
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 
all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 



Localization Algorithm Design and Performance
Analysis in Probabilistic LOS/NLOS Environment

Xiufang Shi∗, Guoqiang Mao‡,†,§, Zaiyue Yang∗ and Jiming Chen∗
∗State Key Lab. of Industrial Control Technology, Zhejiang University, China

‡School of Computing and Communication, University of Technology Sydney, Australia
†Data61 Australia

§School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, China
Email: xfshi.zju@gmail.com, guoqiang.mao@uts.edu.au, yangzy@zju.edu.cn, jmchen@ieee.org

Abstract—Non-line-of-sight (NLOS) propagation, which widely
exists in wireless systems, will degrade the performance of
wireless positioning system if it is not taken into consideration
in the localization algorithm design. The 3rd Generation Part-
nership Project (3GPP) suggests that the probabilities of line-
of-sight (LOS) and NLOS are related to the distance between
the receiver and the transmitter. In this paper, we propose a
Maximum Likelihood Estimator (MLE) for localization, which
incorporates the distance dependent LOS/NLOS probabilities.
Then, the position error bound is derived using Cramer-Rao
Lower Bound (CRLB). Through numerical analysis, the impact
of NLOS propagation on the position error bound is evaluated.
The performance of our proposed algorithm is verified by real
world experimental data.

I. INTRODUCTION

Wireless technologies promote the great development of
a large amount of applications [1]–[7]. Driven by the in-
creasing demand from location-based services, wireless lo-
calization systems have attracted significant research interest
in recent years. Numerous localization systems have been
developed, e.g. Global Positioning System (GPS), Cellular-
based Positioning System (CPS), Wireless Local Area Net-
work (WLAN)-based positioning system, etc. These position-
ing systems can deliver very good performance in ideal envi-
ronments, i.e., line-of-sight (LOS) propagated environments.
In practical environment, especially, indoors or urban areas,
wireless signals often suffer from non-line-of-sight (NLOS)
propagation, which will significantly degrade the localization
performance of the conventional localization techniques under
the LOS assumptions.

Many techniques have been developed to deal with lo-
calization problem in NLOS conditions [8]–[13]. It can be
roughly divided into two categories: a) identify and discard-
based approach [8]–[10]; b) weighted combination of LOS
and NLOS measurements [12], [13]. In the first approach,
the LOS/NLOS paths are first identified using statistical tech-
niques. By analyzing the channel features, e.g., mean and
standard deviation [8], Kurtosis [10], Rician K factor [10],
etc., the NLOS paths can be identified by hypothesis testing.
Then, the identified NLOS measurements are discarded. Only
the LOS measurements are utilized for localization. However,
this kind of technique needs sufficient number of LOS mea-
surements, which renders it not suitable for environments with
only a small number of base stations. The second approach
does not need to identify the NLOS measurements in advance.

All the measurements are used for localization. By taking
residual error [12], noise variance [13], etc., as the weights, the
position estimate will be obtained through Least Square (LS)
or Maximum Likelihood Estimator (MLE). This approach is
widely used in environments with a small number of base
stations.

Generally, when the distance between a receiver and a
transmitter is small, LOS propagations are more likely to
occur, and when the distance between the receiver and the
transmitter increases, the probability of LOS will decrease,
and the signals will suffer from NLOS propagation with a
higher probability. This phenomenon is also verified by the 3rd
Generation Partnership Project (3GPP) [6], [7]. Even though,
there are a number of existing algorithms considering the
LOS/NLOS probabilities [9], [14], they usually assume the
LOS/NLOS probabilities are fixed and known a priori, which
does not capture the fact that the occurrence of LOS and NLOS
propagations varies with the distance between the transmit-
ter and the receiver, or the distance dependent LOS/NLOS
probabilities are inappropriately modeled [15]. To the best of
our knowledge, there is still no work that takes the distance
dependent LOS/NLOS probabilities as mentioned in 3GPP
[6], [7] into localization algorithm design and performance
analysis.

In this paper, we will study the localization problem consid-
ering distance dependent LOS/NLOS probabilities. The main
contributions of this paper are summarized as follows:

• We propose an MLE-based estimation algorithm for a
single target localization problem, which incorporates the
distance dependent LOS/NLOS probabilities.

• Cramer-Rao Lower Bound (CRLB) is used to analyze
the localization accuracy considering a general NLOS
bias model. Localization performances under four dif-
ferent and widely used distributions of NLOS bias are
numerically analyzed.

• The performance of the proposed localization algorithm is
verified in a realistic scenario using range measurements
obtained by ultra-wide bandwidth (UWB) devices.

The remainder of this paper is organized as follows. Section
II introduces the system model. Section III presents the
MLE-based localization algorithm. CRLB-based localization
accuracy analysis is conducted in section IV. Experimental
results are presented in section V. Conclusions are drawn in



section VI.

II. SYSTEM MODEL

We consider a 2-D positioning system with N base stations
(BSs) whose positions are known as Xi = [xi, yi]

T , i =
1, · · · , N . The position of the mobile station (MS), i.e. the
target, denoted as X = [x, y]T , is unknown and needs to be
estimated. It is assumed that the noisy range measurements
between the MS and the BSs can be obtained, which are
expressed as

zi = di + εi, i = 1, · · · , N (1)

where di =
√
(xi − x)2 + (yi − y)2 is the true distance

between the MS and the i-th BS and εi is measurement
error. The measurement error is usually modeled as zero-
mean white Gaussian noise under LOS propagation [13], [16],
[17]. In practice, because of the sophisticated propagation
environment, not all the paths are LOS paths. If path i is an
NLOS path, εi also includes an NLOS bias in addition to the
additive Gaussian noise. Consequently, the measurement error
can be modeled as follows

εi =

{
υi, LOS path

bi + υi, NLOS path
(2)

where υi ∼ N (0, σ2
i ) is the zero-mean white Gaussian noise,

and bi is the bias attributable to NLOS propagation. In the
literature the bias term has been modeled as Gaussian distri-
bution [13], exponential distribution [16], uniform distribution
[17], or just being a constant [13]. In this paper, we assume
the distributions of υi and bi are known a priori, which can
be obtained from field measurements. The measurement errors
in different paths are assumed to be independent. Moreover,
υi and bi in the same NLOS path are also assumed to be
independent [13], [16], [17]. Consequently, the probability
density function (PDF) of the measurement error εi under LOS
propagation is the PDF of the Gaussian variable υi,

pL(εi) =
1√
2πσ2

i

exp

(
− ε2i
2σ2

i

)
(3)

The PDF of εi under NLOS propagation is the PDF of the
sum of two independent random variables, i.e., υi+ bi, which
can be derived through convolution

pNL(εi) =

∫ ∞

−∞
pL(εi − τ)pbi(τ)dτ (4)

where pbi stands for the PDF of bi. The analytical form
of pNL(εi) with bi assuming four different distributions as
mentioned previously can be derived as follows:

• Gaussian distributed NLOS bias: bi ∼ N (µbi, σ
2
bi):

pNL
G (εi) =

1√
2πσ2

εi

exp

(
− (εi − µεi)

2

2σ2
εi

)
(5)

where µεi = µbi and σ2
εi = σ2

bi + σ2
i .

• Exponentially distributed NLOS bias: bi ∼ Exp(λ),
where λ > 0 is the parameter of the distribution:

pNL
E (εi) =

λ

2
exp

(
−λ(εi −

λσ2
i

2
)

)
erfc

(
λσ2

i − εi√
2σi

)
(6)

where erfc(·) denotes the complementary error function.
• Uniformly distributed NLOS bias: bi ∼ U(lbi, ubi),

where lbi and ubi are the lower bound and upper bound
of this uniform distribution, respectively:

pNL
U (εi) =

1

(ubi − lbi)

(
Φ

(
ubi − εi

σi

)
− Φ

(
lbi − εi

σi

))
(7)

where Φ(·) denotes the cumulative distribution function
(CDF) of the standard normal distribution.

• Constant NLOS bias: bi = b :

pNL
C (εi) =

1√
2πσ2

i

exp

(
− (εi − b)2

2σ2
i

)
(8)

According to 3GPP [6], the occurrence of LOS path depends
on the MS-BS distance di, whose probability is denoted
as p(LOS|di) and NLOS probability is p(NLOS|di) =
1 − p(LOS|di). The LOS probability is modeled as differ-
ent forms under different environmental conditions, including
indoor hotspots, urban micro, urban macro and rural macro
cellular networks [6]. For example, as shown in [6], the LOS
probability in indoor environment is

p(LOS|di) =

 1, 0 < di ≤ 18
exp(−di−18

27 ), 18 < di < 37
0.5, di ≥ 37

(9)

We can see with the increase of di, the LOS probability will
decrease. It has been shown that it is important to take into
account the distance dependent LOS/NLOS probabilities in
system design and performance analysis [4], [18].

In this paper, we propose a localization algorithm to esti-
mate the position of the MS, which 1) considers the prob-
abilities of LOS and NLOS; 2) uses both LOS and NLOS
measurements; 3) does not require identification of LOS and
NLOS paths before localization. As mentioned before, the
priori identification of LOS and NLOS paths can be difficult
when the number of measurements is small. Then we analyze
the localization performance with NLOS biases assuming four
different distributions mentioned previously. Both numerical
and experimental studies demonstrate that it is important to
consider both LOS and NLOS paths in localization, which
results in better localization accuracy.

III. MLE-BASED LOCALIZATION

In this work, we assume the distributions of measurement
noise and NLOS bias are known, along with the distance
dependent LOS/NLOS probabilities, which makes MLE the
preferred option in estimating the MS’s position, since MLE
is maximizing the joint likelihood function of MS’s position.

Incorporating the LOS and NLOS probabilities, the PDF of
measurement zi is expressed as

pz(zi|X) = pLz (zi|X)p(LOS|di) + pNL
z (zi|X)p(NLOS|di)

(10)
where pLz (zi|X) is the PDF of zi under LOS propagation,
which can be easily obtained from (3) as

pLz (zi|X) = pL(zi − di) (11)

and pNL
z (zi|X) is the PDF of zi under NLOS propagation,



which can be obtained from (4) as

pNL
z (zi|X) = pNL(zi − di) (12)

The expression pNL(zi−di) varies with different distributions
of NLOS bias, as discussed in Section II. Since the measure-
ment errors in different paths are mutual independent, the joint
PDF of the whole positioning system is

P (Z|X) =
N∏
i=1

pz(zi|X) (13)

where Z = [z1, · · · , zN ]T is the measurement vector. The
estimate of X by MLE can be obtained as

X̂ = argmax
X

lnP (Z|X) = argmax
X

N∑
i=1

ln pz(zi|X) (14)

This MLE-based algorithm does not need to identify the NLOS
paths beforehand and takes full advantage of all the avail-
able measurements, including both the LOS measurements
and the NLOS measurements. It will achieve the optimum
result assuming that the distribution of measurement error is
known. The solution can usually be obtained by Gauss-Newton
method starting from a good initial estimation.

IV. CRLB-BASED PERFORMANCE ANALYSIS

In this section, we will analyze the fundamental limits of
localization accuracy in probabilistic LOS/NLOS environment
using CRLB, which is often utilized as a benchmark to
evaluate the estimation accuracy [13], [16], [19], [20].

A. Position Error Bound

For a localization problem in R2, the CRLB is a 2 × 2
matrix indicating the lower bound of the covariance matrix of
estimation error. And the position error bound (PEB) is usually
taken as a scalar metric for localization accuracy, which is
defined as

PEB(X) =
√
Tr(CRLB(X)) =

√
Tr(J(X)−1) (15)

where Tr(·) denotes the trace operation of one matrix and
J(X) is the Fisher Information Matrix (FIM) at X , which is
defined as

J(X) = E

 (
∂ lnP (Z|X)

∂x

)2
∂ lnP (Z|X)

∂x
∂ lnP (Z|X)

∂y

∂ lnP (Z|X)
∂y

∂ lnP (Z|X)
∂x

(
∂ lnP (Z|X)

∂y

)2

(16)

The entry of J(X) at the fist row and the first column is
computed as follows

J11(X) = E

( N∑
i=1

∂ ln pz(zi|X)

∂x

)2


= E

[
N∑
i=1

(
∂ ln pz(zi|X)

∂x

)2
]

+ 2E

[
N∑

i=1

N∑
j>i

∂ ln pz(zi|X)

∂x

∂ ln pz(zj |X)

∂x

]
= f1(X) + 2f2(X) (17)

where

f1(X) =

N∑
i=1

E

[(
∂ ln pz(zi|X)

∂x

)2
]

=
N∑
i=1

E

[(
∂ ln pz(zi|X)

∂di

)2(
∂di
∂x

)2
]

(18)

and

f2(X)

= E

 N∑
i=1

N∑
j>i

∂ ln pz(zi|X)

∂x

∂ ln pz(zj |X)

∂x


=

N∑
i=1

N∑
j>i

E
[
∂ ln pz(zi|X)

∂di

∂ ln pz(zj |X)

∂dj

]
∂di
∂x

∂dj
∂x

(19)

Let cos θi = ∂di

∂x = x−xi

di
and sin θi = ∂di

∂y = y−yi

di
, then

f1(X) can be rewritten as

f1(X) =
N∑
i=1

E

[(
∂ ln pz(zi|X)

∂di

)2
]
cos2θi (20)

Since the measurement errors in different paths are indepen-
dent, it follows that

E
[
∂ ln pz(zi|X)

∂di

∂ ln pz(zj |X)

∂dj

]
= E

[
∂ ln pz(zi|X)

∂di

]
E
[
∂ ln pz(zj |X)

∂dj

]
(21)

Moreover, from the regulation condition of CRLB in [20],

E
[
∂ ln pz(zi|X)

∂di

]
= 0 (22)

Thus, f2(X) = 0. Consequently,

J11(X) = f1(X) =

N∑
i=1

E

[(
∂ ln pz(zi|X)

∂di

)2
]
cos2θi (23)

Accordingly, the other entries of J(X) are obtained as

J12(X) = J21(X) =
N∑
i=1

E

[(
∂ ln pz(zi|X)

∂di

)2
]
cos θi sin θi (24)

J22(X) =

N∑
i=1

E

[(
∂ ln pz(zi|X)

∂di

)2
]
sin2θi (25)

Let f(di) = E
[(

∂ ln pz(zi|X)
∂di

)2
]

, then J(X) is expressed as

J(X) =
N∑
i=1

f(di)

[
cos2θi cos θi sin θi

cos θi sin θi sin2θi

]
(26)

B. Numerical Analysis
From (26) and (15), we can find that, the value of f(di)

will affect the value of PEB. A larger f(di) implies a lower
PEB. The NLOS bias and LOS/NLOS probabilities can only



affect the value of f(di), therefore, we just need to analyze
the influence of NLOS propagation on f(di). And f(di) can
be further computed as

f(di) = E

[(
∂ ln pz(zi|X)

∂di

)2
]
=

∫ +∞

−∞

(
∂pz(zi|X)

∂di

)2
pz(zi|X)

dzi (27)

Since we incorporate the LOS/NLOS probabilities and NLOS
bias into pz(zi|X), as shown in (10), consequently, the analyt-
ical form of pz(zi|X) is complicated, whose partial derivative
over di is much more complicated. As a result, the integral in
(27) is difficult to express analytically. We resort to using a
numerical method, i.e., Gauss-Hermite quadrature, to approx-
imate the integral in (27). Let K be the number of sample
points used in Gauss-Hermite quadrature, tk, k = 1, · · · ,K
be the zero points of the physicists’ version of the Hermite
polynomial, whose associated weight is ωk. The values of zero
points and weights of Hermite polynomial can be found in
the table shown in [21]. Then f(di) can be approximated as
follows

f(di) ≈
K∑

k=1

ωkh(tk) (28)

where

h(tk) = et
2
k

(
∂pz(tk|X)

∂di

)2

pz(tk|X)
(29)

The approximation error

RK = f(di)−
K∑

k=1

ωkh(tk) =
K!

√
π

2K(2K)!
h(2K)(ξ) (30)

where h(2K)(ξ) denotes the 2K order derivative of h at some
ξ in (−∞,∞) [22].

To investigate the influence of LOS/NLOS probabilities and
NLOS biases on the localization performance, in the numerical
analysis, we adopt the LOS probability model in (9) for
indoor environment [6]. The parameters in the measurement
error model are set to be the same as those in [13], i.e.,
the additive Gaussian noise υi ∼ N (0, 1), the mean and
standard deviation of NLOS bias are respectively µ = 2 and
σ = 2. The function of f(di) is computed as introduced
before with bi assuming Gaussian distribution bi ∼ N (µ, σ2),
uniform distribution bi ∼ U(µ−

√
3σ, µ+

√
3σ), exponential

distribution bi ∼ Exp(1/µ) and constant bi = µ. The number
of Gauss-Hermite sample points is chosen to be K = 100.

Fig.1 shows the impact of NLOS bias on f(di). In this
figure, when di ≤ 18, no NLOS propagation occurs. When
18 < di < 37, with the increase of di, p(NLOS|di) increases,
the impact of NLOS bias on f(di) increases. When di ≥ 37,
p(NLOS|di) keeps unchanged, the impact of NLOS bias on
f(di) becomes stable. We can see NLOS biases with different
distributions have different impacts on f(di). Since a lower
f(di) indicates a higher PEB, we can say that the PEB
associated with a Gaussian distributed bias is larger than the
PEB with a uniformly distributed bias and again larger than
the PEB with an exponentially distributed bias. Constant bias
results in the smallest PEB.
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Fig. 1. f(di) with NLOS biases under four different distributions with the
common mean and standard deviation, i.e., µ = 2, σ = 2

V. EXPERIMENTAL RESULTS

Fig. 2. The experimental environment in WiLab, University of Bologna,
Cesena Campus [23].

In this section, we test the performance of the proposed lo-
calization algorithm using the measurements database WPR.B
in [23]. This database includes extensive range measurements
which are taken by 2 commercial UWB devices, PulsON220,
in a typical indoor office environment, as shown in Fig. 2.
In Fig. 2, a grid of 20 static positions, marked by red
crosses, are used for the UWB measurements. By putting
the UWB devices at two of the 20 positions, the time of
arrival (TOA) ranging measurements between these two points
can be obtained and stored as a range measurement vector,
which includes more than 200 range measurements. Because
of the strong attenuations and limited radiated power of the
UWB devices, not all UWB devices in the 20 static positions
can communicate with each other. There exist only 69 links
where the UWB devices can communicate with each other and
conduct ranging. In these 69 links, some of them are LOS,
and the others are NLOS. We will first derive the model of
LOS probability using this database. Then, we will localize
the target at these 20 positions using the corresponding range
measurements and the LOS/NLOS probabilities.



Ideally, we would want to use measurements obtained from
cellular networks to validate the performance of the proposed
localization algorithm. Limited by experimental conditions,
here we use indoor UWB measurements instead. However this
does not affect the main focus of this paper, i.e. it is important
to consider both LOS and NLOS propagations in localization.

1) LOS probability fitting: About the MS-BS distance re-
lated LOS probability model, we mainly consider two models:

a) Linear model proposed in [7]:

pl(LOS|d) = αld+ βl (31)

where αl and βl are the linear model parameters;
b) Exponential model proposed in [6]:

pe(LOS|d) = exp(
−(d− αe)

βe
) (32)

where αe and βe are the exponential model parameters.
In our experimental environment, the LOS probability
is always changing with the distance, that is why we
dismiss the parts where the LOS probability keeps
unchanged in (9).

In the database, there are 33 LOS links with true internode
distances Dlos = [dlos1 , · · · , dlos33 ], and 36 NLOS links with
true internode distances Dnlos = [dnlos1 , · · · , dnlos36 ]. We use
MLE to estimate the LOS probability model parameters in
(31) and (32). The PDF of αl and βl is computed as

P (αl, βl) =

33∏
i=1

pl(LOS|dlosi )

36∏
j=1

pl(NLOS|dnlos
j )

=

33∏
i=1

(
αld

los
i + βl

) 36∏
j=1

(
1− (αld

nlos
j + βl)

)
(33)

Correspondingly, the PDF of αe and βe is computed as

P (αe, βe) =
33∏
i=1

pe(LOS|dlosi )
36∏
j=1

pe(NLOS|dnlos
j )

=
33∏
i=1

exp(
−(dlosi − αe)

βe
)

36∏
j=1

(
1− exp(

−(dnlos
j − αe)

βe
)

)
(34)

The estimates of αl, βl, αe and βe are

(α̂l, β̂l) = argmax
αl,βl

lnP (αl, βl) (35)

(α̂e, β̂e) = arg max
αe,βe

lnP (αe, βe) (36)

The estimated LOS probability models for this database are

pl(LOS|d) = −0.018d+ 0.6237 (37)

pe(LOS|d) = exp(
−(d+ 4.7901)

16.6700
) (38)

The fitted results under different probability models are shown
in Fig.3. The Mean Square Errors (MSE) of the fitted models
(37) and (38) are almost equal. Considering that the linear
model is simpler than the exponential model to analyze,
we would apply the linear probability model (37) to the
localization.

2) Localization results: In the localization part, we use
the range measurements provided in the WPR.B database.
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Fig. 3. Fitted results of LOS probability.

Through numerical fitting using the range measurements
in the whole database, the range measurement error under
LOS condition follows a Gaussian distribution, i.e. εL ∼
N (−0.0214, 0.1149), and the range measurement error under
NLOS condition also follows a Gaussian distribution, i.e.
εNL ∼ N (0.7613, 0.9860). The NLOS bias is found to be
Gaussian distributed. In the localization process, we assume
the target is at one of the 20 static positions and the neighbors
of this target are anchors, whose positions are assumed to
be known. Then we use range measurements between this
target and its neighbors to estimate the target’s position by the
MLE proposed in section III combining the LOS probability
model in (37). For example, if we want to localize the target
at position 1, the anchors for the target are 2, 3, 4, 6, 7,
the range measurements between 1 and 2, 3, 4, 6, 7 are
utilized for localization. Fig. 4 shows the localization results
for all the 20 points using only one range measurement for
each pair of neighbors. In this figure, MLE-PC represents the
location estimates obtained by our proposed algorithm; MLE-
AL represents the location estimates obtained by the MLE
estimator assuming all the paths are LOS; MLE-TC represents
the location estimates obtained by the MLE estimator with
accurate knowledge of LOS and NLOS paths. From the
illustration of this figure, and the Root Mean Square Errors
(RMSEs) of these three methods, we can see the performance
of our proposed MLE-PC is the best, compared with MLE-AL
and MLE-TC. Moreover, we conduct this localization for 200
times, i.e., using 200 different range measurements for each
pair of neighbors. Fig.5 illustrates the CDF of the position
estimation error in 200 runs, which further shows that our
proposed MLE-PC outperforms MLE-AL and MLE-TC.

At the first sight, it might be confusing that MLE-PC is bet-
ter than MLE-TC. The reason behind this phenomenon is the
statistics of LOS and NLOS are obtained by fitting technique,
which incorporates all the measurements at the 20 positions.
There exist many outliers in this database that may not fit
well the obtained statistical model. For example, at position
number 11, all the measurements are under NLOS condition,
despite that the target at position 11 has small distances to its
neighbors, whereas the actual errors in the range measurements
obtained at position 11 are all very small, which make the
associated measurements more like LOS measurements. In our
MLE-PC algorithm, since the distances between 11 and its



neighbors are small, those range measurements are taken as
LOS measurements with a higher probability. And in MLE-
TC, all the measurements are taken as NLOS measurements
(which are the true conditions) with larger mean and larger
standard deviation. As a result, the location estimates obtained
by MLE-TC which has accurate knowledge of LOS and NLOS
paths are worse than that obtained by MLE-PC.
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Fig. 4. Localization results in a single run.
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Fig. 5. CDF of position estimation errors of 200 runs.

VI. CONCLUSION

In this paper, the localization problem in an environment
including both LOS and NLOS paths is investigated. By
combining the distance dependent LOS/NLOS probabilities,
an MLE-based localization algorithm is proposed. The PEB for
general LOS/NLOS probability model and NLOS bias model
is derived. The numerical analysis shows that Gaussian NLOS
bias leads to the worst localization performance, and constant
NLOS bias leads to the best localization performance. Through
experiments using real UWB measurements, we show that the
performance of our proposed algorithm is better than that of
MLE with all measurements assumed to be LOS, and it is also
better than that of MLE with the true LOS/NLOS conditions.
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