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Abstract—Moving target defense (MTD) techniques that enable a
system to randomize its configuration to thwart prospectiveattacks
are an effective security solution for tomorrow’s wirelessnetworks.
However, there is a lack of analytical techniques that enable one to
quantify the benefits and tradeoffs of MTDs. In this paper, a novel
approach for implementing MTD techniques that can be used to
randomize cryptographic techniques and keys in wireless networks
is proposed. In particular, the problem is formulated as a stochastic
game in which a base station (BS), acting as a defender seeks to
strategically change its cryptographic techniques and keys in an
effort to deter an attacker that is trying to eavesdrop on thedata.
The game is shown to exhibit a single-controller property inwhich
only one player, the defender, controls the state of the game. For
this game, the existence and properties of the Nash equilibrium are
studied, in the presence of a defense cost for using MTD. Then, a
practical algorithm for deriving the equilibrium MTD strat egies is
derived. Simulation results show that the proposed game-theoretic
MTD framework can significantly improve the overall utility of the
defender, while enabling effective randomization over cryptographic
techniques.

I. I NTRODUCTION

The emergence of reconfigurable wireless networks based on
software defined networking and software defined radio concepts
is expected to revolutionize the future of wireless communi-
cations. However, such reconfigurable systems are susceptible
to many security threats that range from jamming to eaves-
dropping and node forgery. One effective way to thwart attacks
on reconfigurable environments is via the use ofmoving target
defense (MTD)techniques [1]. MTDs are built on the premise
of continuously randomizing the network’s configuration (e.g.,
cryptographic keys, network parameters, IP addresses) so as to
increase the uncertainty and cost of attack on the adversary.
The effective deployment of MTDs requires meeting several
challenges that range from optimizing the randomization to
analyzing the costs and benefits of MTDs [2]–[10].

A number of research works have recently attempted to address
some of these challenges [1]–[4]. First, in [1], , the authors
focus on the five dominant domains in which MTD techniques
could be applied against cyber attacks in critical systems.In this
work, defined these domains to be networks, platforms, runtime
environments, software, and data. They studied the weakness and
advantages of using MTD in these domains. In [2], the authors
proposed a three-layer model to evaluate the effectivenessof
MTDs in software. These layers capture low-level contexts in
separate programs, model damage propagation between different
programs, and provide a user interface to expresses evaluation
results. The work in [3] considers an MTD to be a subclass
of system agility. In this work, system agility is defined as any
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reasoned modification to a system or environment in responseto
a functional, performance, or security need. In [4], the authors
propose a foundation for defining the theory of MTD. They
defined key problems and hypothesis related to MTD such as
the way to select the next valid configuration of the system,
configuration space, and the timing problem.

The use of MTD in resource-constrained distributed devices,
e.g., wireless sensor networks was studied in [5]. The authors
proposed two different reconfigurations at different architectural
layers. The first is applied at what they defined as a security layer
by using a number of cryptographic techniques and each node
in the network can choose its encryption method for each packet
by adding a special identifier in the packet header. The second
reconfiguration is to be applied at the physical layer by changing
the node’s firmware. In [6], the authors use MTD to defend
against selective jamming attacks. This work studies the problem
of isolating a subset of the network by jamming the signals sent
from this sub-network. The work in [6] also provides practical
MTD solutions such as address flipping and random address
assignment. The use of software defined networking in applying
MTD was discussed in [7]. The authors defined a technique to
MTD by assigning virtual IPs to hosts in the network beside
their reals IPs. Software-defined networking was used to manage
the IP translation. However, these works are mostly qualitative
or experiment based and, as such, they do not address specific
MTD problem formulations.

More recently, game-theoretic methods have recently attracted
attention as a suitable tool for implementing MTDs [8]–[10].
In [9], the authors develop a zero-sum stochastic game model
to a feedback-driven multi-stage MTD. A feedback learning
framework was used to implement MTD based on real-time data
and observations made by the system. The purpose of the learning
algorithm for the defender is to monitor its current state and
update its randomized strategy based on its observation. Inthis
model, the attacker launches a multi-stage attack and the defender
responses at each layer. In [10], the authors analyze a system in
which the defender has a number of different platforms to runa
critical application and the attacker has a set of attacks that are
applicable against some of these platforms. The authors proposed
two types of attackers, static and adaptive, and gave attackmodel
to both of them. The authors in [3], also suggested that MTD
games should be modeled as tunable hierarchical games. The
output of a game at one level should determine the level of risk
associated with a game at a different level.

A recent collection of publications for applying game theory
in MTD [8] does not provide clear approaches to concretely
reach equilibrium strategies. Moreover, the works in [9] and [10]
abstract many of the details of the network considered, and,thus,

http://arxiv.org/abs/1610.03906v1


they cannot directly apply to practical systems. Moreover,the
work in [9] assumes the presence of a highly intelligent layered
attacker which may not be true in practice.

The main contribution of this paper is to develop a novel
game-theoretic model for MTD that can be applied to securinga
wireless network. In particular, we consider a wireless system in
which a base station (BS) seeks to implement an MTD-based
cryptographic approach in which it randomizes over various
cryptographic keys and techniques so as to evade an eavesdropper
that is trying to decrypt the messages. We formulate the problem
as a single-controller non-zero-sum stochastic game in which
the BS uses a number of cryptography techniques along with a
number of keys for each technique. The BS can implement MTD
by randomizing over various actions that include choosing an
encryption method defined by specific encryption technique and
key combination. We also consider a defense cost for applying
MTD that depends on the number of consecutive changes in
the system. Since our model deals with resource-constrained
systems, the encryption techniques should not be highly resource
consuming. Therefore, we develop an approach that attempts
to avoid the use of encryption techniques with long encryption
keys in order to decrease the power consumption. While short-
key encryption techniques are more vulnerable against attacks,
MTD will allow the BS to switch between encryption techniques
and so it is unlikely that the attacker will be able to reveal
the key before it is changed. For this game, it is shown that
a Nash equilibrium always exists. To find this equilibrium, we
propose an algorithm based on bimatrix game equilibrium defined
for all possible pure stationary strategies of the originalgame.
Simulation results show that the proposed approach will yield a
higher defender’s utility when compared with other schemesthat
randomly pick the strategies.

The rest of the paper is organized as follows. Section II
provides the system model, assumptions, and defines the de-
fender’s and attacker’s utilities. In Section III, the stochastic
game is formulated and the steps of calculating equilibrium
points are shown, and also a way to define cost function in
MTD. Simulation results are discussed in Section IV. Finally,
conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless sensor network that consists of a BS and a
number of wireless nodes. The network is deployed for sensing
and collecting data about some phenomena in a given geographic
area. Sensors will collect data and use multi-hop transmissions to
forward this data to a central receiver or BS. The multiple access
follows a slotted Aloha protocol. Time is divided into slotsand
the time slot size equals the time required to process and send
one packet. Sensor nodes are synchronized with respect to time
slots. We assume that nodes are continuously working and so
every time slot there will be data that must be sent to the BS.

All packets sent over the network are assumed to be decrypted
using a given encryption technique and a previously shared
secret key. All the nodes in the system are pre-programmed
with a number of encryption techniques along with a number of
encryption keys per technique, as what is typically done in sensor
networks [5]. The BS chooses a specific encryption technique

and key by sending a specific control signal over the network
including the combination it wants to use. We note that the
encryption technique and key sizes should be carefully selected
in order not to consume a significant amount of energy when
encrypting or decrypting packets. Increasing the key size will
increase the amount of consumed energy particularly duringthe
decryption [11]. Since the BS is mostly receiving data, it spends
more time decrypting packets rather than encrypting them and,
thus, it will be highly affected by key size selection.

In our model, an eavesdropper is located in the communication
field of the BS and it can listen to packets sent or received by the
BS. As packets are encrypted, the attacker will seek to decrypt
the packets it receives in order to get information. The attacker
knows the encryption techniques used in the network and so it
can try every possible key on the received packets until getting
useful information. This technique is known as brute-forceattack.

The idea of using multiple encryption techniques was intro-
duced in [5]. However, in this work, each node individually
selects one of these technique to encrypt transmitted packets.
The receiving node can know the used technique by a specific
field in the packet header. Large encryption keys were used
which require a significant amount of power to be decrypted.
Nonetheless, these large keys are highly unlikely to be revealed
using a brute-force attack in a reasonable time. Here, we propose
to use small encryption keys to save energy and, in conjunction
with that, we enable the BS to change the encryption method
in a way that reduces the chance that the encryption key is
revealed by the attacker. This is the main idea behind MTD.
In MTD techniques, the defender aims to change the attack
surface [12] which represents the points that could be attacked. In
this model, the encryption key represents the attack surface, and
by changing the encryption method, the BS will make it harder
for the eavesdropper to reveal the key and get the information
from the system.

Naturally, the goals of the eavesdropper and the BS are not
aligned. On the one hand, the BS wants to protect the data sent
over the network by changing encryption method. On the other
hand, the attacker wants to reveal the used key in order to get
information. To understand the interactions between the defender
and the attacker, one can use game theory to study their behavior
in this MTD scenario. The problem is modeled as a game in
which the attacker and the defender are the players. As the
encryption method should be changed over time and depending
on the attacker’s actions, we must use a dynamic game.

Thus, we formulate a stochastic gameΞ described by the tuple
〈N ,S,A,P ,U , β〉 whereN is the set of the two players: the
defenderp1, the BS, and the attackerp2, the eavesdropper.S is
the set of game states andA is the set of actions defined for
each player at every state.P is the set of transition probabilities
between states.U is the set of utilities each player will get for a
given combination of actions and state. Finally,0 < β < 1 is a
discount factor.

The defender can choose to use one of theN available
encryption techniques or to use the current encryption technique
with one of theM available encryption keys predefined for
this technique. Each game state is well defined by the current
encryption technique and key combination. Therefore, there



will be K = N · M states, i.e.,S = {s1, s2, . . . , sK}. In
each states ∈ S, each player has a set of actionsAi. Let
A1 = {a11, a

1

2, . . . , a
1

K} be the defender’s actions which represent
the choice of a specific technique and key combination among
the availableK combinations. LetA2 = {a21, . . . , a

2

N} be the
action set of the attacker which represents the set of techniques
that the attacker is trying to decrypt.

In each states ∈ S and for each action pair inA1×A2, there
is an outcome (payoff) for each player. This outcome dependson
the current state and actions taken by both players in this state.
This outcome is defined by player-specific utility functionsin U .
For given actionsa1 ∈ A1 anda2 ∈ A2, the defender’s utility at
statesi is given by:

U1(a
1, a2, si) = R1(a

2) + T1(a
1, a2, si)− P1(si), (1)

whereR1 is the reward gained from protecting a packet. This
reward depends on the attacker’s action as the defender will
obtain a higher reward if the eavesdropper is attacking another
encryption technique.P1 is the power used to decrypt a packet
and it depends on the technique (state).T1 is the transition reward
that the defender will gain from applying MTD and choosing a
key-technique combination. This reward depends on the current
system state, the defender’s action taken at this state (which
determines the next state), and attacker’s action.

Similarly, the attacker’s utility at statesi for given actions
a1 ∈ A1 anda2 ∈ A2 will be given by:

U2(a
1, a2, si) = R2(a

1, a2, si)− P2(si), (2)

whereR2 is the attacker’s reward from examining the encryption
keys for a given technique. Here, if the attacker can examinemore
keys, it will get closer to revealing the actual key. This reward
depends on the attacker’s action, current encryption technique
(state), and defender’s action.P2 is the power used to decrypt a
packet that depends also on the current technique.

Based on these rewards, the game is non-zero sum. Thus
means, every player will try to maximize its reward and the
sum of rewards is not zero. This stochastic game also exhibits
an interesting property pertaining to the fact that the transition
probabilities inP depend only on the actions of the defender.
Moreover, when the defender selects an action at one state,
the game moves to another state defined by the encryption
technique and key combinations with a probabilityp = 1. This
type of stochastic games is known assingle-controller stochastic
games[13].

This type of games is most suitable for MTD problems in
which the defender aims at randomizing system parameters, as
the goal of MTD is to change system parameters in order to
harden the attacker’s mission. The defender should take actions
to change these parameters within a reasonable time. Single-
controller stochastic games satisfy this property by allowing the
defender to control the actions thus changing the game state
which maps to changing system parameters in MTD.

III. PROPOSEDMTD GAME SOLUTION

A. Equilibrium Strategy Determination

The studied game is a finite stochastic games since the number
of states and the number of actions per state are finite. Stochastic
games are dynamic in the sense that the game moves between

states each time step. In stochastic games we are interestedin the
accumulated (total) utilities of the players over time. Discounted
utilities over time are typically used by summing the current
utility and all the expected future utilities multiplied bya discount
factor. In such cases, players are interested more in current
payoffs than future ones. Each player seeks to take actions that
maximize its utility given the other player’s actions. Whenno
player can improve its utility by solely changing its actions, the
game is said to be at equilibrium.

For discounted stochastic games, the existence of Nash equi-
librium points in stationary strategies was proven [14]. Stationary
strategies are those strategies in which the actions taken at each
state depend on this state only. If at each state, the player selects
a specific action with probabilityp = 1 then this called pure
stationary strategy. If the player chooses between actionswith
some probabilities then it is called amixed stationary strategy.

In [15], the authors propose a scheme that can find a Nash
equilibrium point for discounted non-zero sum single-controller
stochastic games. The key idea is to form a bimatrix game (one
matrix for each player). The rows and columns of each matrix
represent pure stationary strategies for each player. The elements
of these matrices represent the accumulated discounted utilities
over all states (recursion) for every strategies pair. Then, any
mixed strategy Nash equilibrium of this bimatrix game can be
used to get a Nash equilibrium of the stochastic game.

Since the defender is the controller which selects actions to
move the game to a specific state, time steps of the stochastic
game are controlled by the defender. Assuming that the attacker
has enough power, it can complete the brute-force attack in time
ti for i = 1, 2, . . . , N for each one of the encryption techniques.
Then, the defender should choose the time stept to take the next
action as follows:

t < min(ti), i = 1, 2, . . . , N. (3)

By doing this, the defender can make sure that it takes a timely
action before the attacker succeeds in revealing one of the keys.

The accumulated utility of playeri at states will be:

Φi(f , g, s) =

∞
∑

t=1

βt−1 · Ui(f(st), g(st), st), (4)

wheref and g are the strategies adopted by the defender and
attacker, respectively. The strategy specifies a vector of actions to
be chosen at each of the states, e.g.,f = [f(s1), . . . , f(sK)] for
all theK states. Actionsf(st) andg(st) are the actions chosen at
st, which is the state of the game at timet, according to strategies
f , g. Statest ∈ S is determined by the defender’s action at time
t − 1. The game is assumed to start at a specific states = s1.
Note that the utility in (4) is always bounded at infinity due to
the fact that0 < β < 1.

When designing the bimatrix, the defender needs to calculate
the accumulated utility when choosing each pure strategy against
all of the attacker’s pure strategies. The defender, as a controller,
can know the next state resulting from its actions, and, thus,
it sums the utilities in all states using the discount factorβ.
Let X be the defender’s accumulated utility matrix for all
defender’s pure strategies’ permutations and all attacker’s pure
strategies’ permutations. We letF i. = [f1,f2, . . . ,fKK ] be



a matrix of all defender’s pure strategies’ permutation where
each row represents actions in this strategy and similarlyGi. =
[g1, g2, . . . , gNK ] the matrix of all attacker’s pure strategies’
permutation. Then each elementXi,j of X will be given by:

Xi,j =
∑

S

Φ1(F i.,Gj., s), ∀i, j, (5)

where i = 1, · · · ,KK and j = 1, · · · , NK . The attacker can
only calculate its payoffs at timet = 1, as the attacker cannot
know in advance the actions taken at each state and hence the
reward it will get in future. Similarly, letY be the attacker’s
accumulated utility matrix, then each elementYi,j of Y will:

Yi,j =
∑

S

Φ2(F i.,Gj., s), ∀i, j, (6)

where i and j are the same as the defender’s case, and
Φ2(F i·,Gj·, s) is only evaluated at timet = 1.

The solution of the bimatrix could be obtained by algorithms
such as Lemke-Howson [16], which is proven to always terminate
at a solution and hence finds a mixed Nash equilibrium of the
bimatrix game. This solution is then used as in [15] to find the
equilibrium of the stochastic game. Let(x∗,y∗) be any mixed
strategy Nash equilibrium point for the bimatrix game(X,Y ).
Each(x∗,y∗) is a vector of probabilities with which each player
can choose each strategy in all the strategies permutations.

As each strategy represents the set of actions per all states, the
equilibrium point to the stochastic game, i.e, the probability of
choosing each strategy, can be calculated as:

E∗

i,j =

KK

∑

l=1,i=Fl,j

x∗

l , i = 1, . . . ,K, j = 1, . . . ,K,

H∗

i,j =

KK

∑

l=1,i=Gl,j

y∗l , i = 1, . . . , N, j = 1, . . . ,K, (7)

wherex∗

l ∈ x∗ and y∗l ∈ y∗ are the elements ofx∗,y∗ that
represent strategies’ probabilities. Each elementE∗

i,j of E∗ and
H∗

i,j of H∗ is the probability of taking actioni in statej for the
defender and the attacker, respectively. The summations in(7)
give the probabilities of one actioni which satisfies the condition.
This is repeated for all values ofi to get a column which is all
actions’ probabilities in one state. Different values ofj give the
rest of the states.E∗ is aK ·K matrix that gives the probability
of each of the defender’sK actions in each of theK states.
Similarly, H∗ is anN · K matrix that gives the probability of
each of the attacker’sN actions in each of theK states. These
matrices are theequilibrium strategiesfor both players.

These probabilities specify the behavior of the game. The de-
fender in each state will choose an action (selecting an encryption
method) with some probability and so the game will move to
another state (encryption method). Then, again in the new state,
the defender chooses a new action and so on. Using this process,
the defender will keep moving between encryption methods
which effectively implements a highly randomized MTD.

Finally, the value (expected utility) of each player at equilib-
rium can be computed by applying the equilibrium strategiesand
finding the accumulated payoffs of both players. These expected
utilities are calculated by following all the possible transitions

due to defender’s actions in each state. Letv∗i (s) be player’si
value at states:

v∗i (s) = Φi(E
∗,H∗, s) s ∈ S, (8)

As the players get these values at equilibrium, both playerswill
not have an incentive to deviate from these equilibrium strategies.
The player who deviates will get a lower value when the other
player uses its equilibrium strategy. This can be expressedas:

v∗1(s) ≥ Φ1(Ê,H∗, s), s ∈ S,

v∗2(s) ≥ Φ2(E
∗, Ĥ , s), s ∈ S, (9)

for any Ê andĤ other than the equilibrium strategies.

B. Moving Target Defense Cost

In previous sections, the defender’s utility included a reward
from applying MTD which corresponds to the gain from ran-
domizing system parameters. However, applying MTD may incur
associated costs for the defender. Examples include the cost
of reconfiguring the system and changing parameters. In our
decryption model, the BS might not be able to change the
encryption method unless it ensures that all nodes are informed
by the change, which requires some propagation time. Changing
the method before this time can lead to a conflict in the used
method between various nodes around the BS (e.g., nearby and
far away nodes).

We model this cost as a function of the number of consecutive
encryption method changes in the past time steps. Let the number
of consecutive method changes during the past time steps ben

and the cost value beq. The cost function will beC(q, n) and it
is an increasing function in the number of consecutive changes
n. The defender’s utility can then be written as:

U1(a
1, a2, si) = R1(a

2) + T1(a
1, a2, si)− P1(si)− C(q, n).

(10)
Clearly, n will be zero at the first time step. The effect of this
cost can appear in the accumulated utility in (4) which will affect
the matrixX in (5) and the defender’s equilibrium values in (8).

We propose two different functions to express the cost. The
first cost function can be expressed asC(q, n) = q · n. We need
to make sure that the game will remain finite after adding this
cost function so that the same solution can be applied. As the
cost affects the utility, we can state the following lemma:

Lemma 1. The accumulated defender’s utility will remain
bounded after adding a cost function in the formC(q, n) = q ·n
and, thus, the game will still admit an equilibrium point.

Proof: We prove this lemma by rewriting the defender’s
accumulated utility:

Φ1(f, g, s) =

∞
∑

t=1

βt−1
(

R1(a
2)+T1(a

1, a2, si)−P1(si)− q ·n
)

.

by noticing that the maximum forn is t− 1 and taking the limit
as t reaches∞ we get

lim
t→∞

βt−1
(

R1(a
2) + T1(a

1, a2, si)− P1(si)− q · (t− 1)
)

= 0.

A second form for the cost function isC(q, n) = q · ln(n+1).
We choose such a logarithmic function to reduce the effect of
cost propagation. Note, Logarithmic function has a smallerrate



TABLE I
ATTACKER’ S AND DEFENDER’ S EQUILIBRIUM STRATEGIES

Attacker Defender
a1 a2 a1 a2 a3 a4

s1 0.7436 0.2564 0.0000 0.6622 0.1681 0.1697

s2 0.7436 0.2564 0.4441 0.0195 0.1697 0.3667

s3 0.3482 0.6518 0.4441 0.3667 0.0195 0.1697

s4 0.3482 0.6518 0.4441 0.3667 0.1697 0.0195

of growth compared to the linear function in the first case. We
need to ensure that the game will remain finite by adding this
cost function, so we state the following lemma:

Lemma 2. The accumulated defender’s utility will remain
bounded after adding the cost functionC(q, n) = q · ln(n + 1)
and, thus, the game will still admit an equilibrium point.

Proof: We prove this lemma in a manner analogous to
Lemma 1 where the limit will be zero also.

In general, any function could be used to represent the prop-
agation cost when its limit is bounded at infinity.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we choose a system that uses2 encryption
techniques with2 different keys per technique. Thus, the number
of system states are4 and the defender has4 actions in each
state. For the bimatrix, the attacker has24 = 16 different
strategy permutations and the defender has44 = 256 different
strategy permutations. The power values are set to1 and 3 to
pertain to the ratio between the power consumption in the two
different encryption techniques. These values are the samefor
both players. We setR1 andR2 to be 10 and 5 depending on
the opponent’s actions. We choose these values to be higher than
the power values in order for the utilities to be positive. The
transition reward is set to5 and10 for switching to another state
defined by another key or another technique, respectively.

First, we run simulations when there is no transition cost,
q = 0. The equilibrium strategies for both the attacker and
defender are shown in Table I. Note that actionsa1, a2 represent
the selection of two keys for the same encryption technique and
actionsa3, a4 represent two keys for another technique. Table 1
shows the probabilities over all actions for each player. These
probabilities show how players should select actions in every
state. For the defender, if it starts in states3 then it should move
to states1 with the highest probability and move to states2 with a
very similar probability. This is because the defender willchange
the technique and so gets a higher transition reward. We can see
that the probability of moving to the same state is always very
low and can reach0 as in states1. The probability of moving to a
state that has a similar encryption key is always less than that of
moving to a state with different technique as the transitionreward
will be lower. For the attacker, the probability of attacking the
same technique that is used in the current state is always higher
than attacking any other technique.

In Fig. 1, we show the effect of the discount factor on the
defender’s utility at equilibrium in every state. First, wecan see
that all utility values at all states increase as the discount factor
increases. This is due to the fact that increasing the discount
factor will make the defender care more about future rewards
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Fig. 1. The defender’s expected utility in each state against discount factorβ.
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Fig. 2. Percentage increase in the defender’s expected utility when using the
equilibrium strategy and when using equal probabilities over actions. This is
shown in each state as function of the discount factorβ.

thus choosing the actions that will increase these future rewards.
Fig. 1 also shows that the defender’s values at states1 and 2
are higher than at states3 and 4. This because states1 and 2
adopt the first encryption technique which uses less power than
the encryption technique used in states3 and 4. The difference
mainly arises in the first state before switching to other states and
applying the discount factor. Clearly, changing the discount factor
has a big effect on changing the equilibrium strategy, and, thus,
the game will move between states with different probabilities
resulting in a different accumulated reward.

In Fig. 2, we study the effect of applying the proposed MTD
technique against the case when the defender decides to use
equal probabilities over its actions in each state, i.e., all entries
equal0.25 as there are four actions per state. Fig. 2 shows the
percentage of increase in the defender’s expected utility.We
can see that the minimum increase is non-zero which means
that the defender will not gain from deviating from equilibrium
strategies. Moreover, at high discount factor values, i.e,β > 0.75,
the percentage increase is higher than that at lowerβ values
in all states. The percentage increase ranges from5% to about
40% at β = 0.75 depending on the state, and it can reach
values between20% and above40% at β > 0.95. This is
due to the fact that, at higherβ values, future state transitions
have higher impact on calculating equilibrium strategies and the
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combinations.
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Fig. 4. The defender’s expected utility in states2 against discount factorβ for
different cost functions.

defender considers more state changes in the future. This makes
equilibrium strategies differ more from equal probabilities. For
otherβ values, the percentage increase depends on how different
the equilibrium strategy from the equal allocation scheme.

In Fig. 3 we study the effect of changing the power on
the defender’s expected utility at equilibrium. We study three
cases, first when the power required for technique1 is less
than the power required for technique2, similar to the previous
experiments. Then, we study the cases in which they are equal
and in which technique1 requires more power than technique2.
Here, we setβ = 0.75. From Fig. 3, we can see that, when the
first technique’s power is less than the second one, the defender
gets higher reward at statess1 and s2 than at statess3 and s4.
This stems from the fact that, at statess1 and s2, the defender
begins the game using technique1 (lower power) thus getting a
higher reward. A similar result can be seen when the defender
gets a higher reward at statess3 ands4 when the technique used
in these states needs less power. When the two techniques use
the same power, we can see that the defender’s expected utility
is almost the same for all states. Fig. 3 clearly shows the effect
of first state parameters on the expected utility.

In Fig. 4, we study the effect of adding cost to the defender’s
expected utility. We calculate the expected utility at different
discount factor values at states2. Clearly, the expected utility
is higher when no cost is applied. When applying cost function

C(q, n) = q · ln(n + 1), the utility is barely reduced. When
applying the cost functionC(q, n) = q ·n, we notice a significant
decrease in the defender’s expected utility. In our problem, the
cost functionC(q, n) = q · n will be more suitable as the other
cost function does not show a significant change.

V. CONCLUSIONS

In this paper, we have studied the use of MTD in a wireless
network security problem. We have formulated the problem using
a non-zero sum stochastic game theory model in which the
defender controls state transition. The next state is determined
only by defender’s actions which is suitable for MTD cases
where the defender want to change system parameter’s before
the attacker can reveal them. This property of the game ensures
that the game will always have an equilibrium point. We have
provided the mathematical model for deriving an equilibrium in
such games. We then provided a novel way to define cost in
MTD systems that depends on the number of consecutive changes
in system parameters. We have shown two different functions
to define cost and have proved that the game will still have
equilibrium. Simulation results have shown that this modelhelps
the defender to get higher expected utility in all system state than
the case of assigning equal probabilities over different actions.
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