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Abstract—We have developed reduced reference parametric
models for estimating perceived quality in audiovisual multi-
media services. We have created 144 unique configurations for
audiovisual content including various application and network
parameters such as bitrates and distortions in terms of band-
width, packet loss rate and jitter. To generate the data needed
for model training and validation we have tasked 24 subjects, in
a controlled environment, to rate the overall audiovisual quality
on the absolute category rating (ACR) S5-level quality scale.
We have developed models using Random Forest and Neural
Network based machine learning methods in order to estimate
Mean Opinion Scores (MOS) values. We have used information
retrieved from the packet headers and side information provided
as network parameters for model training. Random Forest based
models have performed better in terms of Root Mean Square
Error (RMSE) and Pearson correlation coefficient. The side
information proved to be very effective in developing the model.
We have found that, while the model performance might be
improved by replacing the side information with more accurate
bit stream level measurements, they are performing well in
estimating perceived quality in audiovisual multimedia services.

I. INTRODUCTION

One way of improving multimedia streaming or real-time
multimedia communications is tuning the control parameters
to improve Quality of Service (QoS) factors such as maxi-
mizing system throughput, reducing response time, decreasing
packet loss ratio and jitter value. This kind of approach
implicitly aims to improve the overall perceived service qual-
ity. However in recent years there has been a shift towards
maximizing the perceived quality itself by tuning the media
and channel control parameters.

The standard way of measuring perceived quality is by
conducting subjective tests where the end user is asked to rate
the system as a whole or rate individual system components
on a continuous or discrete scale. However defining service
quality by conducting subjective tests is resource intensive
and not feasible in real-time communications. This raises the
question if we can measure or estimate perceived quality
automatically with acceptable resource requirements and high
accuracy. To answer this question, we need a reference point,
in the form of databases of audiovisual material at several
quality levels to enable us to develop models for accurate
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quality estimation. However audiovisual testing is a topic still
relatively under-explored and the number of existing databases
of various configurations is very limited. In this research,
we present a database of audiovisual material with subjective
scores for a wide range of audiovisual quality parameters as
one of our contributions.

We have taken a parametric model approach by using the
additional side information available that makes it possible
to develop a model meeting the real-time requirements. We
attempt to estimate the audiovisual quality directly from the
influence factors by creating the model with machine learning
algorithms that have been successfully applied to estimating
the perceived quality. We have mainly used the Random
Forests ensemble methods during model training. However
we have provided the comparative results with Multi-layer
Perceptron (MLP) methods that have been widely used in
image assessment, video assessment, and video and voice
quality estimation.

The rest of this paper is organized as follows. In section
2, we present standards frequently used while conducting a
research similar to ours. In the same section, we briefly explain
various perceived quality modelling approaches, statistical
metrics used for evaluating the model performances, and best
practices used in machine learning when measuring the test
accuracy over a relative small set of data. We list existing
audiovisual quality databases and the models generated in the
section 3. In section 4 we explain the audiovisual database we
have generated in details. In section 5 we introduce parametric
models that we have developed and share the results obtained
for Random Forests and Neural network methods. We sum up
the work and share the future work in the conclusion section.

II. BACKGROUND

In this section we briefly discuss the standard practices for
audiovisual quality tests, different approaches for developing
audiovisual quality models, statistical metrics used for eval-
uating the model performances, and some machine learning
best practices often used when validating models over a small
data set.



The International Telecommunication Union (ITU) has var-
ious recommendations on how audio, speech, video, and
audiovisual quality tests should be conducted. Commonly used
recommendations for audiovisual quality tests are P.911 [L]
and P.920 [2]. These recommendations describe the different
test methods, provide guidance on the test material to be used,
describe test environment, and specify number of subjects and
possible subject screening [3].

As per methodology, single-stimulus methods such as the
Absolute Category Rating (ACR) are used commonly for
collecting subjective quality judgements since they reflect
the everyday usage situations of multimedia services better
compared to other available methods such as Degradation Cat-
egory Rating (DCR), BS.1116, Multiple Stimuli with Hidden
Reference and Anchor (MUSHRA), or Subjective Assessment
Methodology for Video Quality (SAMVIQ). The ACR method
enables efficient realistic rating of several files in a session
with repeatability. Two widely used ACR scales are 11-point
and 5-point scales. Categorical 5-point scale is widely used in
telecommunication field where the labels “excellent”, “good”,
“fair”, “poor”, and “bad” translated to the values 5, 4, 3, 2,
and 1 when calculating the MOS [4].

Audiovisual quality depends on the audio quality, the video
quality, their interaction, and audiovisual impairments. The
simplest solution for estimating audiovisual quality is to use a
function of audio and video quality estimates and compute
the audiovisual quality score regardless of what type of
degradation affects the audio and video scores. More detailed
predictions can be achieved by using intermediate audio and
video features that underlie the overall audio and video scores,
and map these to an audiovisual quality score. The increased
accuracy, however, comes with an increased complexity of the
model [3].

There are different approaches in developing the audiovisual
quality models. Raake et al [3] categorized the models in
terms of the level at which input information is extracted.
These quality models exploit the packet header-, bit stream-, or
signal-information for providing audio, video, and audiovisual
quality estimates.

Signal-based and bit stream models rely on partially or fully
decoded received payload. These methods perform well in
terms of accuracy but require high processing demands and
fall short when the media stream is encrypted [3]].

Parametric audio, video, and audiovisual quality models are
developed and standardized in ITU-T Study Group 12 under
the provisional name P.NAMS. Garcia and Raake [6] [4],
demonstrated that parametric models can be tuned to specific
use case very accurately with thorough understanding of the
content delivery protocols and selecting the appropriate side
information [5]].

Additionally, the quality models can be classified according
to the amount of information they need from the original
signal. In no reference (NR) models, no information from the
original signal is used while full reference (FR) models have
access to the original source sequence, which is compared
with the processed sequence. Reduced reference (RR) models

use the processed sequence together with a set of parameters
extracted from the source sequence.

The performance of a quality model is evaluated using
statistical metrics. Traditionally, three statistical metrics are
used to report the model performance’s accuracy, consistency
and linearity/monotonicity [4].

An accurate model aims to predict the subjective quality
scores with the lowest error in terms of Root Mean Square
Error (RMSE), which depends on the rating scale, used
during the subjective tests. ITU-T Recommendation P.863 [7]]
recommends to convert this value to the so-called epsilon-
modified Root-Mean-Square-Error (RMSE) to compare the
results across different scales [4].

The perceived quality predictions have to have consistently
low error margin over the range of test subjects and agree
with the relative magnitude of subjective quality ratings. The
model’s consistency is reported by computing either the outlier
ratio or the residual error distribution. The outliers are defined
as the points for which the prediction error exceeds the 95%
confidence interval [4].

In the literature there are two commonly used metrics for
computing the linearity of a model; Pearson Correlation coeffi-
cient and Spearman Rank coefficient. The Pearson correlation
coefficient is used when the data is drawn from a test set with
near-normal distribution. In other cases the Spearman Rank
coefficient is used to report the linearity between the estimated
and the actual subjective quality scores [4].

The quality scores estimated by the quality model are
compared to the quality scores obtained from subjective tests
in order to assess the performance of the quality models.
However, in the case of limited amount of training and test
data set, K-fold or leave-one-out cross-validation are used to
report the performance of the quality model. In the K-Folds
approach, available data is split into K folds. In each step, K-
1 folds are used to train the data and the remaining 1 fold is
used to measure the accuracy of the model. This procedure is
repeated K times by using a different portion of the available
data as test data. Data splitting can be done randomly as well
as stratifying the folds. In order to make the predictions more
robust and independent of the selected K folds, the whole
procedure is typically run several times and the average of
these runs is taken for each metric. The common practice is
to use stratified 10-fold cross-validation [4].

III. RELATED WORK

The QUALINET Multimedia Databases set v5.5 [8] pro-
vides a list of some publicly available audiovisual databases
and models.

In 2010 Goudarzi et al [9]] conducted subjective experiments
to explore methods to predict audiovisual quality objectively
for video calls in wireless applications. They have presented
subjective test results for 60 test conditions on how audio
and video contribute to overall audiovisual quality and de-
velop models to reflect this relationship, and investigated how
network and application parameters affect overall audiovisual
quality. In their analysis they have used a regression model



to predict audiovisual quality from packet loss rate and frame
rate.

The Video Quality Experts Group (VQEG) ran subjects tests
through the same audiovisual material in six different interna-
tional laboratories [[10] [11]]. Each of these six labs conducted
the experiment in a controlled environment while four labs
also repeated the same experiments in a public environment.
They have reported that audiovisual subjective tests are highly
repeatable from one laboratory and environment to the next
and recommended 24 or more subjects for ACR tests in a lab
and 35 and more subjects for the same sensitivity in the public
environment.

Robitza et al [12] have presented a video database espe-
cially designed for mobile TV quality assessment. They have
reported the results of a broad study to provide content creation
and editing guidelines adapted for mobile TV and we have
analyzed the impact of these guidelines on the perception of
quality through a subjective experiment.

Miki et al [5] developed a reduced reference parametric
model for audiovisual quality estimation following the Pseudo-
Subjective Quality Assessment (PSQA) methodology and have
compared different kinds of statistical estimators, namely
Multilayer Perceptrons (MLP) and Random Neural Networks
(RNN). They have trained the model with subjective assess-
ment data for an IPTV-like scenario and have reported that
the model generated performs at its best when implemented
with a MLP. They have also showed that that by adding a
small amount of information about the original signal, the
performance of these packet-level models can be very good
for certain uses.

In [6] [4], the authors presented the winning model of the
PNAMS (“Parametric Non-intrusive Assessment of audiovi-
sual Media Streaming quality”’) competition for the Higher
Resolution application area. Their model focuses on a non-
intrusive parametric packet-based audiovisual quality model
and standardized as the ITU-T Recommendation P.1201.2.
Their model was based on the results of 10 and validated on 14
subjective tests that cover typical audio and video degradations
for IPTV, including audio and video compression artifacts and
packet loss, slicing and freezing artifacts. They have obtained
high performance results with Pearson Correlation r=0.911 and
RMSE =0.435 for the audiovisual model, with r =0.902 and
RMSE =0.461 for video, and with r =0.949 and RMSE =0.336
for audio on the 5-point scale used.

All of these audiovisual databases have a variety of configu-
rations. Researchers have developed audiovisual quality mod-
els using the data provided in these databases. Some models
aim to estimate the perceived quality directly by conducting
the audio-video subjective tests while others conduct audio,
video and audio-video test separately and try to deduct a
model accurate enough for estimating the audiovisual quality
by using the separate audio and video quality estimates as
parameters.

As recent developments show, reduced reference parametric
models achieve high accuracy in estimating the perceived
quality with limited resources. In this work we try to build

a similar model by estimating the audiovisual quality directly
by using Random Forest and Neural network machine learning
methods for specific target network configurations.

IV. AN AUDIOVISUAL QUALITY DATABASE

Creating an audiovisual quality database require finding
optimum database configurations, developing required test
tools, building test setup, producing the content, generating
the files under specific network conditions, preparing the
subjective test methodology and conducting the tests while
following the standards. Publicly available databases help us
to avoid this significant amount work and enable us to compare
the performance of various models on the same data set.
However eventually a model performance has to be measured
on the target environment with the required application and
network parameters. Additionally to our knowledge none of
the available databases include the whole parameter space we
needed to experiment.

We have created an audiovisual content specifically for this
research. Figure [T] depicts a scene in the generated reference
video being played by the custom video player developed to
collect the subjective scores without disclosing the resource’s
quality. The video consists of slow-moving scenes where a
person reads a passage from a book. This content is chosen
to be similar to a typical one-to-one audiovisual conversation.
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Fig. 1. A scene from the generated reference video file.

We have created an audiovisual database in order to develop
and validate a reduced reference parametric model to estimate
the user perceived audiovisual quality in multimedia services.
The database is designed to include the resolution, bit rate,
bandwidth, packet loss rate, and jitter influence factors. Table
[ shows the selected values for these influence factors. Each
of these influence factor values is assigned as follows.

From the reference video file, we have created 6 MPEG
audio-video files with a leading commercial video editing
software. These 6 source files consisted of 3 target bit rates
(High Quality, Middle Quality and Low Quality) for two
resolution levels. Considering the adaptation to the mobile
platforms HD 1080 and HD720 resolution levels are selected.
Table [[I] shows the source files generated where the bitrates
computed as an average over one second of transmission.



TABLE I
AUDIVISUAL QUALITY DATABASE INFLUENCE FACTORS

HD1080 (1920x1080 pixels),

Resolution HD720 (1280x720 pixels)

High Quality(HQ),
Bit Rate Middle Quality(MQ),
Low Quality (LQ)
. High Bandwidth (2x Max Bit Rate),
Bandwidth Low Bandwidth (Max Bit rate)
Packet Loss rate (%) 0, 0.1, 0.5
Jitter (ms) 0, 10, 50, 100

Each source files are encoded with MPEG video version
2 video codec with Main@High 1440 profile and MPEG
Audio version 1 layer 2 audio codec contained in an MPEG-
TS container. Video frame rate are set to 25 fps and audio
sampling rate set to 48.0 KHz.

TABLE II
SOURCE FILES GENERATED.
Video

Overall Max Audio

BitRate BitRate BitRate

File (Kbps) (Kbps) (Kbps)
MPEG2_HD_720_LQ.ts 1389 1477 128
MPEG2_HD_720_MQ.ts 3461 3664 128
MPEG2_HD_720_HQ.ts 8040 8313 128
MPEG2_HD_1080_LQ.ts 2871 3227 128
MPEG2_HD_1080_MQ.ts 7457 8069 128
MPEG2_HD_1080_HQ.ts 13.1 Mbps 18083 128

In our preliminary experiments we have selected packet loss
rate (PLR) between 0-5% and observed that the PLR greater
than 0.5% reduces the perceived quality significantly which
is never intended in real-life scenarios. We have obtained
similar results with the bandwidth configurations. Initially we
have tested 4 different bandwidth levels for a given bit rate
configuration and observed that only two out of these 4 levels
are relevant to the real-life conditions and eventually only kept
these two for our study.

These selected bandwidth-pair configurations are intended
to provide one configuration for no-limitation on bandwidth
(High Bandwidth) while the other one is intended to provide
slightly less bandwidth than max bitrate (Low Bandwidth),
which causes only small degradation in perceived quality.

We have conducted various iperf tests to measure the
effective bandwidth in Low Bandwidth cases and find out that
available bandwidth being 2.8% less than max bitrate for each
file. We have taken into account that iperf adds a small bias to
the measurement since iperf measures the available bandwidth
using a TCP stream, while the bandwidth limitation sets the
bandwidth available for IP packets [13]].

The test sequences were prepared prior to the assessment
by recording RTP-based video streams transmitted over an
emulated network. The videos were streamed and recorded

with the VideoLan VOD Server and VLC media player. The
netem network emulator is deployed in order to introduce the
packet loss and jitter test conditions. Dummynet is used to
manage the bandwidth settings between the VOD server and
the client. A total of 144 network conditions were considered
and respectively 144 audio-video files are recorded for sub-
jective quality tests.

The participants consisted of 24 graduate level INRS stu-
dents that are familiar with the multimedia quality assessment,
subjects coming from various backgrounds with a fluency in
English language selected for delivering the test guidelines and
for answering any questions raised during the training session.
The subjects’ age ranged between 20 and 37 years old.

The viewing and listening conditions specified in P.911 [[1]]
were followed as much as feasible. Subjects were asked to
rate each audio-video quality on the 5-point ACR categorical
quality scale. Subjects were allowed to submit their subjec-
tive scores after watching/listening the first 10 seconds. The
order of the rendered sequences was randomly drawn before
assessment but was the same for all subjects. Instructions are
given in English and subjects were allowed to ask questions.
Subjects initially performed a training session and completed
the tests between 30-45 min in a single assessment session.
Subjects were allowed to have a pause halfway through the
test.

V. TWO REDUCED REFERENCE PARAMETRIC MODELS

The models we mention in this section are trained on
the 5-point ACR MOS scale where the scores for a given
audiovisual configuration are averaged over all subjects. We
have constructed various RR parametric models and measured
their performance in terms of accuracy, consistency and lin-
earity. We have seen earlier that these terms are represented
by the following statistical metrics; Root-Mean-Square-Error
(RMSE), the outlier ratio which is typically defined as the
points for which the prediction error exceeds the 95% confi-
dence interval, and the Pearson correlation coefficient.

We have extracted the features from the file headers such as
bits per pixel in each video frame, audio video delay, duration,
frame count, video and audio stream sizes... and additional
side information such as network packet loss, network jitter
and bandwidth configurations. We have kept the feature space
the same across all machine learning models we have tried.

In our quick Weka [14] experiments, we have witnessed
an overall superior performance of the decision tree based
ensemble methods. Out of all available ensemble methods,
Random Forests showed better accuracy in terms of RMSE
values calculated. Neural networks have been widely used
in audio and video quality estimation. In order to put the
Random Forest model’s performance into relation to neural
networks based models, we have decided to develop two
models based on Random Forest and Neural Networks. Miki
et al [S] showed that Multi-layer perceptron (MLP) models
perform better compared to Random Neural Network (RNN)
models. Therefore as neural network implementation, we have
used Multi-layer Perceptron.



First we have trained an MLP regression model using
a single hidden layer where the number of input neurons
equalled the number of input features. The tangent-hyperbolic
function was chosen as the activation function of the hidden
nodes, while linear function was chosen for the output neuron
as in [3]. The learning rate was set to 0.02 and the number of
iterations was set to 100 for gradient descent to perform on
the neural network’s weights.

Second we have trained a Random Forests regression model
that fits a number of classifying decision trees on various
sub-samples of the dataset and use averaging to improve the
predictive accuracy and control over-fitting. The number of
trees in the forest was set to 100 with no restriction on the
depth of the tree and all features are used.

Initially the dataset set was shuffled and then both methods
were trained and their accuracy is measured on the test MOS
data using 10-Fold cross validation. To reduce the variation, as
a common practice, we have run this process 10 times and have
taken the average of the measured statistical metrics. These
figures are shown in Table It is clear that Random Forests
methods outperform Multi-layer perceptron methods in terms
of all metrics computed.

TABLE III
RANDOM FORESTS VS MULTI-LAYER PERCEPTRON PERFORMANCE
Pearson 95% Confidence
Algorithm RMSE Correlation Interval
Random Forests 0.3138 0.8871 0.597
Multi-layer Perceptron 0.4207 0.8023 0.767

The difference in performances is much easier to realize in
graphical interpretation. In Figure [2] and Figure [3] actual MOS
vs predicted MOS for both Random Forests and Multilayer
Perceptron methods. The figures clearly show that Random
Forest method makes visibly more accurate estimation.

We have intentionally kept using all features when training
both models. With some feature selection pre-processing the
MLP performance might be improved. The beauty of the
Random Forests method is that it handles the feature selection
automatically as well as tells us the feature importance which
would be extremely useful while adapting the service quality
based on the quality predictions made. In Figure [4|it is shown
that packet loss rate, network jitter and bandwidth information,
provided as side information, plays the most important role
when estimating the perceived quality. It is important to note
that changing the range of value of parameters would influence
the perceived quality differently. The values here are the side
information but not the actual data collected from the bit
stream level. This automatically makes it clear that a hybrid
approach that incorporates the packet level information with
more accurate bit stream level information would produce
much better predictions.

The RMSE, Pearson correlation coefficient values reported
are close to the values reported by other researchers including
the winner of the PNAMS competition. However when we
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look at the figures, we clearly see the outlier points where the
MOS estimation values differ from actual MOS value by a
large margin. After we have carefully analyzed the actual MOS
values, we have discovered some of them differ by more than 2
MOS points compared to their actual expected range. Similar
issues have been reported by Miki et al [3] as well. The reason
behind this is the difference between the channel parameters
provided as side information and the actual bit stream level
information. In a hybrid approach, where the packet header
information and more accurate bit-stream level information is
used, this problem would not occur.

VI. CONCLUSION AND FUTURE WORK

We have developed an audiovisual quality database in order
to gather data for developing two reduced reference paramet-
ric models for estimating audiovisual quality in multimedia
services. We have trained the models using Random Forests
and Multi-Layer Perceptron machine learning methods. In
terms of RMSE, Pearson Correlation coefficient value and
95% confidence interval boundaries, Random Forests based
methods outperform Multi-Layer Perceptron methods and we
have obtained results in the same range as reported by re-
searchers.

Developing a parametric model requires less effort com-
pared to bit stream level or signal level models. Using the side
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Fig. 4. Random Forests Feature Importance: Network PLR, jitter and bandwidth information have the most influence on estimating the perceived quality.

information proved to be invaluable in terms of improving the
performance metrics. However the model might suffer from
the imperfections contained in the side information.

The reduced reference parametric model based on the Ran-
dom forests achieved high accuracy. Random Forests methods
also provide built-in feature importance properties that give
insight about which parameters are more influential on the
user perceived service quality. This information would be very
useful when adapting the service quality based on the quality
predictions made.

Instead of side information which has potential imperfec-
tions, bit stream level measurements can be used to obtain
more accurate quality estimations. However this approach
would require peeking into the bit stream and would require
more effort to build such a model.

As part of our ongoing research, next we will concentrate
on hybrid modelling approaches where both packet header and
bit stream level information is used to develop models and
create an actual real-time communication framework where
collecting the subjective scores, calculating the MOS values,
building the models and reporting the results are all integrated.
Eventually we will use the predictions made to maximize
the perceived quality itself by tuning the media and channel
control parameters.
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