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Abstract—Multicast data delivery can significantly reduce
traffic in operators’ networks, but has been limited in deployment
due to concerns such as the scalability of state management. This
paper shows how multicast can be implemented in contemporary
software defined networking (SDN) switches, with less state
than existing unicast switching strategies, by utilising a Bloom
Filter (BF) based switching technique. Furthermore, the proposed
mechanism uses only proactive rule insertion, and thus, is not
limited by congestion or delay incurred by reactive controller-
aided rule insertion. We compare our solution against common
switching mechanisms such as layer-2 switching and MPLS in
realistic network topologies by modelling the TCAM state sizes
in SDN switches. The results demonstrate that our approach has
significantly smaller state size compared to existing mechanisms
and thus is a multicast switching solution for next generation
networks.

I. INTRODUCTION

Multicast routing and switching is generally more complex
than its unicast counterpart, predominantly because: optimal
multicast routing is an NP-complete problem (a Steiner tree
optimisation) [1]; and, IP routers/switches have to maintain
specific multicast state [2]. Although multicast is not, truly,
deployed as an inter-domain service at Internet scale [3],
it is widely deployed at intra-domain level for applications
such as IPTV. While multicast has problems at the IP layer,
these difficulties are somewhat greater at lower layers that do
not natively support multicast, such as multi-protocol label
switching (MPLS). RFC6513 [4] has added multicast support
to MPLS; however, at operator scale, a trade-off between
optimality of routing and scalability of state is needed, as
described by Martinez-Yelmo et al. [2].

The problems with deploying multicast at operator scale has
motivated stateless solutions, such as multi-protocol stateless
switching (MPSS) [5] and line speed publish/subscribe inter-
networking (LIPSIN), that use the Bloom filter (BF) as the
forwarding identifier (FID) in the packet-header. For brevity,
this form of switching will be described as BF switching.
Indeed BF switching has been utilised by architectures such
as PSIRP and PURSUIT [6], [7] that form the basis of
a clean-slate information centric network (ICN) [8]. These
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efforts demonstrate that BF switching can deliver very efficient
unicast/multicast forwarding with minimal state, however, they
require either software-based switching or custom hardware.

This paper follows a BF approach, implemented natively
in SDN, as a new technique for providing stateless multicast
switching at operator scale. While a BF has been previously
proposed for stateless multicast switching [5], [9], this paper
is the first to show that it can be implemented directly
in contemporary SDN switches, without reactive controller
intervention. We focus on an SDN solution as it is a frequent
proposal for next generation networks at operator scale [10].
More specifically, SDN is proposed as a “clean-slate” network
upgrade, replacing technologies such as spanning-tree or OSPF
in data-centre or operator networks respectively. The term
“software defined networks” can encompass a number of
different software controlled network technologies; however,
in this paper the term SDN will be used, specifically, to
describe contemporary layer-2/3 Ethernet switches controlled
by a centralised controller employing the OpenFlow proto-
col [11].

There have been previous attempts at using SDN for clean-
slate proposals such as ICN. Chanda and Westphal proposed
ContentFlow, which maps application layer content informa-
tion onto a legacy IP transport mechanism using extensions to
an SDN controller [12]. Alternatively, Syrivelis et al. described
in [13] how SDN can be used for forwarding in the PURSUIT
architecture by using the BF switching header within the SDN
controller to route packets to the appropriate destination on a
packet-by-packet basis. Notably, neither of these propositions
have provided scalable solutions at operator network sizes,
as the controller has to react to each application session or
packet, respectively. In contrast, the proposition here directly
implements the BF switching in the SDN switches.

The rest of this paper is structured as follows: Section II
will describe the proposal together, with Section III providing
an analytical approach to the bounds of the SDN flow sizes;
Section IV demonstrates the scalability advantages of the
solution by modelling and comparing the flow entry require-
ments in realistic network topologies; finally, Section V briefly
concludes and outlines future work.
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Figure 1. Highly simplified network architecture showing an example of BF
switching

II. OVERVIEW OF PROPOSITION

A. Generalised description of BF switching

A highly simplified form of the target, intra-domain, op-
erator network architecture is illustrated in Fig. 1. Network
attachment points (NAPs) are shown interfacing the internal
network, that uses BF switching, to external networks that use
conventional IP routing. The architecture in Fig. 1 is similar to
that proposed by MPSS [5], or by the EU project POINT [14].
With MPSS the NAP would be integrated with the provider
edge (PE), mapping IGMP onto BF switching. Alternatively,
POINT integrates the NAP into any suitable edge router and
performs IP-to-ICN convergence. At the edges, IP devices
use the core network without knowledge of the SDN/BF core
switching.

In its simplest form, BF switching operates by assigning
fixed length link identifiers (LIDs) for each link in the network,
as described by [9]. In Fig. 1, each link is assigned an 8-
bit LID. In practice, to avoid false positives, the LID is
much larger, typically in the order of hundreds of bits. The
mechanism merges the LIDs on a path/tree to form a BF of
the same length as the LIDs; this becomes the FID used to
forward the packet. Formally, we describe BF switching by
considering a network represented as a graph G(V,E) with
an LID, L(e), associated with each edge e ∈ E. The FID FP

of a path (or tree) with n edges, P = 〈e1, . . . , en|e ∈ E〉, is
given by:

FP = L(e1) ∨ L(e2) ∨ . . . ∨ L(en) (1)

At a node v ∈ V of degree dv with outgoing edges Ωv =
{e1, . . . , ed}, we may represent the forwarding decision De

for an outgoing edge e with LID L(e) as:

De =

{
true, if L(e) = L(e) ∧ Fp

false, otherwise (2)

Fig. 1 shows examples of a unicast path and a multicast
tree (with two destinations), and the associated FIDs created
using (1). These examples highlight an inherent advantage
of BF-encoding of network paths, namely the instantaneous
formation of multicast relations based on individual FIDs.
In other words, the knowledge of individual unicast FIDs
from a source to a number of destinations allows for creating

temporary multicast FIDs by simply ORing the individual
unicast FIDs. The resulting FID encodes the multicast tree
from the source to the selected destinations, with the OR
operation being performed locally at any element that knows
of the individual FIDs, such as the NAPs in Fig. 1. In
POINT [14] this is exploited to offer a capability called
coincidental multicast, in which responses to individual quasi-
synchronous HTTP requests are delivered to the clients using
multicast rather than individual unicast responses, resulting in
potentially significant improvements of network utilization.

Note that, the LIDs need to be chosen carefully to avoid
false-positives [9], which result in traffic being sent over links
that were not defined in the path or multicast tree. If the
number of links |E| is smaller than the bit-width of the LIDs,
then setting one mutually exclusive bit in each LID is sufficient
to guarantee no false positives. As noted in [5], the use of
constant length BF identifiers, however, limits the scalability
of the network graph that can be encoded. To remove this
limitation, we foresee a solution that divides an autonomous
forwarding system into pre-defined zones, with a fixed length
FID used per-zone. The FID in the header matching field is
used to forward from a zone’s ingress to its egress, while
including all other zone FIDs in an FID-list (FLIST) within
the packet as it traverses the zone. The switches located at
zone boundaries copy the appropriate FID from the FLIST
into the matching field that is used in the forwarding operation
of the next zone. With such a mechanism, any network size
can be accommodated in an extensible manner, while utilizing
the basic forwarding operation presented in this paper. In the
remainder of this paper, we will assume a single such zone,
for the sake of simplicity, and leave the details of such an
extensible solution for future work.

B. SDN switching

Ethernet switching has evolved in two areas of interest to
this work: wider, more complex, content addressable memory
(CAM); and the separation of data and control planes [10].

CAM evolution has meant that binary CAM, originally
used for exact matching as required for Ethernet destination
MAC switching, has been widened in length to incorporate
further fields in the headers. A typical implementation now
encompasses MAC source & destination, VLAN tag, MPLS
label, IP(v4 or v6) source & destination and TCP/UDP source
& destination ports. To enable wildcard matching, as required
by IP longest prefix match, or port ranges in access control
lists (ACLs), certain fields in the header use ternary CAM
(TCAM). It is important to note that the TCAM is one of the
most expensive parts of an ASIC switch implementation in
terms of silicon and power requirements.

Separation of control and data planes has allowed switching
decisions to be made according to operator requirements,
instead of restrictions derived from in-band control protocols.
One of the main enabling technologies for this, is the de-
velopment of a centralised controller that uses the OpenFlow
protocol [11] to control the TCAM entries in the switch and the
associated actions for packets that match the flow entries in the



TCAM. A good example of the optimisations that this permits
is shown in the L2switch implementation of the OpenDaylight
controller [15]. Instead of using spanning-tree to limit traffic
to a loop-free tree, L2switch finds shortest-paths and inserts
flow entries for Ethernet source/destination pairs in switches
along the paths. This allows the operator to, potentially, utilise
all links in the network. This L2switch implementation will
be used as one of the evaluation comparisons in this paper. It
should be noted that the L2switch requires that the first packet
in any new communication flow between a source/destination
pair is sent to the controller, which incurs a delay [10].

C. Implementing BF switching with SDN

To understand the method for directly implementing BF
switching in SDN, consider the use of the TCAM for match-
ing a field of value f that represents a range of values
using a mask m. For example, the IPv4 longest prefix
match f/m=192.168.8.0/21, where /21 represents a
mask m=255.255.248.0, would match all IP addresses
192.168.8.0 – 192.168.15.255. The TCAM imple-
ments a decision operation D on the appropriate packet header
h:

D(h, f,m) =

{
true, if f = h ∧m
false, otherwise (3)

This decision operation may be used as an action to forward
the packet, or for an ACL operation. A simple observation
of (2) and (3) shows that if the LID is used in the field and
mask entries, i.e. f = m = L(e) and h = Fp, then the
decision operation in the TCAM is identical to that required
for the BF match. From a conventional viewpoint this seems
unusual, as it might be expected that the wildcard mask
is a contiguous set of “1”s from the most significant bit
until the length of an IP prefix. However, it is important to
note that the matching operation in the TCAM actually uses
an arbitrary mask. There are two reasons for this: (a) it is
easier, in hardware, to perform an arbitrary mask operation
with a pre-calculated prefix mask than it is to count an
arbitrary number of bits from the left (this is the reason
that, traditionally, masks are expressed rather than simpler
CIDR prefix lengths); and, (b) ACLs are often expressed
in network configurations as address/port ranges (or lists of
addresses/ports) that do not naturally fit simple prefixes but
can be expressed efficiently in hardware as an arbitrary mask.
For an example of the latter: consider that two “deny” ACLs,
each matching addresses 10.1.1.0/24 and 11.1.1.0/24
respectively, can be implemented as the single TCAM entry
and arbitrary wildcard mask 10.1.1.1/254.255.255.0.
In many cases equipment vendors make this transparent to
users by automatically merging TCAM entries where it is
possible, however, increasingly vendors are making arbitrary
masks available in ACLs. It should be noted that although
OpenFlow (v1.2 and later) supports arbitrary masks, many
controllers have not yet implemented it. For future work, the
authors propose to engineer the arbitrary match and offer it to
the community through the OpenDaylight project [15].

Table I
EXAMPLE FIELDS SUPPORTING ARBITARY MASK FROM OPENFLOW V1.2

Field Bits
Ethernet destination 48
Ethernet source 48
VLAN ID 12
IPv6 source address 128
IPv6 destination address 128
IPv6 flow label 20
Total 384

Table II
FLOW ENTRIES IN THE iTH TABLE WHERE i = 1 . . . d

Priority Match Action
p Li/Li output port i, goto table i+ 1
p− 1 any goto table i+ 1

The observation that an arbitrary match allows the BF
switching is only one part of the solution, it is also important to
understand how this is supported in switches and controllers. It
should be observed that SDN switches use a variety of chipsets
and thus differ in support for particular features and version
of OpenFlow. Many switches utilise the Broadcom range of
ASICs and the authors of this paper have confirmed that the
arbitrary match is supported in these chipsets. Furthermore,
arbitrary match has been a required feature of OpenFlow from
v1.2. An example of a compatible set of fields that allow for
an arbitrary mask are shown in Table I illustrating that it is
possible to support a FID of up to 384 bits. Some switches
also support arbitrary match on transport layer ports offering
384+16+16=416 bits, however, this is not currently part of the
OpenFlow protocol.

In addition to the arbitrary match, the switch also has
to support sending a packet out of multiple ports to enable
multicast. Hence, triggering only the action associated with
the first match in a single table would not suffice, as the BF
multicast switching requires the LID of each outgoing port
to be tested and all the matching LIDs to have the action of
output to port. To enable this behaviour in SDN, one solution
is to make use of pipelining, configured using the multiple
table support feature provided by OpenFlow from v1.2. Thus,
for a d port switch with LIDs L1, . . . , Li, . . . , Ld there are two
flow entries in the ith flow-table as shown in II showing that
only 2d flow entries are required for implementing a stateless
SDN multicast solution.

However, although SDN switches (OpenFlow v1.2 or later)
support tables, they support a limited number of tables, possi-
bly only a single table. Where not enough tables are available
an alternative implementation is required. One option is to
construct flow entries in a single table of the form shown
in Table III, where every possible combination of outgoing
LIDs is created. However, this gives rise to flow entries
that grow exponentially in number with the node degree d;
specifically the number of flow entries ε(d) is

ε(d) =

d∑
i=1

(
d

i

)
= 2d − 1 (4)

For small node degrees, d, ε(d) may be acceptable. How-
ever, where d, and thus ε(d) is too large, a solution is to



Table III
FLOW ENTRIES IN THE CASE OF ONE FLOW TABLE

Priority Match Action
p L1/L1 output port 1

...
p+ d Ld/Ld output port d
p+ d+ 1 L1 ∨ L2/L1 ∨ L2 output ports 1,2

...
p+ 2d− 1 L1 ∨ Ld/L1 ∨ Ld output ports 1,d

...
p− 1 +

∑d

i=1

(
d
i

)
L1 ∨ . . . ∨ Ld/ output ports 1. . . d
L1 ∨ . . . ∨ Ld

divide the switch into a number of bridges each with a smaller
number of ports, together encompassing the node degree. The
bridges need to be organised such that they receive internal
routing of port inputs to each bridge. This has been found
to operate well in the switches tested by the authors. One
observation is that, although a switch may appear to support
tables, it may in fact implement the solution of Table II using
a mechanism like that shown in Table III through TCAM
manipulation in the switch software. Thus, this should be
checked and, if necessary, the division into multiple bridges
should be implemented. We say that a switch supports tables
natively if it does so using the method in Table II with at
least d tables. It is expected that, in time, most switches
will support tables natively and this implementation issue will
become historical.

D. Deploying the BF multicast solution

The above discussion can be summarised into a deployment
solution for the architecture shown in 1:

1) at network deployment, or topology change, LIDs are
associated with links [9]

2) through either the SDN controller, or switch manage-
ment software, insert flow entries according to Table II
(or according to Table III if tables are not supported,
with switches divided into bridges as required)

3) FIDs are disseminated to NAPs using an appropriate pro-
tocol either as required, or all in advance (POINT [14]
or MPSS [5] are two such mechanisms)

4) no state changes are required except to map multicast
traffic into the appropriate FIDs in the NAPs.

Two important outcomes of this mechanism are that: (a)
flows are inserted proactively so that there is no delay incurred
from the OpenFlow controller; and, (b) there are no state
changes in the core of the network. The only state require-
ments are that the NAPs associate incoming multicast (or
unicast flows) with an appropriate FID, but this amount of
state is no different to any other multicast implementation.

Although it has been shown that BF switching can be
implemented in contemporary SDN switches, the switches do
not support the BF FID as a normal field. An effective solution
is to overload existing protocol header fields without changing
their behaviour for existing use. As this is an intra-domain
solution, this overloading could be left as a deployment

decision, choosing fields from the list in Table I depending
on the length of BF required and existing protocols used in
the network. One possible implementation that would allow
full “ships-in-the-night” operation with existing protocols is
as follows: use the IPv6 flow, source and destination fields for
the FID to give a BF of length 276 bits, use the source MAC
address of the source NAP and make the destination MAC
address NULL to enable discrimination of the BF switching
from existing protocols. Alternatively solutions could opt for
using: use the VLAN ID to discriminate; or, the VLAN ID
to lengthen the BF FID; and/or the Ethernet MAC addresses
could be used for all or part of the FID.

III. ANALYSIS OF TCAM STATE REQUIREMENTS

In this section, we analytically compare the performance
in terms of TCAM state size of the proposed solution with
two alternative common networking switching paradigms:
L2switch, as described in Section II-B; and, MPLS. MPLS
implementations can use label merging to reduce the number
of required labels and this is typically used in a best-effort
network scenario that follows standard shortest-path routes
from routing protocols; this will be defined here as MPLS-
LM. An alternative MPLS solution, typically used for operator
transport networks, or where QoS requires unique labels
for each path, does not allow label merging; this will be
defined here as MPLS-NM. The analysis used in this paper
compares the unicast state, as this can be determined for all
the techniques. We consider only unicast as there is not a
native multicast solution for L2switch or MPLS, rather they
depend upon approaches that either: (a) use many unicast
paths to “stitch” together multicast trees with a large amount
of state; (b) send all traffic in unicast to a central node
for duplication into (hopefully) shorter unicast paths; or, (c)
follow a combined approach of (a) and (b) with multiple
replication points [4]. Thus, determining the multicast state
in the L2switch or MPLS case is not possible to define in
a straightforward manner, but is an operational decision with
a trade-off between routing efficiency and state; for example
saving state by transmitting some (or in worst case all) traffic
by unicast. This trade-off is thoroughly analysed by Martinez-
Yelmo et al. [2]. Hence, in this paper the unicast state will be
determined noting that, for multicast with g multicast groups:
in the worst case the amount of state could be an additive
increase of g more than the unicast state for L2switch and
MPLS, but at best (but with potentially no multicast traffic
savings) it would be the unicast state. In the case of the BF
implementation the multicast state is identical to the unicast
state, irrespective of g. Note that, the state in the NAPs
(mapping groups to trees) is not compared, as it is the same
for any implementation, and typically of order O(g).

The following will determine the expected number of
TCAM entries in a switch, E[T ], and a bound on the maximum
number of TCAM entries in a switch, max(T ). Recall that
the network is represented as a graph G(E, V ) which has
N = |V | nodes. The degree of a node v ∈ V is denoted
as dv , or for simplicity d, dropping the subscript v . For the



analysis it will be assumed that there is full connectivity in
the network between any two NAPs where in practice a NAP
will be co-located at any switching point. This is based on
the observation that while not every pair of nodes will have
user traffic between them, there is likely to be at least control
traffic between every node (e.g. external routing updates)
and that, in practice, operators rarely implement switching
except at a site where there is also a point-of-presence with
ingress/egress traffic. Thus, with the set of all unicast paths
CG = {cs,t | cs,t = 〈s, . . . , t〉; ∀s, t ∈ V ; s 6= t} the number
of paths is |CG| = N(N − 1).

Using the model defined above, the number of TCAM en-
tries for L2switch and MPLS-NM will be the same with either
a unique destination/source MAC per-path or unique MPLS
label per-path respectively. To avoid duplicating analysis, the
number of TCAM entries for both of these scenarios, TL, will
be combined. The maximum number of TCAM entries in this
case is highly topology dependent but we can upper bound it
as follows:

max(TL) ≤ N(N − 1) < N2 (5)

which corresponds to the worst case where one node carries
all the traffic; Section IV will show this bound is on average,
approximately double the true value in practice. The expected
value, E[TL], can be derived analytically from averaging
across the TCAM entries of each path across the total number
of nodes. Define the path length of cs,t as `(cs,t) = |cs,t| − 1.
As each path has a unique source and destination Ethernet
MAC address (or MPLS label) used to define a flow, then
there is one TCAM entry per-path through each node. Thus:

E[TL] =
∑

cs,t∈CG

`(cs,t)

N
(6)

The mean path length, E[`G] is defined as:

E[`G] =
∑

cs,t∈CG

`(cs,t)

|CG|
(7)

Rearranging (7) to determine
∑

cs,t∈CG
`(cs,t) =

E[`G]|CG| = E[`G]N(N − 1) and substituting into (6)
gives:

E[TL] = E[`G]N(N − 1)/N = E[`G](N − 1) (8)

In the case of MPLS-LM, the number of TCAM entries
TM is simply determined by the observation that, with label
merging, each node needs only one label going to every other
node, with upstream paths being merged into this label. Thus
there are the same number of labels in every node meaning
that max(TM ) = E[TM ] = N − 1, ∀v ∈ V .

For the proposed BF switching we note that the imple-
mentation varies depending upon whether tables are supported
and, if they are not, how many bridges the switch is divided
into. These implementations are denoted as B(b) where b is
the number of bridges on a switch with d ports, giving a
range: from B(1) to B(d). We define B(1) as one bridge
with no multiple table support; while we define B(d) as
either one bridge per-port, or a switch supporting multiple
tables natively. For BF switching, using an implementation

as proposed in Section II-D, switches generally require two
TCAM entries per-flow, compared to a single TCAM entry
per-flow for L2switch or MPLS, due to the wider matching
field; consequently the analysis will include an additional
factor of two for each flow entry. To take into account
spreading the ports, as equally as possible, over x bridges
the analysis of (4) gives the number of TCAM entries for BF
switching, TB(x), in a node of degree d as:

TB(x) =2(mod(d, x))(2dd/xe − 1)

+ 2(x− mod(d, x))(2bd/xc − 1)

=(x+ mod(d, x))2bd/xc+1 − 2x (9)
where mod (d, x) is d expressed as modulus x. For most
physical (router level) topologies (including those used in the
results later) it has been shown that d typically obeys a discrete
Weibull distribution with shape parameter of 0.42 [16]. Unfor-
tunately, in this case, the analytical solution of the expected
value E[TB(x)], in the general case, does not converge, as
the probability density function of d is an exponent raised
to power d and the Weibull distribution exponent is of power
−dk; thus E[TB(x)] would only converge if k > 1. This value
of k is much higher than observed in real networks. The
maximum value in the BF case, max(TB(x)), is determined
by the maximum node degree in the network max(dv):

max(TB(x)) ≤ (x+ mod(max(d), x))2bmax(d)/xc+1 − 2x
(10)

Notably, in the case that B(d), i.e. one port per-bridge, or
OpenFlow tables natively implemented, then: as TB(d) = 2d it
follows that E[TB(d)] = 2E[d] and max(TB(d)) = 2 max(d).

IV. TCAM STATE REQUIRED IN REALISTIC NETWORKS

The TCAM state required in a range of networks was mod-
elled using the assumption of full connectivity and counting
the required TCAM entries for the assigned paths. The mod-
elling was carried out using both synthetic network topologies
and real topologies published by the Internet Topology Zoo
(ITZ) [17]. The synthetic network topologies were created
with a node degree following a Weibull distribution with
shape parameter 0.42, according to a survey of ISP router
level topologies [16]. The node degree of the ITZ was found
to fit a Weibull distribution with shape parameter 0.44 (us-
ing non-linear least squares with exponential weights) and
thus, statistically speaking, the synthetic networks resemble
the ITZ networks. As with the analysis in Section III, the
TCAM counts are for unicast paths. For BF switching the
values are the same as the unicast values, irrespective of the
number of multicast groups. For the others, the state could
additively increase in each switch by up to g, the number
of multicast groups. The synthetic networks are implemented
with N = 20, 40, . . . , 200 and with 10 repeats. For clarity in
the plots, the results for the 225 ITZ networks are aggregated
to the nearest multiple of ten. The exception to this is the
single, largest, “Kdl” network, with N = 754, which is shown
separately at the end.

The mean TCAM entries are shown in Fig. 2, showing the
values for both synthetic and ITZ topologies. The initial sets
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Figure 2. Mean TCAM entries using synthetic and ITZ networks. For each
of MPLS-LM and BF B(d) only one line is shown as the difference between
synthetic and ITZ is not visible.

of results show the BF implementation using either OpenFlow
tables or with one bridge-per-port (B(d)). The results for the
MPLS-LM and BF switching are so close for the both ITZ and
synthetic results that only one line is plotted. It is notable that
the L2switch (also MPLS-NM) results are significantly higher
than both the MPLS-LM and BF switching. Mean values for
BF are too small to see on the plot, they vary between 3.6 and
5.5 TCAM entries. The L2switch values in the ITZ network
are generally much higher than for the synthetic networks as
the mean path length is generally larger in the ITZ networks.
This demonstrates that node degree itself is not enough to
model realistic networks. However, the synthetic results show
that the trend is proportional to node degree as predicted in
Section III. For the remainder of the results only the ITZ
results are shown.

The distribution of the TCAM entries is heavily skewed
with some values considerably higher than the mean, as
shown in Fig. 3 for the L2switch and BF results; This
demonstrates that in some cases, the L2switch (MPLS-NM)
results are very large in some switches. Generally the results
for L2switch show that prediction of the highest TCAM entries
max(TL) from (5) was conservative with the average value
E[max(TL)] = 0.54N(N − 1), but in one case it was as
high as 0.92N(N − 1). Fig. 4 shows the comparison between
the BF and MPLS-LM scenarios showing that, in general,
the TCAM requirements for BF are considerably smaller with
only a few switches requiring more TCAM entries. This figure
shows that there is one outlier in the BF case, corresponding
to the “Ulaknet” network with N = 82, which has one node
requiring significantly more TCAM entries than any other. It
is useful to consider this case as it demonstrates the influence
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Figure 3. Comparing the number of TCAM entries for BF B(d) and L2switch
in ITZ networks
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Figure 4. Comparing the number of TCAM entries for BF B(d) and MPLS-
LM in ITZ networks

of node degree on the number of TCAM entries for BF
switching. The outlying node has a degree of d = 58, this
is highly unusual in a physical level topology, although not in
a logical topology such as BGP peering, which is not relevant
here. In this case BF values are max(TB(d)) = 116 when
the switch supports tables (or is divided into d bridges) and
max(TB(8)) = 2544 when the switch is divided into 8 bridges;
this can be compared to the L2switch/MPLS-NM value of
max(TL = 6133). This is an example where it is necessary,
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Figure 5. Empirical cdf of TCAM entries for the ITZ Network “Kdl”.

in the BF case, to use a switch that either has native support
for OpenFlow tables, or that can be subdivided into a suitable
number of bridges. In the case where neither of these would be
possible there would be of the order 258 entries required, not
remotely feasible. In this set of results, although MPLS-LM
has a larger number TCAM entries than BF, for the majority
of cases, it does at least have the advantage of consistent and
predictable numbers as it is simply equal to the number of
nodes in the network.

The cumulative distribution function (cdf) for the largest
ITZ network, “Kdl” is shown in Fig. 5, which demonstrates
that a large number of nodes need a very large number of
TCAM entries for the L2switch/MPLS-NM cases. However,
the BF switching needs very few entries; indeed even without
table support, or splitting any of the switches into bridges,
the largest number of TCAM entries is 254 for one node and
with 95% of the nodes needing 30 or less. With table support
the maximum for BF switching is 14 entries and 90% of the
nodes using 6 or less TCAM entries. This leaves plenty of
TCAM entries for other existing protocols, or paves the way
for switches with much reduced TCAM requirements and thus
increased power savings.

V. CONCLUSION AND FUTURE WORK

A stateless multicast solution for SDN has been presented.
The proposal builds on previous efforts to use Bloom Filters
for multicast switching but shows, for the first time, that it
can be deployed in contemporary SDN switches without any
changes. The state in the TCAM of the switches in realistic
network topologies are analysed showing that this multicast
mechanism has significantly less state than unicast switching
of the most common alternatives such as layer-2 switching
or MPLS. Furthermore, the mechanism only requires SDN

flow entries to be inserted proactively, significantly solving the
scalability and delay considerations of solutions that require
reactive insertion from the centralised SDN controller.

While the proposed solution has been shown to work with
existing SDN switches, there are two areas where the work
should be extended. The first is to extend suitable SDN
controllers to support the arbitrary match that the OpenFlow
protocol requires and the authors intend to do this through the
OpenDaylight project. A second extension of the mechanism
is the resolution of the scalability problem caused by the false
positives inherent to Bloom Filters. One suggested proposal
is to divide the network into zones of suitable sizes so that a
larger network can be implemented using a subset of smaller
zones that have no false positives. Future work will model this
solution to demonstrate that this stateless multicast solution for
SDN can scale to any network size.
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