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Abstract—Compressed sensing (CS) is a signal acquisition
paradigm that utilises the finding that a small number of linear
projections of a sparse signal have enough information for
stable recovery. This paper develops a Bayesian CS algorithm
to simultaneously recover multiple signals that follow the Type-
3 joint sparse model [1], [2], where signals share a non-
sparse common component and have distinct sparse innovation
components. By employing the expectation-maximization (EM)
algorithm, the proposed algorithm iteratively updates the esti-
mates of the common component and innovation components.
In particular, we find that the update rule for the non-sparse
common component in the proposed algorithm, differs from
all the other methods in the literature, and we provides an
interpretation that gives a valuable insight into why the proposed
algorithm is successful in estimating the non-sparse common
component. The superior performance of the proposed algorithm
is demonstrated by numerical simulation results.

Index Terms—compressive sensing (CS), distributed compres-
sive sensing (DCS), Bayesian learning, signal reconstruction.

I. INTRUDUCTION

C
OMPRESSED sensing (CS) [3], [4] enables one to

reconstruct compressible signals from a reduced number

of samples, and thus has been proposed for applications

where data acquisition is costly. Typical applications that could

benefit from CS include but are not limited to spectrum sensing

for cognitive radio systems [5], sparse channel estimation [6],

image acquisition by a mobile phone camera sensor [7] and

wireless sensor networks [8].

CS exploits the sparse structure of naturally occurring

signals under some basis, in order to reduce the degree of

freedom in recovering the original signal from a reduced

number of random linear measurements. The key problem in

CS reconstruction is the search for the sparsest solution for

a linear underdetermined system, which is unfortunately NP-

hard. Iterative reweighted schemes [9], [10] have demonstrated

success for finding sparse solutions, where in particular sparse

Bayesian learning (SBL), i.e., an iterative reweighted scheme

with non-separable penalties, has been shown to outperform

many of the other schemes in terms of the recovery accura-

cy [11], [12].
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The conventional CS framework mainly focuses on the case

of a single signal, while for a sensor network with multiple

nodes as an example, in addition to the sparse structure

embedded in each sensor’s signal, it is desired to exploit the

inter-signal correlation to further improve the reconstruction

performance. To get benefits from the inter-node correlation,

the CS framework has been extended to joint signal recon-

struction for multiple nodes. In [1], [2], the Type-3 joint

sparse model (JSM-3), i.e., one of the available distributed

compressive sensing (DCS) models, is proposed to model

the intra-signal and inter-signal correlations with a non-sparse

common component and a sparse innovation component. This

JSM-3 model occurs for example in a verification system

in a component production factory, where cameras acquire

snapshots of each component to check for manufacturing

defects with a common background that is not sparse in any

basis.

In this paper, we focus on the development of a decen-

tralized SBL algorithm for the JSM-3 [1], [2], where the

innovation components, which reflect the intra-node correla-

tions of different nodes, are sensitive data and are not shared,

while the common component, which reflects the inter-node

correlation, is jointly reconstructed. By applying variational

approximation, the common component is decoupled from

the innovation components in the SBL framework. Such an

operation leads to iterative reconstruction of the common

component and the innovation components. In the sequel,

we cast the decoupled reconstruction problem as a set of

decentralized problems with consensus constraints, where each

node exchanges limited non-sensitive information with its

neighbors and recovers its own innovation component by using

its local data. Experimental results show that the proposed

decentralized algorithm achieves a reconstruction accuracy

close to the centralized SBL algorithm, and exhibits a good

convergence rate.

The rest of the paper is organized as follows: Section II

describes the background of CS and the JSM-3. In Section

III, we provide details of the proposed Bayesian learning al-

gorithm for JSM-3. Numerical results are presented in Section

IV, followed by conclusions in Section V.

The following notation is used throughout. Boldface upper-

case letters and boldface lower-case letters denotes matrices

and column vectors, respectively. Calligraphic upper-case let-

ters denote support sets. The superscripts (·)T , (·)−1 and (·)†



denote the transpose, the inverse and the pseudoinverse of a

matrix, respectively. Ex(·) denotes expectation with respect

to p(x), i.e., the distribution of x. N (x;µ,Σ) denotes the

multivariate normal distribution with mean vector µ and

covariance matrix Σ. In denotes the n × n identity matrix.

The ℓ0 norm, ℓ1 norm and the ℓ2 norm of vectors, are denoted

by ‖ · ‖0, ‖ · ‖1 and ‖ · ‖2, respectively. The Frobenius norm

of a matrix X is denoted by ‖X‖F .

II. BACKGROUND

A. Compressive Sensing Model and Reconstruction

Given a signal f ∈ R
n, we consider a measurement system

that acquires m (m ≤ n) linear measurements by projecting

the signal with a sensing matrix Φ ∈ R
m×n. This sensing

system can be presented as y = Φf , where y ∈ R
m denotes

the measurement vector. The standard CS framework assumes

that the sensing matrices are randomized and non-adaptive,

which means each measurement is derived independently to

previously acquired measurements.

As the signal f can be represented by an s-sparse vector x ∈
R

n in some basis Ψ ∈ R
n×n, i.e., f = Ψx, the sensing system

can be rewritten as y = ΦΨx = Ax, where A = ΦΨ denotes

an equivalent sensing matrix. More generally, measurements

are considered to be contaminated by some noise term n ∈ R
m

owing to the sampling noise or the quantization process. Then

the CS model can be described as

y = Ax+ e. (1)

In generally, it is not possible to solve (1) even if the

noise term is equal to zero, as there are an infinite number of

solutions satisfying (1). However, a suitable sparsity constraint

may rule out all the solutions except for the one that is

expected. Therefore, the most natural strategy to recover the

sparse representation from the measurements uses ℓ0 norm

minimization, which is, however, a combinatorial optimization

problem and thus computationally intractable.

Consequently, as a convex relaxation of ℓ0 norm minimiza-

tion, ℓ1 norm minimization is used instead to solve the sparse

signal representation, which leads to a linear program (LP)

and thus straight forward to solve. Therefore, the optimization

problem becomes

min
x

‖x‖1

s.t. ‖Ax− y‖22 ≤ ǫ,
(2)

where ǫ is an estimate of the noise level. This program is also

known as the basis pursuit de-noising (BPDN), and it has been

demonstrated that only m = O(s log n
s
) measurements [13]

are required for robust reconstruction of the original signal.

The ℓ1 norm is a convex relaxation of the ℓ0 norm, so

that a globally optimal solution can be obtained. However,

this convex optimization problem is known to be too loose to

approximate the original ℓ0 norm problem and thus it requires

sufficiently strict conditions on A. In addition, convergence

to a global minimum with a cost function value smaller than

the value of the most sparse one can occur in this convex

optimization problem. To break this limitation, optimization

problems with a non-convex regularizer have been used in-

stead, e.g., the ℓp norm minimization (p < 1) [14], and

Bayesian algorithms [15].

B. The Type-3 Joint Sparse Model

This standard CS framework only exploits the sparse charac-

teristics of the signal to reduce the dimensionality required for

sensing the signal. A recent growing trend relates to the use of

joint sparse signal models to further enhance the performance

of CS. For a group of K signals, which are acquired via CS

measurements with some additive noise, we have

yk = Akxk + ek, (3)

where yk ∈ R
mk , Ak ∈ R

mk×n, xk ∈ R
n and ek ∈ R

mk

denote the measurement vector, the equivalent sensing matrix,

the signal representation, and noise of node k, respectively.

The JSM-3 [1], [2] models the inter-signal correlation by

letting

xk = zc + zk, (4)

where zc ∈ R
n denotes the common component which is

the same for all nodes and is non-sparse, and zk ∈ R
n

denotes the innovation component of node k and ‖zk‖0 ≤ s.

This model is suitable for applications where multiple signals

share a common background which is too complicated to be

represented by only a few atoms in any basis.

Under the JSM-3, no individual signal representation xk

is sparse, and thus recovery of each signal separately will fail

when mk < n. To achieve signal recovery using far fewer than

n measurements per signal, joint reconstruction is necessary.

In [1], an approach, namely transpose estimation of common

component (TECC), is proposed to recover signals following

the JSM-3 model, and is listed below:

1) Estimate common component ẑc given yk and Ak (k =
1, . . . ,K);

2) Estimate measurements generated by innovation compo-

nents by ŷk = yk −Akẑc for all k;

3) Recover each innovation component ẑk from ŷk by a

standard single-signal CS recovery algorithm;

4) Obtain each signal estimate x̂k = ẑc + ẑk.

In TECC, the common component zc is firstly estimated from

the measurements of all signals without considering the effect

of innovation components, and then the innovation compo-

nents are estimated by standard CS recovery after removing

the impact of the common component. It has been proved

in [1] that the number of measurements of an individual

signal can be significantly decreased for successful recovery

by the TECC, as long as the total number of measurements

is sufficiently large to capture enough information about the

non-sparse common component.

In TECC, the estimated common component may not be

sufficiently accurate to enable correct reconstruction of the

sparse innovation components, which leads to incorrect esti-

mate of signals. To remedy the drawback of TECC, another



approach, called alternating common and innovation estima-

tion (ACIE), is proposed in [1], where the common component

and innovation components are estimated iteratively. Suppose

the support of the kth estimated innovation component is Jk,

and define Ak,Jk
as a submatrix of Ak corresponding to Jk.

A matrix Qk with orthonormal columns can be found that

spans the orthogonal complement of Ak,Jk
. Then the ACIE

algorithm can be described as follows:

1) Set Jk = ∅ for each k;

2) Estimate common component ẑc = Ã†ỹ, where Ã =
[ÃT

1 . . . ÃT
K ]T , Ãk = QT

kAk, ỹ = [ỹT
1 . . . ỹT

K ]T and

ỹk = QT
k yk;

3) Recover each innovation component ẑk from yk−Akẑc
using a standard single-signal CS recovery algorithm,

and find the support Jk;

4) Iterate step 2 and 3 until some halting criterion is satis-

fied and then obtain each signal estimate x̂k = ẑc + ẑk.

The construction of Ã and ỹ in the step 2 allows one to project

the measurements into the subspace that is orthogonal to the

innovation component subspace, so that the estimated common

component is obtained exclusively by vectors not in Jk.

III. BAYESIAN LEARNING FOR JSM-3

In this section, we present Bayesian algorithms for solving

the JSM-3 reconstruction problem. We adopt Gaussian prior

distributions for the signal representation xk, that is given as

p(xk;µ,Γk) = N (zk;µ,Γk), (5)

where µ ∈ R
n and Γk ∈ R

n×n is a diagonal matrix with

hyperparameters γk,i (k = 1, . . . ,K; i = 1, . . . , n). Assuming

elements of the measurement noise vector ek are drawn

from independent and identically distributed (i.i.d.) zero-mean

Gaussian distributions with variance σ2, we can write the

likelihood function as

p(yk|xk;σ
2) = N (yk;Akxk, σ

2Imk
). (6)

With uniform hyperpriors p(γk,i), p(µi) and p(σ2), the

value of these hyperparameters can be inferred by

max
µ,{Γk},σ2

log p(µ, {Γk}, σ
2|{yk})

∝ max
µ,{Γk},σ2

log p({yk};µ, {Γk}, σ
2)

= max
µ,{Γk},σ2

K
∑

k=1

log

∫

p(yk|xk;σ
2)p(xk;µ,Γk)dxk

∝ min
µ,{Γk},σ2

K
∑

k=1

log |Σk|+
K
∑

k=1

(yk −Akµ)
TΣ−1

k (yk −Akµ),

(7)

where Σk = σ2Imk
+AkΓkA

T
k . Given these hyperparameters,

xk can be inferred by maximizing the posterior distribution

xk = argmax
xk

p(xk|yk;µ,Γk, σ
2)

= argmax
xk

p(yk|xk;σ
2)p(xk;µ,Γk)

= (σ−2AT
kAk + Γ−1

k )−1(σ−2AT
k yk + Γ−1

k µ)

= ΓkA
T
kΣ

−1
k (yk −Akµ) + µ.

(8)

Therefore, the learning problem amounts to the estimation of

µ, {Γk} and σ2 in (7).

A. Algorithm Derivation

For fixed hyperparameters, the posterior density of each

signal representation follows a Gaussian distribution, i.e.,

p(xk|yk;µ,Γk, σ
2) = N (xk;µk,Σ

x
k), (9)

where

µk = ΓkA
T
kΣ

−1
k (yk −Akµ) + µ, (10)

and

Σx
k = (σ−2AT

kAk+Γ−1
k )−1 = Γk−ΓkA

T
k Σ

−1
k AkΓk. (11)

The second equality in (11) is derived by using the Woodbury

matrix indentity. While the inversion of an n × n matrix

requires O(n2 logn) operations [16], this matrix transform

reduces the computational complexity as it only requires the

inversion of an mk ×mk matrix Σk where mk ≪ n.

We employ the expectation-maximization (EM) algorithm to

find the maximum likelihood estimate (MLE) of the unknown

hyperparameters in (7), where all the signal representations

{xk} are treated as hidden variables. In the E step we compute

the posterior of the hidden variables, i.e., p(xk|yk;µ,Γk, σ
2),

and find the hyperparameters that maximize the expected value

of the log likelihood function
∑K

k=1
log p(yk,xk;µ,Γk, σ

2)
with respect to the conditional distribution of {xk} given {yk}
in the M step. The update rules are given as follows:

E step: Exk|yk;µ,Γk,σ2 [xk] = µk, (12a)

Exk|yk;µ,Γk,σ2

[

(xki − µi)
2
]

,= Σx
ki,i + µ2

i (12b)



M step: γk
new
i = argmax

γki

Exk|yk;µ,Γk,σ2 [log p(xk;µ,Γk)]

= Exk|yk;µ,Γk,σ2

[

(xki − µi)
2
]

(13a)

µ
new = argmax

µ

Exk|yk;µ,Γk,σ2

[ K
∑

k=1

log p(xk;µ,Γk)

]

=

K
∑

k=1

(

In +
∑

k′ 6=k

ΓkΓ
−1
k′

)−1

Exk|yk;µ,Γk,σ2 [xk]

=

K
∑

k=1

(

In +
∑

k′ 6=k

ΓkΓ
−1
k′

)−1

µk (13b)

(σ2)new = argmax
σ2

Exk|yk;µ,Γk,σ2

[

K
∑

k=1

log p(yk|xk;σ
2)

]

=

∑K

k=1
‖yk −Akµk‖

2
2 + σ2

∑N

i=1

(

1− γk
−1
i Σx

ki,i

)

KN
(13c)

The E step and the M step are iteratively applied until

convergence is achieved. Then the estimated reconstructed

signal representations are computed by (8).

B. Analysis

According to the property of the EM algorithm, the

proposed algorithm is guaranteed to converge to either

a local maxima or a saddle point of the log-likelihood

log p({yk};µ, {Γk}, σ2). By comparing the update rule of the

proposed algorithm and that of the SBL [15], we note that in

the proposed algorithm there is an additional update for the

common component µ in (13b), which enables the proposed

algorithm to find the sparse innovation components of dif-

ferent signals while also estimating the non-sparse common

component.

Given the estimated innovation component zk, the common

component can be estimated using various standard tools from

linear algebra, e.g., performing least squares (LS) estimation

or by the ones used in TECC and ACIE [1]. The update rule

of the common component in (13b) which is different to these

standard approaches, is simply the weighted sum of the esti-

mate of all signals. Interestingly, upon convergence, we find

that the proposed algorithm finds an accurate estimate of the

common component and also good reconstruction accuracy of

the original signal. We now provide some intuition behind the

estimation step (13b) by investigating the value of the weight

corresponding to signal k, i.e., wk =
(

In+
∑

k′ 6=k ΓkΓ
−1
k′

)−1
.

• Case I: If γki → 0, we have wki > 0.

• Case II: If γki > 0 and γk′ i > 0 ∀k′, we have wki > 0.

• Case III: If γki > 0 and there is some other k′ such that

γk′ i → 0, we have wki → 0.

For both case I and II, we have wki > 0, which means the

estimate of the ith element of signal k has a non-zero weight

and will contribute to the estimate of the common component

in (13b). However, the reasons which lead to the same result

in the two cases are significantly different. In case I, it can be

inferred from γki → 0 that the ith element of the innovation

component k is likely to be zero, and thus the estimate of the

ith element of signal k is actually the estimate of the common

component. For case II where γki > 0 and γk′ i > 0 ∀k′, the

ith elements of all the estimated innovation components are

likely to be non-zeros and they are all used in calculating the

common component in (13b). In contrast to case I and II, in

case III we have wki → 0. In this scenario, γki > 0 infers

that the ith element of the estimated innovation component

k is non-zero, and γk′ i → 0 infers a zero-valued element of

some innovation component k′. Thus the ith element of the

estimated innovation component k will not contribute to the

calculation of the common component in (13b).

The update rule of the common component in (13b) is

significantly different to other JSM-3 recovery approaches

proposed in the literature [1]. In view of the fact that, upon

convergence, the hyperparameter γki =
1
K

∑K

k=1
(xki − zci)

2

according to (13a), a generalized strategy for JSM-3 can be

derived, which is given as follows:

1) Initialize ẑc = 0 or use the result of any JSM-3

algorithm as a warm start;

2) Estimate innovation components: compute the estimate

ẑk from yk −Akẑc by some CS recovery algorithm;

3) Estimate common component: update the estimate1

ẑci =
∑K

k=1

(

1 +
∑

k′ 6=k ẑk
2
i /ẑk′

2
i

)−1
(ẑki + ẑci);

4) Iterate Step 2 and 3 until convergence and compute the

estimate of each signal xk = ẑk + ẑc.

This general recovery strategy for JSM-3 can exploit any CS

technique to estimate the innovation components, and has the

advantage of a low computational complexity in calculating

the common component. Note that to update the common

component, the ACIE algorithm [1] requires computation of

the pseudoinverse of a matrix that is the concatenation of all

equivalent sensing matrix Ak (k = 1, . . . ,K).

IV. NUMERICAL SIMULATIONS

This section presents the numerical results of solving the

JSM-3 reconstruction problem by using the proposed ap-

proach. For comparison, we also present the performance of

the TECC and the ACIE proposed in [1].

A. Simulation Settings

Our numerical simulations consider K signals that follow

the JSM-3. Without loss of generality, we let all signals have

the same number of measurements, i.e., m = mk (k =
1, . . . ,K), and the innovation components of different nodes

have the same sparsity level, i.e., s = ‖zk‖0 (k = 1, . . . ,K).

The innovation component supports are selected randomly, and

the non-sparse common component and the non-zero elements

in the innovation components are drawn from independent and

identically distributed (i.i.d.) Gaussian distributions N (0, 1).
The equivalent sensing matrix of each node is independently

and randomly generated with i.i.d. Gaussian entries following

1To clarify the calculation of division by zero, we define a

0
= +∞ if

a > 0 and a

0
= 0 if a = 0.



1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Sparsity of innovation component

A
v

e
ra

g
e

 r
e

la
ti

v
e

 e
rr

o
r

 

 

Proposed

ACIE

TECC

Fig. 1. Reconstruction accuracy vs. sparsity of innovation component. (K =

10, n = 50, m = 30 and SNR of 20dB).
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Fig. 2. Reconstruction accuracy vs. number of signals. (s = 5, n = 50,
m = 30 and SNR of 20dB).

N (0, 1), followed by a column normalization. The received

measurements are corrupted by additive zero-mean Gaussian

noise to yield a signal noise ratio (SNR), i.e.,
‖Akxk‖

2

2

‖ek‖2

2

. In

order to make a fair comparison, we use the SBL algorithm in

the TECC and the ACIE to update the innovation components.

In the comparison, the reconstruction quality is measured by

averaged relative error, which is defined as
∑

t

∑
K

k=1
‖xt

k
−x̂t

k
‖2

2∑
t

∑
K

k=1
‖xt

k
‖2

2

,

where for trial t, xt
k and x̂t

k denote the kth original signal and

the corresponding reconstructed one, respectively. We conduct

100 trials for each experiment setting and provide the averaged

result.

B. Recovery Performance

The reconstruction accuracy for different approaches is

given in Fig. 1, 2, 3 and 4, where we have compared the

averaged relative error against various factors including the

sparsity of innovation component, the number of signals, SNR
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Fig. 3. Reconstruction accuracy vs. SNR. (K = 10, s = 5, n = 50 and
m = 30).
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Fig. 4. Reconstruction accuracy vs. number of measurements per signal.
(K = 10, s = 5, n = 50 and SNR of 20dB).

and the number of measurements per signal. Our numerical

simulation results confirm that the proposed Bayesian CS

algorithm for JSM-3 has a good performance in comparison

to both the TECC and the ACIE.

Both the proposed algorithm and the ACIE alternately and

iteratively update the common component and innovation

components, while the TECC doesn’t update the estimate of

the common component based on the innovation components.

Although the TECC has a low computational complexity as it

only computes the common component and each innovation

component once, it fails to provide an accurate reconstruction

result. It can be seen in Fig. 4 that the performance of

the ACIE is similar to that of the proposed algorithm when

a large number of measurements per signal is available. It

should be noted that the ACIE requires the support of each

innovation component to be determined in each iteration,

which is selected according to the s largest elements in our



experiments. However, knowledge concerning the sparsity of

innovation component is difficult to obtain in practice, and

an inappropriate criterion for selecting the the support of

innovation component will impair the reconstruction accuracy

of the ACIE. However, the proposed algorithm does not need

such empirical knowledge to remove the impact of innovation

components, and the computational complexity in calculating

the common component is also lower than the ACIE which

involves the pseudoinverse of a matrix.

V. CONCLUSION

In this paper, we provide a Bayesian CS algorithm for

jointly recovering multiple signals that follow the JSM-3. Such

a joint sparse model occurs in applications where multiple

signals have different sparse objects but a common background

that is not sparse in any existing basis. We demonstrate the

good performance of the proposed algorithm by numerical

simulation results. In addition, the update rule for the common

component, which is derived from the EM algorithm, is quite

different to the other techniques used in existing reconstruction

approaches for solving the JSM-3 recovery problem, and is the

key to understanding the properties of the proposed algorithm.
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