.

This implies another benefit of ACC: flows take advantage of
an already open window of the aggregate flow in their path
for faster transmission and shorter delay.

The previous simulation scenario showed the advantage
of aggregating flows in the core of the network. A similar
argument holds when a number of flows originate from the
same sender to the same receiver. Following an example from
[14], a user might be surfing a web site while downloading a
file from it – in this case, it can be more efficient to use only
one congestion controller between the two nodes.

We simulated this scenario and show the results in Fig. 7(b).
The network topology was the same as in Fig. 6 with n = 1.
The sender sent two files to the receiver. The transmission
of File 1 with the size of 20 MB started at time 0. File 2
was 500 KB, and its transmission started 10 seconds later. The
horizontal axis of the figure shows time, and the bars show the
start and finish times of each file for the three methods. Due to
the aggregation of the second flow into the already started one
in RINA-ACC, the second transfer can benefit from the large
congestion window of the ongoing transmission which already
has a better approximation of the available bandwidth between
the two nodes. Moreover, compared to TCP and Split-TCP,
there is less competition in this case which results in a shorter
transmission time for the first file. In Split-TCP, the two flows
were split into six pieces, and every two connections competed
for one of the three links. Compared with the TCP scenario
in which there was only one bottleneck link, here there were
three bottleneck links because sometimes, for example, the
total congestion window size in the splitter of Router1 became
smaller than the total size in the sender. In our simulation, this
caused one timeout in the second connection of File 1; this is
why it took around 1 second longer than with TCP.

The effect shown here with ACC is comparable to a
Congestion Manager (CM) [15] or multi-streaming as in e.g.
SCTP [14] – but with these mechanisms, the benefit shown
in Fig. 7(b) only appears when multiple flows are used as
described between the same sender and receiver. With RINA-
ACC however, the two files could just as well be transferred
between different sender-receiver pairs, and the same holds
if there are hundreds or thousands of senders: File 2 can be
transmitted faster if any sender is transmitting data at any given
time. In-network aggregate congestion control is, therefore,
a much more powerful mechanism than previously proposed
methods for congestion control coupling.



S1 

S2 

R1 

R2 
Router1 

Router3 

Router2 

Router4 

10 Mbps 
10 Mbps 

2 Mbps 
3 Mbps 

3 Mbps 10 Mbps 

10 Mbps 

10 Mbps 

Fig. 8. A toy topology for evaluating INRP (adopted from [19]).

C. Around: In-Network Resource Pooling

Resource pooling [16] has recently gained significant at-
tention from the routing and congestion control point of
view. There exist some methods at the transport layer like
Multi-Path TCP (MPTCP) [17] or at the routing layer like
Equal-Cost Multi-Path Routing (ECMP) [18] with the aim
of load-balancing. However, they operate independently. A
recent approach to enable a combination of these two types
of mechanisms was presented by the name of In-Network Re-
souce Pooling (INRP) in [19]. This work claims that dynamic
routing/detouring compared with the Internet’s static routing,
as a way of reacting to congestion by finding alternative lower-
load routes, combined with a hop-by-hop congestion control
mechanism in case there is no other low-load path towards
the destination, is beneficial. However, this approach might
face Internet-specific problems such as head-of-line blocking
in case of detouring TCP traffic [20].

RINA enables us to cope with these problems with its
layered architecture; it offers various options for reliable out-
of-order delivery between any two EFCP instances, and it is up
to each layer how to serve upper layers (DIFs). For example,
as proposed by [19], [21], DIFs are automatically able to serve
upper DIFs with multiple flows like flowlets through multiple
paths. These paths are provided through multiple side-by-side
lower DIFs operating on different paths. Detouring can also
be bound to some lower DIF in the core of a network, and
that DIF might even provide in-order-delivery to upper DIFs.
At the edge of a DIF, delay from head-of-line blocking is
bounded whereas in TCP it is accumulated along the path.

To show how easily RINA can provide resource pooling,
we implemented a load-based routing policy in the RINA
simulator in OMNeT++. This policy is coupled with another
short-term queue size monitoring policy to react to local
congestion in an output queue. In case of congestion, first
another low-load path to the destination is looked up. If no
other path is available, the congestion control module reacts.

Fig. 8 shows the simple topology that was used to explain
in-network resource pooling in [19]. In case of proper load-
balancing, both S1–R1 and S2–R2 connections should be
allocated a 5 Mbps share. The main advantage of resource
pooling here is that it provides global fairness and local
stability [19]. The corresponding RINA stack is similar to
the one in Fig. 6 meaning that there is one 1-DIF per link,
and a single 2-DIF connecting all the nodes on top. We ran
this scenario in RINASim for one minute, and measured the
volume of data received by R1 and R2. Jain’s fairness index
[22] with three digits precision was 0.999, which shows global
fairness while local stability was provided through RINA-ACC
as shown before.

IV. DISCUSSION AND IMPLICATIONS

Because it operates at the transport layer, it is impossible for
TCP to always do “the right thing” for every network segment.
By measuring only the round-trip time (RTT) and packet loss,
it is very difficult to optimally adapt the transmission rate
of the sender when the path to the receiver is a chain of
technologies (e.g. WLAN, Ethernet, satellite, 3G). TCP cannot
make any form of link technology-specific decision. This
problem is compounded by well-known TCP issues like e.g. its
inability to distinguish between congestion losses and losses
that are due to link impairments. It should not be surprising
that there is a huge amount of research work on cross-layering
with a focus on TCP-over-X, where X is any link layer
technology and X is assumed to be the only problematic link.
Similarly, given that TCP must work everywhere, it should not
be surprising that such research does not typically influence
the TCP standard. TCP’s end-to-end congestion control also
does not scale well in several dimensions:

1) The diameter of the network. The effectiveness of any
congestion control scheme will deteriorate with increasing net-
work diameter. TCP maximizes this effect because it operates
in “rounds” based on the round-trip time. This is particularly
problematic in high bandwidth networks where the capacity
does not become a limit, especially with short flows that
are common in web traffic. Such flows typically terminate in
TCP’s slow-start phase, making the completion time strictly a
function of the round-trip time. Recently, there has therefore
been increased interest in reducing the number of round-trips
for web traffic [23].

2) The number of flows. When multiple flows traverse a
path, they compete for the available bandwidth, pushing up
the queues and creating delay and loss. As shown in [12],
jointly controlling them as a group can lead to much better
behavior and enable precise prioritization between flows. This
functionality is currently being proposed for WebRTC in the
IETF RMCAT Working Group [24].

3) The bottleneck link capacity. TCP often poorly saturates
high-capacity links due to its linear increase in standard
TCP’s congestion avoidance phase. This has been addressed
approximately a decade ago; now, the most prominent solution
is the CUBIC congestion control mechanism that is used by
default in Linux hosts [25]. When CUBIC and other related
mechanisms were proposed, explicit feedback-based schemes
were found to operate best (e.g. XCP [26], RCP [27], MaxNet
[28], and CADPC/PTP [29]).

RINA can solve all of these problems by 1) breaking up
the long control loop into shorter ones, 2) controlling flow
aggregates inside the network, and 3) enabling the deployment
of arbitrary congestion control mechanisms per DIF.

As we have seen in the previous section, with TCP, the
behavior emerging with RINA can resemble Performance
Enhancing Proxies (PEPs) [30]. PEPs usually break end-
to-end connections into several closed-loop connections; in
each connection, a congestion control scheme which considers
local link characteristics can be exploited [31]. Also, hop-by-



hop congestion control has gained much attention in wireless
networks due to serious problems of end-to-end methods [32].

Internet PEPs have several disadvantages. In addition to
the already mentioned reliability problem (see Section III-A),
complexities in using IPsec and SSL [33] arise because
security is an end-to-end function in these cases. This is
why works such as [33] are motivated by designing PEP-less
solutions. PEPs also do not scale well with the number of
flows [32], [34]. A mapping of incoming-outgoing connection
pairs to interfaces must be maintained to be able to e.g.
slow down the correct incoming connections when congestion
is experienced on an outgoing interface [35]. TCP’s fast
retransmission/recovery is triggered by triple duplicate ACKs
which needs a window size of at least 4 packets, meaning
that a splitter’s buffer size (advertised window) must be at
least 4 times the number of flows [34]; otherwise, performance
degrades. In addition, in terms of the processing delay, running
a separate TCP instance for every flow is expensive [19].

The layered architecture of RINA does not have these
problems of Internet PEPs because 1) security is a per-DIF
function: PDUs are protected as they cross DIF boundaries [7],
and because each DIF has its own congestion control, splitting
encrypted connections is not problematic, and 2) flows towards
each next hop are aggregated at the lower DIFs, which means
that there is much less state to maintain.

In TCP splitters, buffer sizes have also been shown to affect
the performance, but, as shown by [36], the required splitter’s
buffer size is fairly modest, and it is independent of the number
of flows. The splitter’s buffer size scales linearly with BDP of
the bottleneck link [34]. In our evaluations, we used a buffer
of the size of its link’s BDP in RINA for RMT output queues
at upper DIFs. Running the same simulation with different
buffer sizes revealed that in our scenarios, buffers of at least
this size result in a high performance, close to the upper limit,
while imposing a reasonable queuing delay.

A. Stability and Scalability

We have discussed benefits of breaking up control loops;
at the extreme end of this approach we have hop-by-hop con-
gestion control. There has been a concern regarding stability
of hop-by-hop congestion control methods since many years
ago because some unstable behavior was observed in some
networks [37], [38]. However, as [38] argues, “the fear of
instability” might be a result of the unsuccessful use of non-
discriminatory on-off type controls.

Many works have investigated the stability of hop-by-hop
congestion control, e.g. [32], [35], [37]–[39]. They showed
that using per-hop controllers accelerates the response to
bandwidth changes in the path, and that series of control loops
are stable under certain conditions. These methods usually
use a rate-based mechanism with proven stability properties.
Split-TCP consists of several consecutive TCP connections,
and each TCP connection has been shown to have stability
properties [35], [40] especially for shorter RTTs. In [41], it
is also proven that even in case of not using TCP receiver-

window based backpressure in Split-TCP, the system is stable
under certain conditions.

In RINA, consecutive DIFs operate similarly to Split-TCP,
and due to our TCP-like controller implementation, we inherit
the same stability properties. If DIFs are layered, as shown
in Fig. 3, it can be observed that we have a concatenation of
TCP controllers; however, these controllers, from the 1-DIF,
cross the layers up to the EFCP instance at the sender node
in the N-DIF. In other words, there is one active controller
between every two consecutive EFCP senders shown in the
figure down to the bottleneck link. This implies that in the
recursive form we have the same stability properties. Hop-
by-hop rate-based congestion controllers with proven stability
which were mentioned above can also be used in RINA. Due
to the inherent flow aggregation in RINA, using this kind of
controllers imposes limited overhead on intermediate nodes in
RINA; this overhead has, however, been a major obstacle in
deploying these approaches previously [35].

An important issue regarding using stable hop-by-hop con-
gestion controllers is how well they can scale [32] because a
larger sequence of controllers might affect stability. However,
works such as [40] show that it is possible to achieve a scalable
and stable method for arbitrarily large network topologies and
arbitrary delays.

In general, any form of hop-by-hop congestion control or
connection splitting can be viewed as a concatenation of sev-
eral controllers. There is a large number of works in the control
theory literature on the stability of interconnected systems, cf.
[42]–[44]; each of them considers different assumptions in the
system such as parameter dependencies between subsystems
or time-varying properties. These works show that even under
arbitrary interconnection of systems, stability can be achieved.
These results can be helpful in the design of stable congestion
controllers for RINA under the same assumptions.

RINA theoretically allows an infinite number of DIFs to be
stacked; each DIF has its own buffers, and hence, the total
end-to-end buffer size in RINA is another matter of further
investigation. We do however not expect this to become a
significant issue, as hop-by-hop rate-based congestion control
schemes such as [32], [39] have already been shown to be
more efficient than end-to-end approaches in terms of buffer
usage (e.g. peak buffer size) at intermediate nodes.

V. CONCLUDING REMARKS

The Internet’s end-to-end’ness of congestion control and its
static routing are inevitable by-products of its architectural
design. With RINA, the natural way of applying such algo-
rithms is very different, with control executed closer to where
the problem is. The main achievement of RINA is that the
series of hacks and patches found in the Internet, with its
problems that we have discussed in the case of congestion
control, are not required. RINA is therefore an ideal vehicle
for investigating drastic changes to how congestion control,
and in-network resource pooling as another example, could
be done, and it provides a suitable framework with many
promising dimensions for future research.



In this paper, through some simple evaluation topologies, we
have shown that congestion control in RINA “naturally” ex-
hibits properties of various improvements that have been made
to (or at least proposed for) the Internet, without inheriting the
problems that come from imposing these mechanisms on an
architecture that was not made for them (all the problems that
PEPs have). However, it is just as “natural” that such a drastic
departure from common methods requires answering many
new questions, such as: 1) how to effectively manage buffers
between DIFs, 2) which hop-by-hop congestion controllers
are best to use, given their stability and scalability properties,
3) how to best apply in-network resource pooling, 4) effects
of different congestion control policies at lower DIFs on
congestion control policies of upper DIFs, and 5) how large
a DIF can be without performance degradation, and how its
scalability can be improved. We believe that these are exciting
issues for future work, and hope that this paper inspires others
to also consider RINA for congestion control research.

REFERENCES

[1] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in
system design,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277–288,
Nov 1984.

[2] J. Day, I. Matta, and K. Mattar, “Networking is IPC: a guiding principle
to a better internet,” in Proc. ACM CoNEXT, 2008, p. 67.

[3] J. Day, Patterns in Network Architecture: A Return to Fundamentals.
Prentice Hall, 2007.

[4] ——, “How in the heck do you lose a layer!?” in Network of the Future
(NOF), 2011 International Conference on the, Nov 2011, pp. 135–143.

[5] G. Gursun, I. Matta, and K. Mattar, “On the performance and robustness
of managing reliable transport connections,” CS Department, Boston
University, Tech. Rep., 2009, bUCS-TR-2009-014.

[6] V. Ishakian, J. Akinwumi, F. Esposito, and I. Matta, “On supporting
mobility and multihoming in recursive internet architectures,” Computer
Communications, vol. 35, no. 13, pp. 1561–1573, 2012.

[7] J. Small, “Patterns in network security: An analysis of architectural
complexity in securing recursive inter-network architecture networks,”
Master’s thesis, Boston University Metropolitan College, 2012.

[8] F. Gont, “Deprecation of ICMP Source Quench Messages,” RFC 6633
(Proposed Standard), Internet Engineering Task Force, May 2012.
[Online]. Available: http://www.ietf.org/rfc/rfc6633.txt

[9] RINASim, “Rina simulator,” https://github.com/kvetak/RINA/tree/
UiO-ACC/examples/SmallNetwork2, 2015.

[10] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,
“Performance Enhancing Proxies Intended to Mitigate Link-Related
Degradations,” RFC 3135 (Informational), Internet Engineering Task
Force, Jun 2001. [Online]. Available: http://www.ietf.org/rfc/rfc3135.txt

[11] A. Bakre and B. Badrinath, “I-tcp: indirect tcp for mobile hosts,” in
Proc. IEEE ICDCS, May 1995, pp. 136–143.

[12] S. Islam, M. Welzl, S. Gjessing, and N. Khademi, “Coupled congestion
control for RTP media,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4, p. 101, Aug 2014.

[13] F.-C. Kuo and X. Fu, “Probe-Aided MulTCP: An aggregate congestion
control mechanism,” SIGCOMM CCR, vol. 38, no. 1, Jan 2008.

[14] M. Welzl, F. Niederbacher, and S. Gjessing, “Beneficial transparent
deployment of sctp: the missing pieces,” in Proc. IEEE GLOBECOM,
2011, pp. 1–5.

[15] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An Integrated Congestion
Management Architecture for Internet Hosts,” in SIGCOMM, 1999, pp.
175–187.

[16] D. Wischik, M. Handley, and M. B. Braun, “The resource pooling
principle,” ACM SIGCOMM CCR, vol. 38, no. 5, pp. 47–52, 2008.

[17] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP,” in NSDI, vol. 11, 2011, pp. 8–8.

[18] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC
2992 (Informational), Internet Engineering Task Force, Nov 2000.
[Online]. Available: http://www.ietf.org/rfc/rfc2992.txt

[19] I. Psaras, L. Saino, and G. Pavlou, “Revisiting resource pooling: The
case for in-network resource sharing,” in Proceedings of the 13th ACM
Workshop on Hot Topics in Networks, ser. HotNets-XIII. New York,
NY, USA: ACM, 2014, pp. 24:1–24:7.

[20] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I.-J. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing internet
latency: A survey of techniques and their merits,” Communications
Surveys Tutorials, IEEE, vol. PP, no. 99, pp. 1–1, 2014.

[21] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCPs Burstiness using
Flowlet Switching,” in 3rd ACM SIGCOMM Workshop on Hot Topics
in Networks (HotNets), San Diego, CA, November 2004.

[22] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Computer Systems,”
DEC, Tech. Rep. TR-301, 1984.

[23] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing web
latency: the virtue of gentle aggression,” in Proc. ACM SIGCOMM,
2013.

[24] M. Welzl, S. Islam, and S. Gjessing, “Coupled congestion control
for RTP media,” Internet-draft (work in progress) draft-welzl-rmcat-
coupled-cc-05.txt, 2015.

[25] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-friendly High-speed
TCP Variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul
2008.

[26] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” ACM SIGCOMM Computer Com-
munication Review, vol. 32, no. 4, pp. 89–102, 2002.

[27] N. Dukkipati, N. McKeown, and A. G. Fraser, “RCP-AC: Congestion
control to make flows complete quickly in any environment,” in Pro-
ceedings of IEEE INFOCOM, 2006, pp. 1–5.

[28] B. P. Wydrowski, L. L. Andrew, and I. M. Mareels, “Maxnet: Faster
flow control convergence,” in Proc. Networking. Springer, 2004.

[29] M. Welzl, Scalable performance signalling and congestion avoidance.
Springer Science & Business Media, 2012.

[30] C. Caini, R. Firrincieli, and D. Lacamera, “PEPsal: a Performance
Enhancing Proxy for TCP satellite connections,” IEEE Aerospace and
Electronic Systems Magazine, vol. 22, no. 8, pp. 7–16, 2007.

[31] A. Kapoor, A. Falk, T. Faber, and Y. Pryadkin, “Achieving faster access
to satellite link bandwidth,” in Proc. IEEE INFOCOM, 2006.

[32] Y. Yi and S. Shakkottai, “Hop-by-hop congestion control over a wireless
multi-hop network,” IEEE/ACM ToN, vol. 15, no. 1, pp. 133–144, 2007.

[33] T. T. Thai, D. M. L. Pacheco, E. Lochin, and F. Arnal, “SatERN: a PEP-
less solution for satellite communications,” in Proc. IEEE ICC, 2011,
pp. 1–5.

[34] J. Zhu, S. Roy, and J. H. Kim, “Performance modelling of TCP enhance-
ments in terrestrial-satellite hybrid networks,” IEEE/ACM Transactions
on Networking (TON), vol. 14, no. 4, pp. 753–766, 2006.

[35] S. Bohacek, “Stability of hop-by-hop congestion control,” in Proc. IEEE
Decision and Control, vol. 1, 2000, pp. 67–72.

[36] M. Luglio, M. Y. Sanadidi, M. Gerla, and J. Stepanek, “On-board
satellite ”split tcp” proxy,” Selected Areas in Communications, IEEE
Journal on, vol. 22, no. 2, pp. 362–370, 2004.

[37] V. Kulkarni, S. Bohacek, and M. Safonov, “Stability issues in hop-by-
hop rate based congestion control,” in Proc. Annual Allerton Conference
on Communication Control and Computing, vol. 36. University of
Illinois, 1998, pp. 79–88.

[38] P. P. Mishra and H. Kanakia, “A hop by hop rate-based congestion
control scheme,” in ACM SIGCOMM CCR 22(4), 1992.

[39] P. P. Mishra, H. Kanakia, and S. K. Tripathi, “On hop-by-hop rate-based
congestion control,” IEEE/ACM TON, vol. 4, no. 2, pp. 224–239, 1996.

[40] F. Paganini, J. Doyle, and S. Low, “Scalable laws for stable network
congestion control,” in Proc. IEEE Decision and Control, 2001.

[41] F. Baccelli, G. Carofiglio, and S. Foss, “Proxy caching in split TCP:
Dynamics, stability and tail asymptotics,” in INFOCOM, 2008.

[42] C. Langbort, R. S. Chandra, and R. D’Andrea, “Distributed control
design for systems interconnected over an arbitrary graph,” IEEE Trans.
Automatic Control, vol. 49, no. 9, pp. 1502–1519, 2004.

[43] C. Maffezzoni, N. Schiavoni, and G. Ferretti, “Robust design of cascade
control,” IEEE Control Systems, vol. 10, no. 1, pp. 21–25, 1990.

[44] N. Motee and A. Jadbabaie, “Optimal control of spatially distributed
systems,” IEEE Trans. Automatic Control, vol. 53, no. 7, pp. 1616–1629,
2008.


