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Abstract— The connectivity properties of ad hoc networks have
been extensively studied over the past few years, from local
observables, to global network properties. In this paper we
introduce a novel layer of network dynamics which lives and
evolves on top of the ad hoc network. Nodes are assumed selfish
and a snow-drift type game is defined dictating the way nodes
decide to allocate their cooperative resource efforts towards other
nodes in the network. The dynamics are strongly coupled with
the physical network causing the cooperation network topology to
converge towards a stable equilibrium state, a global maximum of
the total pay-off. We study this convergence from a connectivity
perspective and analyse the inherent parameter dependence.
Moreover, we show that direct reciprocity can be an efficient
incentive to promote cooperation within the network and discuss
the analogies between our simple yet tractable framework with
D2D proximity based services such as LTE-Direct. We argue that
cooperative network dynamics have many application in ICT, not
just ad hoc networks, and similar models as the one described
herein can be devised and studied in their own right.

I. INTRODUCTION

Wireless ad hoc networks are decentralized infrastructure-
free networks equipped with multihop relaying and signal
processing capabilities and find application in distributed
sensor and mobile systems such as smart meters, environ-
mental or industrial monitoring, disaster relief operations etc.
Commonality in many of these applications arises in that the
number and distribution of nodes in the networks is often
random motivating the study of random geometric graphs
[1], a statistical framework within which network properties
can be modelled, analysed and therefore optimized. In the
simplest case, these graphs consist of a large number of points
scattered in a region of space and connected in pairs whenever
their separating distance is less than some scalar value r0
as originally proposed by Gilbert in 1961 [2]. A plethora of
generalizations of this basic model have been put forward since
then in an attempt to understand the connectivity properties of
ad hoc networks and suggest improved network design, routing
protocols and deployment methodologies [3].

Finite, non-convex and complex deployment regions [4]–
[6], directional and multiple antennas [7]–[9], interference
effects due to different medium access control (MAC) and
trust protocols [10]–[13], as well as different fading and
connectivity models [14] are just a few of the topics that
have been studied in recent years. In most of these works,
the main observables of interest relate to pairwise connectivity
(e.g. outage probability, coverage), the local degree distribution
of nodes and multi hop properties (e.g. mean degree and hop
distribution), and finally more global observables such as the

minimum network degree and the full connection probability.
Significantly, these graph connectivity properties have been
known to translate to mesh network performance indicators of
reliability, routing, end-to-end delay, reachability, interference
tolerance, capacity etc., and therefore form the fundamental
network skeleton on which higher layer network functions
operate.

Peer-to-peer (P2P) is a distributed system architecture de-
signed to share resources such as digital information without
the need of a central authority, but rather by direct cooperation
between peers [15] such as in the case of Gnutella and BitTor-
rent file sharing networks and more recently the FireChat in-
stant messaging service amongst many others. What motivates
the use of P2P networks is their ability to function, recover
from failures and self-organize in an extremely dynamic and
large population of nodes which typically relies on the efficient
cooperation between self-interested peers. Deciding when and
how to cooperate is therefore at the heart of P2P networks
and has been extensively researched by Game theory; the
study of strategic decision making [16] where players (peers)
are assumed selfish, and Nash equilibria represent the set of
strategies in which no unilateral deviation can make a node
extract a higher pay-off.

While the connectivity properties and cooperation dynamics
of ad hoc networks have been extensively studied in their re-
spective scientific communities, the interaction between these
two networks has not. In fact, to the best of the authors
knowledge most literature focuses on either the connectivity
properties or the algorithmic rules which govern network
cooperation dynamics. To this end, in this paper we introduce
a novel framework for incentivized cooperation which is
intrinsically coupled to the physical network characteristics
such as the wireless node locations, statistical channel fading
effects of electromagnetic propagation etc. More specifically,
we overlay a Snowdrift game on top of a random geometric
graph modelling an ad hoc mesh network consisting of selfish
nodes and we examine the effects to the cooperation network
topology through various connectivity observables. In other
words, we will first model a connectivity network represented
through a weighted connectivity adjacency matrix H with
constant entries related to the pairwise connection probability
(a function of path-loss attenuation and small-scale fading)
between nodes, and then model the cooperation network
represented through a weighted cooperation adjacency matrix
E with entries which evolve according to the Snowdrift
optimization dynamics (8).
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Throughout this paper an effort is made to maintain gener-
ality in the proposed theoretical framework and avoid spe-
cific application areas. In the conclusion section however
we discuss how our proposed framework can be understood
within the context of the current LTE-Direct standardization
efforts paving the way towards fog networking as the industry
progresses into the internet of things (IoT) age and later into
the internet of everything (IoE) paradigm.

In this paper we investigate for the first time how self-
organizing cooperative relaying protocols affect the network
topology and connectivity. The main contributions of this
paper are as follows:

• we introduce a mathematically tractable and novel frame-
work for network cooperation dynamics based on self-
organizing selfish nodes;

• we prove that nodes require a shared benefit for a mixed
evolutionarily stable equilibrium state to exist and thus
introduce a mechanism for incentivized cooperation to
achieve that;

• we describe a numerical procedure for simulating such
self-organizing networks and investigate the connectivity
properties of the equilibrium state and its dependence on
various system parameters.

The remainder of the paper is structured as follows: Sec. II
introduces the system model and also defines a number of net-
work connectivity observables. Sec. III introduces the network
dynamics of a Snowdrift cooperation game and also describes
how a mutual cooperation benefit between node pairs can
incentivize cooperation. Sec. IV presents the methods and re-
sults of our numerical investigation regarding the connectivity
properties of the evolved steady state of cooperation networks
and their dependence on different system parameters. Finally,
Sec. V summarizes our results and discusses their applicability
to ICT applications such as the internet of everything (IoE).

II. SYSTEM MODEL AND CONNECTIVITY METRICS

In this section we briefly introduce some basic network
connectivity observables which will later be used to track and
analyse the evolved cooperation network.

A. Node Deployment

Consider a two dimensional region V ⊆ R2 of area V
containing N wireless devices (nodes). These are distributed
according to an independent Binomial point process (BPP)1,
with intensity ρ = N/V within V . Such a configuration is
commonly found in WSN applications where sensors or smart
meters form a random mesh topology [17]. We denote the
locations of the nodes by ri ∈ V for i ∈ [1, N ] such that the
distance between two nodes is given by rij = |ri − rj |.

1Note that this differs from the usual case of N ∼ Pois(ρ) which results
in a Poisson point process (PPP), however for N large enough the two point
processes exhibit similar statistical properties and are practically identical.

B. Path-loss and Fading

It is known that fundamental results on the connectivity and
capacity of dense ad hoc networks strongly depend on the
behaviour of the attenuation function [18]. Here, we model
the attenuation in the wireless channel as the product of
a large-scale path-loss component and a small-scale fading
component. The former follows from the Friis transmission
formula where the long time average signal-to-noise ratio
at the receiver (in the absence of interference) decays with
distance like SNRij ∝ r−ηij , where η is the path loss exponent
usually taken to be η = 2 in free space and η > 2 in cluttered
urban environments. We therefore define a path-loss function

g(rij) =
1

ε+ rηij
, ε ≥ 0, (1)

where the ε introduces a kind of guard zone such that for ε > 0
the path-loss function g(rij) is non-singular at rij = 0. Note
that for theoretical analysis purposes g(rij) is unit-less as is
rij which is scaled by the signal wavelength or some other unit
of distance. This has no effect on the results that follow and
can easily modified to accommodate for more detailed models.
Finally, for the sake of simplicity and mathematical tractability,
the small-scale fading component is assumed Rayleigh such
that the channel gain |hij |2 between two nodes i and j is
modelled by an exponential random variable of mean one.
The effects of lognormal shadowing are ignored in our model.

C. Pairwise Connectivity

Assuming negligible co-channel interference (e.g. perfect
CDMA/TDMA) and lossless antennas, we define the pairwise
connectivity through the relation

Hij = P(SNRij ≥ ℘) (2)

i.e. the complement of the outage probability, where the
average received signal-to-noise ratio is given by SNRij =
g(rij)|hij |2/β, and the parameter β ∝ P−1T depends on
transmit power PT , the center frequency of the transmission
and the power of the long-time average background noise at
the receiver (β defines the length scale). We therefore have
that Hij(rij) = 1 − F|hij |2(℘β/g(rij)), where F|hij |2 is the
CDF of the channel gain |hij |2. Consequently, we obtain

Hij(rij) = exp(−℘β/g(rij)), (3)

that is, an exponentially decaying with distance pairwise
connection probability. The pairwise connectivity Hij(rij)
represents the reliability of the link between nodes i and j
but can also be understood as a proxy to the link quality and
capacity. Note that in the limit of η → ∞ equation (3) con-
verges to a step function which for ε = 0 offers an interesting
transition from a soft (probabilistic) connection function to a
hard (deterministic) one corresponding to Gilbert’s original
model with ℘β = 1/rη0 . Hence r0 gives the characteristic
length scale of connection. Note that we will henceforth
assume that the channel is reciprocal i.e. |hij |2 = |hji|2.



D. Degree distribution

The degree distribution is the pdf of the number of 1-
hop neighbours. The probability that node i situated a ri
connects with some randomly chosen node j can be obtained
by averaging over all possible rj node positions

Hi(ri) =
1

V

∫
V
Hij(rij)drj . (4)

Since the node positions are chosen according to a BPP,
the probability that node i connects with exactly k other
nodes (i.e. i has degree k) denoted by di(k) is given by a
binomial distribution which can be approximated by a Poisson
distribution for N,V � 1

di(k) =

(
N − 1

k

)
Hk
i (1−Hi)

N−1−k ≈ λki
k!
e−λi , (5)

where λi = (N − 1)Hi. Note that when V = R2 then the
system is homogeneous and we can drop the i index from the
above definitions and simply calculate the mean 1-hop degree
by substituting (3) into (4) and assuming that ρ ≈ (N − 1)/V

λ = 2ρπr20Γ(2/η)/η = ρπr20 +O(1/η). (6)

The above equation also holds for network 2D domains V with
no borders, i.e. are invariant under translations and rotations
e.g. the surface area of a sphere, but can also be used as a
decent approximation for the mean degree when N,V � 1.

E. Assortativity

The assortativity coefficient r ∈ [−1, 1] is a network metric
of a node’s preference to connect to others that are similar in
some way e.g. in degree [19] in which case it is defined as the
covariance of two random variables X (the degree of a node)
and Y (the degree of its neighbours) divided by the product
of their standard deviations

r =
cov(X,Y )

σXσY
. (7)

Algorithms for calculating r are available in most commercial
network simulator software packages. Correlations between
node degrees of connected nodes has been observed in many
real networks. For instance, in social networks, nodes tend
to be connected with other nodes with similar degree values
giving r > 0. On the other hand, technological and biological
networks are typically disassortative, as high degree nodes
tend to attach to low degree nodes giving r < 0. Completely
random graphs e.g. Erdös-Rényi graphs have r = 0. For
random geometric graphs employing Gilbert’s model (i.e.
η =∞) the expected assortativity coefficient can be explicitly
calculated to r = 1 − 3

√
3

4π ≈ 0.587 in the high density
coinciding with the average clustering coefficient [20].

F. Weighted Adjacency Matrix

The adjacency matrix is a means of representing the connec-
tivity of a graph i.e. which nodes are connected to which. Since
the pairwise connectivity as defined by (2) is probabilistic, for
a given realization of node positions ri ∈ V we can define

Fig. 1. Two realizations of a random geometric network using N = 104

nodes, a square domain of side L = 25, r0 = 1 and ε = 0. Both networks
use the same node positions however the links are formed at η = 2 (left) and
η = 4 (right) path loss exponents. Consequently, these lead to different degree
distributions and assortativity coefficients as shown in the lower panels.

a symmetric N ×N weighted adjacency matrix H with Hij

entries and 0 diagonal. To realize the edges of this graph, a
randomly generated number ζ ∈ [0, 1] is called

(
N
2

)
times

and if ζ ≤ Hij , nodes i and j are paired up. This guarantees
that the network links are statistically independent. From H,
we can therefore calculate all the above mentioned metrics.
For illustration purposes, Fig. 1 shows two realizations of a
random geometric network and its node degree distribution,
mean degree λ, and assortativity coefficients r for different
path loss exponents η.

III. NETWORK DYNAMICS AND COOPERATION

We will now introduce a network dynamics in the form of a
P2P cooperation network as embodied by a continuous Snow-
drift (SD) game. The SD game is obtained by relaxing the
dilemma presented by the celebrated prisoners dilemma (PD)2

by assuming that cooperation can result in a shared benefit.
The SD modification is significant, especially in continuous
(iterated) games since cooperation is typically maintained
through mechanisms of direct and indirect reciprocity, result-
ing in a mixed evolutionarily stable equilibrium state [21]. We
will show that this shared benefit is essential in incentivizing
cooperation and maintaining a connected network.

A. P2P Cooperation Graph

We construct a cooperation graph through an N × N
weighted cooperation adjacency matrix E with entries eij ≥
0 describing which node collaborates with which and by
how much. For the sake of generality we will not define
any particular unit of cooperation or impose any additional

2The PD embodies the primary problem of cooperation where selfish
individuals are better off when exploiting the cooperation of others.



constraints on E other than eii = 0, ∀ i i.e. self-cooperation
is not allowed. Note that in general eij 6= eji. Every node can
cooperate with every other node subject to the connectivity of
the graph defined through H and so the N(N − 1) weights
eij are interpreted as a measure of cooperation between node
i and j and will be allowed to evolve in time as described in
the following subsection.

B. Cooperation Dynamics

We enable this network to evolve deterministically through
the system of N(N −1) partial differential equations describ-
ing the selfish nature of peers trying to increase their total
pay-off Pi through a downhill gradient optimization given by

d
dt
eij =

∂

∂eij
Pi (8)

where Pi is defined as the total utility pay-off of node i equal
to the difference between its total benefits Bi and total costs
Ci. What (8) is essentially saying is that the rate of change
of the cooperation eij between i and j is proportional to the
variation of Pi with respect to eij . This reflects the fact that
selfish nodes will strengthen/weaken their cooperative links
with other nodes in a way that will increase their total pay-off
Pi. The evolution of the network stops when ∂

∂eij
Pi = 0 for all

N(N−1) directed edges of the cooperation graph E. Note that
the connectivity network H remains unchanged throughout.

C. Pay-offs, Costs and Benefits

In evolutionary biology, costs and benefits are measured in
terms of Darwinian fitness (i.e. reproductive success) whilst
in other contexts more measurable utility scales are preferable
e.g. monetary, time, bandwidth, energy, etc. [21]. In this paper,
we will not restrict the discussion to one particular utility
metric as that is application specific. Instead an effort will
be made to keep the introduced cooperation framework ap-
plication independent. For the cooperation network described
above, the total benefit of node i is without loss of generality
some increasing function of the total incoming cooperative
efforts of peers weighted by the communication link quality
of each pair. For simplicity we will use a sub-linear function

Bi =

√∑
j 6=i

Hjieji, (9)

such that stronger incoming links (i.e. Hji ≈ 1) translate into
profitable collaborations and vice versa. Similarly, the total
cost of node i is some increasing function of the total outgoing
cooperative efforts that node i is connected to. For simplicity
we will use a super-linear function thus giving

Ci =
(∑
j 6=i

(1−Hij)eij

)2
, (10)

such that weaker outgoing links (i.e. Hij ≈ 0) translate into
costly collaborations and vice versa. The sub- and super-
linear forms chosen above capture the basic features of real-
world systems such as diminishing returns at high cooperation
levels as wells as additional costs incurred by the overexertion

of ones resources respectively. Other functions could just as
easily have been used in our flexible model.

Therefore the total pay-off of node i is simply given by
the difference of the two Pi = Bi − Ci and the cooperation
weights eij are updated according to the N(N −1) system of
partial derivatives

d
dt
eij =

∂

∂eij
Pi = −2(1−Hij)

∑
k 6=i

(1−Hik)eik ≤ 0. (11)

D. Tragedy of the Commons

The system described in (11) has a clear cooperation prob-
lem. Namely we have ∂

∂eij
Bi = 0 since the benefit Bi of a

node depends only on what others are willing to contribute
towards it. Therefore, since costs incurred by a node depend
on its own contributions we have d

dteij ≤ 0 for all node pairs.
Significantly, in Gilbert’s unit disk model, all not connected

pairs will of course not cooperate, whilst all connected pairs
will not alter their cooperation weights at all. For more
realistic “soft” connectivity models where Hij < 1 (e.g. many
fading models found in the literature [14]), willingness to
cooperate will decay to zero exponentially fast and completely
disconnecting the cooperation network i.e. eij → 0 as t→∞
for all i, j ∈ [1, N ]. This phenomenon is also referred to as the
“tragedy of commons” where the presence of cooperators and
defectors side by side will cause the extinction of cooperators
and the survival of only defectors [21]; not surprising since the
proposed model does not provide any incentive to cooperate.

E. A Framework for Insentivized Cooperation

Direct reciprocity was proposed by R. Trivers as a mecha-
nism for the evolution of cooperation in 1971 [22]. We adopt
such a mechanism through a term which we call “a mutual
cooperation benefit” defined as some increasing function of
the total mutual cooperative efforts per pair that node i is
connected to. In order to capture the inefficiency of small
mutual cooperation levels and the saturation of benefits at high
levels of mutual cooperation we use a sigmoidal function

f(x) =
2bµ√
τ + µ2

+
2b(x− µ)√
τ + (x− µ)2

(12)

where b =
(
2+ 2µ√

τ+µ2

)−1
such that f(0) = 0 and f(∞) = 1

and the positive parameters µ and τ specify the inflection point
and steepness of f respectively. Therefore, the total mutual
cooperation benefit of node i is given by

Mi =
∑
j 6=i

Hijf(eij + eji), (13)

such that stronger links (i.e. Hij ≈ 1) translate into stronger
collaborations and vice versa. Thus, cooperating results in a
benefit which we assume adds linearly to a modified total pay-
off P ∗i such that

P ∗i = Bi − Ci +mMi (14)

with m ≥ 0 controlling the level of incentivized cooperation.



The inclusion of incentivized cooperation through direct
reciprocity changes the dynamics significantly resulting in

d
dt
eij = mHijf

′(eij + eji)− 2(1−Hij)
∑
k 6=i

(1−Hik)eik,

(15)

where f ′(x) is the derivative of f with respect to x. Notice that
d
dteij unlike (11) can now also attain positive values indicating
the strengthening of cooperation links. Moreover, d

dteij only
depends on local pairwise properties therefore facilitating real-
time P2P networking.

For the sake of clarity, we briefly describe the physical
intuition behind the proposed framework captured by (15):
For m > 0 the first term on the RHS is non-negative and
will therefore attract cooperation towards well connected and
cooperative node pairs. The last term on the RHS is negative
and will therefore apply pressure to keep the total cooperation
efforts of node i to a minimum especially for badly connected
nodes. Therefore, nodes will shift their cooperation “invest-
ment” weights eij as to maximize their own total pay-off P ∗i .

The N(N−1) system of partial equations described in (15)
is a deterministic downhill-gradient optimization problem with
no memory (i.e. the state of the system at time t + δt only
depends on the state of the system at t). Clearly (15) is not
separable3 for λ� 1 and can only be solved through numer-
ical integration. Moreover, as we shall see in the next section,
the numerical exploration of the phase space landscape will
converge to a final configuration which is a global maximum
of the total pay-off P ∗ =

∑
i P
∗
i ; a global attractor. Moreover,

and unlike (11), the state of equilibrium reached is expected to
exhibit some level of cooperation which sensitively depends
on the initial topology of the system (i.e. the number and node
locations ri ∈ V) and the parameters (m,µ, τ, ε, η, r0) used.

IV. SIMULATION RESULTS

We will now simulate (15) and investigate how the connec-
tivity metrics introduced in Sec. II are affected by the proposed
framework for cooperation and vice versa.

A. Evolving networks

The time evolution of the P2P cooperation network E is
governed by the downhill gradient given in (15) and strongly
depends on the initial state of the system. The locations of the
nodes form a BPP as described in Sec. II. For simplicity we
choose a uniform initial cooperation state E(t = 0) = JN−IN
where JN is a square N ×N matrix with all its entries equal
to 1 and IN is the identity matrix. The system of differential
equations is then integrated using Euler’s method with step
size s = δt� 1 according to the update function

et+δtij = etij + s
[
mHijf

′(etij + etji)

− 2(1−Hij)
∑
k 6=i

(1−Hik)etik

]
.

(16)

3The differential equations cannot be written as a function of a single
variable. Instead the time derivative of eij depends on all k neighbours of i.

Fig. 2. a. Connectivity graph with edge weights given by Hij(rij). b.
Cooperation graph at equilibrium with weights given by eij . c. Convergence
of the cooperation graph mean node degree λ as a function of time. The dashed
line is given by (6). d. Convergence of the cooperation graph assortativity r
as a function of time. The dashed line is included to guide the eye. Parameters
used: N = 36, ρ = η = 4, r0 = µ = τ = m = 1, and ε = 0.1.

If in a given time step eij becomes negative then d
dteij and

eij are set to zero. It should be noted that similar integration
techniques with variable time steps or higher order correction
terms to Euler’s method can be more accurate however they do
not affect the end result for small enough s. In our simulations
we use s = 10−4 and assume that the network has converged
to its equilibrium state when |et+δtij − etij | ≤ s2 ∀ i , j.

Figure 2 shows an example realization of a cooperation net-
work as prescribed by the above framework. In the first panel,
the connectivity of the cooperation network is shown with the
different edges weighted by the pairwise connection function
Hij . Since the initial state provided to the evolutionary dy-
namics has eij = 1 for all i 6= j and zero otherwise, then the
mean degree of the cooperation graph equals N − 1 = 35 i.e.
every node starts off at t = 0 with the option to cooperate with
every other node. It is clearly seen however in panel c. that
the mean cooperation degree decays rapidly until it reaches the
mean connectivity degree λ as calculated by (6), after which
the decay slows down and the cooperation dynamics attempts
to reach an equilibrium point which maximizes total pay-
off P ∗. The convergence towards equilibrium is much slower
now as nodes must shift their cooperation weights towards
nodes with a mutual and almost reciprocal cooperation weight
whilst maintaining total costs relatively low. In the process
nodes tend to cooperate with similar nodes as captured by
the assortativity metric plotted in panel d. We emphasize that
whilst the described dynamic behaviour is specific to the node
positions ri ∈ V and the parameters used, the general picture is
actually representative of the proposed cooperation dynamics.
In general, the weighted connectivity graph H provides a
structure for the final cooperation graph E(t → ∞), which
clearly is a subgraph of the former that manages to preserve
the strongest links as can be seen in Figure 2.



Fig. 3. Parameters used: N = 36, ρ = η = 4, r0 = µ = τ = m = 1, and
ε = 0.1 unless the parameter is being varied.

B. Parameter phase space

In this subsection we present further simulation results on
the dependence of the cooperation mean degree and assorta-
tivity of the evolved graph on system parameters. Figure 3
shows that assortativity and degree have a similar dependence
to the system parameters which we have investigated. Indeed
the contour plots show similar patterns although assortativity
is clearly much more coarse grained than the mean degree. The
reason for this is that associativity is much more sensitive to
the network topology than the mean degree and moreover is
not a monotonic function of time t as seen in Fig. 2d.

Increasing the inflection point µ results in a lower degree
but a more assortative cooperative graph. This is expected
as cooperation becomes harder to maintain unless nodes are
cooperating nodes have are of similar degree. A similar
behaviour is observed when increasing the steepness τ of the
mutual cooperation benefit function f . Increasing the path loss
exponent η results in a higher degree and more assortative
cooperative graph. This is also expected as a higher η means
that the pairwise connection function Hij is more step-like
and thus well connected nodes Hij ≈ e−ε are encouraged
to maintain cooperation. Increasing the guard zone ε has the
opposite effect. Finally, increasing the level of incentivized
cooperation m results in a higher degree as expected. In
terms of assortativity however it appears that this initially
decreases with m and then increases again. We understand
this dip in the following way. When m = 0, only very well
connected connected nodes cooperate whilst the remaining

Fig. 4. Realizations of the same cooperative network for different levels
of incentivized cooperation m = 0.1, 1, 3 and 6. Parameters used: N =
100, η = 2, ε = 10−2, ρ = 2.77, µ = τ = r0 = 1.

nodes are disconnected. This leads to a high value of r. For
small m� 1, well connected nodes remain cooperative while
some not so well connected nodes begin to cooperate, typically
with nodes of much higher degree. This increases the mean
degree but decreases the assortativity r. For higher values of
m the not so well connected nodes strengthen and create even
more cooperation links and hence the degree distribution has a
smaller variance and assortativity increases. Figure 4 illustrates
precisely this behaviour for a cooperation network at different
values of the incentivized cooperation m.

V. CONCLUSION AND DISCUSSION

In this paper we have studied the connectivity of cooperative
ad hoc networks. The location of nodes are modelled as being
randomly distributed in some region and links connecting them
are formed according to a path loss function and the fading
characteristics of the wireless channel resulting in what is
referred to as a random geometric graph. Nodes are assumed
selfish and are incentivized to cooperate with each other
through a snow drift type game which is strongly coupled with
the underlying wireless network topology i.e. the quality of the
links interconnecting the nodes. As such each of the N nodes
independently decides with which nodes to cooperate and by
how much. The decisions are such that strongly connected
nodes choose to cooperate if the cooperation is reciprocated
whilst not to if the link quality is not good enough or if the
cooperation is not reciprocated to a satisfactory level. This
novel framework for cooperation is presented through a system
of N(N − 1) differential equations which is dynamically
evolved in time using Euler’s method. Significantly, this pa-
per’s focus is on the connectivity of the resulting cooperation



graph. Namely, we have studied the mean degree λ and the
assortativity r of the resulting cooperation graph and their
dependence to various system parameters e.g. the path loss
exponent characteristic of the wireless propagation medium η,
and the level of incentivized cooperation m.

Throughout this paper an effort has been made to maintain
generality and avoid specific application areas. In our opinion
the theoretical framework presented could be adapted to a
number of ICT problems and presents an interesting new
level for research into wireless ad hoc networks. For example,
let us discuss its possible application within the LTE-Direct
standardization paradigm, a promising incarnation of device-
to-device (D2D) communications based on proximal discovery
technologies and LTE licensed wireless spectrum. LTE-Direct
aims to offer an efficient, high-speed method to allow people to
connect with and search for people, local businesses and other
services nearby through smartphones and other LTE-Direct
enabled devices. The opportunity to connect directly rather
through a base station or access point is clearly a business
opportunity, a potential fall-back public safety network, but
perhaps also a way to contribute towards the problem of
spectrum scarcity, presumably by allowing users to relay data
via other D2D devices and onto another LTE-Direct enabled
device e.g. neighbouring cell base stations or handsets.

The analogies with our (admittedly simple) framework
for incentivized cooperation are the following: 1) Proximity
between D2D devices dictates the quality of the wireless link
which is inversely proportional with the power cost required
by a device to successfully transmit packets. 2) Handset device
locations are typically random thus forming an ad hoc network
which are often modelled as random geometric graphs. The
most important analogy is however the following: 3) Devices
will often have strong wireless links with several other devices,
therefore since relaying 3rd party data comes at a personal
cost e.g. battery consumption and all benefits depend only
on the spectrum that other nodes are nodes are willing to
contribute, the D2D network is doomed to experience what
is known as the tragedy of the commons (c.f. Sec. III-D).
An incentive to cooperate is therefore needed. This could
potentially be resolved through a centralized entity issuing
some form of credit, e.g. additional data allowance. This would
however defeat the purpose of a distributed D2D system.
A simple alternative to encourage cooperation of devices is
direct reciprocity as proposed by R. Trives [22], embodied
by a mutual cooperation benefit where D2D nodes cooperate
with nodes which are themselves cooperative and of course
well connected. Therefore, we propose on top of the proximal
discovery a local cooperation algorithm which distributively
optimizes a node’s willingness to cooperate with nearby nodes
based on its available resources and the level of cooperation
reciprocated by other LTE-Direct enabled devices. Indeed,
while state of the art ad hoc routing protocols may be used to
connect two devices, node benevolence or indirect reciprocity
is typically assumed or enforced. Instead, the current paper
provides an alternative mathematical framework of direct
collaboration of selfish nodes that is built upon a wireless

connectivity graph and naturally preserves the strongest links
while distributively enforcing a sense of mutual cooperation.
The modification of the cooperation framework presented
herein to accommodate for node mobility through a time
varying connectivity matrix Ht would be an interesting future
research question.
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