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Abstract—In this paper, we study the downlink performance of
two important 5G network architectures, i.e. massive multiple-
input multiple-output (M-MIMO) and small-cell densificati on.
We propose a comparative modeling for the two systems, where
the user and antenna/base station (BS) locations are distributed
according to Poisson point processes (PPPs). We then leverage
both the stochastic geometry results and large-system analytical
tool to study the SIR distribution and the average Shannon
and outage rates of each network. By comparing these results,
we observe that for user-average spectral efficiency, small-cell
densification is favorable in crowded areas with moderate tohigh
user density and massive MIMO with low user density. However,
small-cell systems outperform M-MIMO in all cases when the
performance metric is the energy efficiency. The results of this
paper are useful for the optimal design of practical 5G networks.

Index Terms—Fifth generation (5G) systems, massive multiple-
input multiple-output (MIMO), small cell densification, st ochastic
geometry, large system analysis.

I. I NTRODUCTION

The fifth generation (5G) communications system needs
to deliver improvement over 4G, e.g. much higher user data
rate/spectral efficiency, enhanced eco-friendliness and energy
efficiency, seamless communications, and low latency etc. [1].
To meet the required performance, densified topologies with
two main approaches, i.e., massive multiple-input multiple-
output (M-MIMO) and small-cell densification, are promising
candidate technologies [2].

In M-MIMO, each base station (BS) employs a large-scale
antenna array in linear, cylindrical, or other shapes. The large
number of antennas not only provides more diversity to the
transmission but also “hardens” the channel, allowing low-
complexity but sharp beamforming towards the user equip-
ments (UEs) [3]. The results are less interference and higher
spectral and energy efficiencies. The main drawback of M-
MIMO is the channel estimation/acquisition and feedback,
which require a high accuracy to attain the gain that M-
MIMO promises [4]–[6]. Pilot contamination, itself an existing
problem, also restricts the benefits of M-MIMO [4], [7].

In contrast, small-cell networks consists of many mi-
cro/femto cells with limited number of antennas, typicallyone
or two, at each access point (AP). Due to the short distance
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between the APs and UEs, small-cell networks have smaller
path loss and co-channel interferences while requiring lower
power consumption, hence improving both spectral and energy
efficiencies. The gain of small-cell densification, however,
is subject to more complicated cell planning and inter-cell
coordination/cooperation [8].

The evolution of high spectral/energy efficiency for 5G thus
results in two opposing ideas: concentrating the antennas to
form M-MIMO BSs, and distributing them to form small cells.
It is thus natural to ask which approach performs better and
under which scenarios. Despite many works studying either
M-MIMO or small-cell networks, there exists few work in
literature comparing their performance. One of the reasons
is due to system modeling: no existing framework so far
allows for an effective collation. In this paper, we aim to
partially answer the above question using the metrics of
spectral and energy efficiencies. In particular, we resort to
stochastic geometry and random matrix theory (RMT) for the
analysis. A brief introduction of stochastic geometry can also
be found in [9].

RMT, also referred as large-system analysis in literature,
was used to investigate large multi-user linear receivers and
code division multiple access (CDMA) networks [10], [11]
and various MIMO setups [12], [13]. While exact analyses
are realizable under finite-dimensional matrix theory [14], they
often lead to complicated expressions hence do not provide
useful insights. The seminal monograph [15] and other works
have shown that large-system analysis can reveal many more
interesting properties of communication systems. Furthermore,
although the analysis is mathematically accurate only for
large random vectors/matrices, the obtained results remain
good approximations for finite-dimensional cases. Recently,
many studies have also advanced the so-called “deterministic
equivalent” approach to investigate more sophisticated system
models [16].

M-MIMO, which employs a large number of trans-
mit/receive antennas, is a natural application of large-system
analysis. A detailed survey can be found in [17], which lists
many key M-MIMO performance analyses considering hard-
ware impairments [18], channel state information (CSI) esti-
mation/acquisition [5], [7], and resource allocation/precoding
schemes [19], [20]. Note that most of the M-MIMO studies
only consider a BS-centric analysis in which the relative
locations of the BSs and UEs are fixed, thus neglecting the
network topology. In order to compare M-MIMO with small-
cell densification, a proper system modeling is necessary.

In this paper, we study both small-cell and M-MIMO
networks using stochastic geometry and large-system tools.
The aim is to provide an insightful comparison between these
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two topologies. The contributions of our paper are summarized
as follows:

• System Modeling: We propose a model for M-MIMO
and small-cell networks which incorporates the random-
ness of both transmitting distributed antennas (DAs)/BSs
and single-antenna UEs. Particularly, the DA/BS and UE
locations are distributed according to Poisson point pro-
cess (PPPs) with possibly different densities. Therefore,
there exists a transmission probability that some transmit-
ting antennas/BSs are turned off due to no associated UE.
We assume a time/frequency division multiplexing access
(TDMA/FDMA) scheme in which the transmitting nodes
associated with more than one UE will communicate
with only one UE in each resource block. Finally, we
assume non-coordinated DAs/BSs and employ conjugate
beamforming, which is optimal for non-coordinated M-
MIMO with single-antenna UEs.

• M-MIMO and Small-Cell Network Analysis: We study
the performance of M-MIMO and show that the signal-
to-interference ratio (SIR) distribution at a typical UE
is similar to that under a non-fading ad-hoc network.
Here, the important differences between the two cases
are the M-MIMO gain and transmission probability. As
discussed before, the results for fading ad hoc networks
can be directly extended to the small-cell counterparts,
with small but important modification again due to the
transmission probability. We therefore utilize the results
from [9, Sections III and IV] to derive the bounds for the
SIR distribution of M-MIMO and small-cell networks.
Based on these analyses, we further obtain the bounds for
both the average Shannon and outage rates of the two sys-
tems. To better characterize the small interference regime,
the performance of M-MIMO and small-cell networks is
also derived under the assumption of asymptotically small
UE density.

• Comparison between M-MIMO and Small-Cell Den-
sification: We reveal that small-cell densification yields
better rates than M-MIMO when the user density is
moderate or large compared to the transmitting node
density and number of antennas. However, M-MIMO
outperforms small-cell systems under the asymptotically
small UE density regime. This implies that there exists a
UE density threshold lower than which we should employ
M-MIMO and higher than which small-cell densification
is more preferable, when spectral efficiency is the perfor-
mance metric. We further compare the energy efficiency
performance and show that small-cell always outperforms
M-MIMO. The results are therefore useful for the optimal
design of the upcoming 5G heterogeneous networks.

The rest of the paper is organized as follows. Section II
describes our M-MIMO and small-cell network models, which
incorporate the randomness of both transmitting nodes and
UEs, for a fair comparison between M-MIMO and small-cell
densification. In Sections III and IV, we investigate the M-
MIMO and small-cell systems introduced in Section II, based
on the results from [9, Sections III and IV]. The spectral and
energy efficiency comparisons between M-MIMO and small-

cell densification are given in Sections V and VI, respectively.
Finally, Section VII concludes the paper with some remarks.

Notations: Scalars and vectors/matrices are denoted by
lower-case and bold-face lower-case/upper-case letters,re-
spectively. The conjugate, transpose, and conjugate transpose
operators are denoted by(·)∗, (·)T , and (·)H , respectively.
[A]i,j stands for the(i, j)th element of the matrixA. EX [·]
denotes the statistical expectation over a random variableX .
Tr(·), || · ||F , anddet(·) represent the trace, Frobenius norm,
and determinant of a matrix, respectively.IM denotes anM -
by-M identity matrix.Rx×y and Cx×y denote the space of
x-by-y real and complex matrices, respectively. Finally, the
circularly symmetric complex Gaussian distribution with mean
µ and varianceσ2 is represented byCN (µ, σ2).

II. STOCHASTIC MODELING FOR MASSIVE MIMO AND

SMALL -CELL SYSTEMS

A. M-MIMO System

We consider a M-MIMO system where BS and UE locations
are distributed according to homogeneous PPPsΦC,d andΦC,u

of intensitiesλC,b = λb andλC,u = λD,u = λu, respectively.
Each UE is associated with the nearest BS each withM
antennas. Here, we assume that each BS is scheduled to serve
only one UE at each time/frequency slot due to time/frequency
division multiple access (TDMA/FDMA). In each slot, the
received signal of the UE associated with BSb is given as

yC,b = h
H
C,b,bxC,b +

∑

b′∈B/{b}
h
H
C,b′,bxC,b′ + nC,b, (1)

whereB is the set of transmitting BSs;hH
C,b′,b is the channel

between BSb′ and the associated UE of BSb; andxC,b′ is the
transmit signal from BSb′. Here,hC,b′,b =

√
ξC,b′,bĥC,b′,b;

ξC,b′,b = d−µ
C,b′,b is a large scale fading including path loss

with µ denoting the path loss exponent;ĥC,b′,b follows a
statistical distribution̂hC,b′,b ∼ CN (0, 1), ∀b, b′ ∈ B; and
nC,b is the additive white Gaussian noise (AWGN) distributed
asCN (0, σ2

n). For a fair comparison with small-cell systems,
we assume that each BS has a total power constraint ofMPT

and thereforeE|xC,b′ |2 = MPT .
We consider a practical regime in which each BS only

knows the channel between itself and the associated UE via,
e.g., channel estimation and feedback. Under such assumption,
each BS implements the conjugate beamforming to transmit
signals to its respective UEs.

Fig. 1 shows one channel realization of the M-MIMO
system model. Here, the service area is assumed to be a square
region of20× 20. The BS and user densities areλC,b = 0.05
and λu = 0.15, respectively. Note that as the UE density is
not sufficiently larger than the transmitter density, some BSs
are not associated to any user. The corresponding cells are
marked by green color for a clear illustration.

B. Small-Cell System

For a fair comparison, we consider a small-cell system
where distributed antenna (DA) and UE locations are dis-
tributed according to homogeneous PPPsΦD,b andΦD,u of
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Fig. 1: A channel realization for either M-MIMO or small-cell
systems. Here “o”, “x”, and straight lines denote the transmitter
(BS/DA), user, and boundaries between cells. The cells without any
user are marked by green color.

intensitiesλD,b = Mλb andλD,u = λu, respectively, in the
Euclidean plane. Each DA is associated with the nearest UE.
For simple description, we consider one resource block (e.g.,
frequency and time), which is taken by only one UE, i.e., one
DA serves one user at a time. The received signal at userk is

yD,k = hD,k,kxD,k +
∑

k′∈K/{k}
hD,k,k′xD,k′ + nD,k, (2)

where K is the user set,hD,k,k′ is channel gain between
user k and selected DA for userk′; xD,k is the transmit
signal from userk; and nD,k is the AWGN CN (0, σ2

n).
Here,hD,k,k′ =

√
ξD,k,k′ ĥD,k,k′ ; ξD,k,k′ = d−µ

D,k,k′ is a large
scale fading including path loss withµ denoting the path
loss exponent; and̂hD,k,k′ follows a statistical distribution
ĥD,k,k′ ∼ CN (0, 1), ∀k, k′ ∈ K, k′ 6= k. We assume equal
power constraint at each DA, i.e.,E|xD,k|2 = PT . Note
that we can consider Fig. 1 as a channel realization for the
small-cell system model with the DA and UE densities being
λD,b = 0.05 andλu = 0.15.

III. M ASSIVE MIMO SYSTEM ANALYSIS

In this section, we investigate the performance of M-MIMO
systems based on the results in our paper [9, Section II]. First,
we derive the distribution of the signal-to-interference-plus-
noise ratio (SINR) and SIR. Note that if the UE intensityλu is
not sufficiently larger thanλb, then some M-MIMO BSs may
not possibly be associated to any UE, and thus, do not transmit
signals. Therefore, it is necessary to study the transmission
probability of each BS. The following result provides the area
distribution of Voronoi cells.

Lemma 1 ( [21]): Given a PPPΦ with homogeneous den-
sity λ. The probability distribution function (PDF) ofS,
the area of a typical Voronoi cell formed fromΦ, can be
approximated as

fS(x) ≈
3.53.5

Γ(3.5)
λ3.5x2.5e−3.5λx. (3)

By using Lemma 1, the transmission probability of BSs is
approximated as [22]

ǫC ≈ 1−
(
1 +

λu

3.5λb

)−3.5

. (4)

Note that given the transmission probabilityǫC , the trans-
mitting BS locations are thus distributed according to a PPP
Φ̂C,b with densityλ̂C,b = ǫCλb.

A. Conjugate Beamforming - Large System Analysis

Since all BSs employ conjugate beamforming, the transmit
signalxC,b is

xC,b = wC,bsC,b =

√
MPThC,b,b

‖hC,b,b‖
sC,b, (5)

wherewC,b =
√
MPThC,b,b/‖hC,b,b‖ ∈ CM×1 is the con-

jugate beamformer of BSb. As a consequence, the received
signal of the UE associated to BSb is given as follows

yC,b =
√
MPT ‖hC,b,b‖sC,b

+
∑

b′∈B/{b}

√
MPTh

H
C,b′,bhC,b′,b′

‖hC,b′,b′‖
xC,b′ + nC,b, (6)

The SINR of the UE associated to BSb therefore can be
expressed as

SINRb =
MPT ‖hC,b,b‖2

∑
b′∈B/{b}

MPT

h
H
C,b′,bhC,b′,b′h

H
C,b′,b′hC,b′,b

‖hC,b′,b′‖2
+ σ2

n

=
d−µ
C,b,b

∥∥∥ĥC,b,b

∥∥∥
2

∑
b′∈B/{b}

d−µ
C,b′,b

ĥ
H

C,b′,bĥC,b′,b′ ĥ
H

C,b′,b′ĥC,b′,b∥∥∥ĥC,b′,b′

∥∥∥
2 +

σ2
n

MPT

.

(7)

Note that the vector seriesĥC,b,b√
M

∈ CM×1 satisfy the
condition of [16, Theorem 3.4]. Therefore, we have

∥∥∥ĥC,b,b

∥∥∥
2

/M
M→∞−−−−→ 1, (8)

Based on (8), the SINR of the UE associated to BSb is
expressed as

QM , SINRb

=
d−µ
C,b,b

∥∥∥ĥC,b,b

∥∥∥
2

/M

∑
b′∈B/{b}

d−µ
C,b′,b

ĥ
H

C,b′,bĥC,b′,b′ ĥ
H

C,b′,b′ ĥC,b′,b

M
∥∥∥ĥC,b′,b′

∥∥∥
2 +

σ2
n

M2PT

M→∞−−−−→
Md−µ

C,b,b

∑
b′∈Φ̂C,d/{b}

d−µ
C,b′,b|h̃b′ |2 +

σ2
n

MPT

, (9)

where h̃b′ ,
ĥ

H

C,b′,bĥC,b′ ,b′∥∥∥∥ĥC,b′,b′

∥∥∥∥
; h̃b′ ’s are i.i.d. random variables

each distributing asCN (0, 1). The form (9) is similar to that
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investigated in [9, Section V]. It has been shown that (9)
is difficult to study, in particular to derive the cumulative
distribution probability (CDF) bounds. As discussed in [9,
Section V], we can well approximate

∑

b′∈Φ̂C,d/{b}

d−µ
C,b′,b|h̃b′ |2 ≈

∑

b′∈Φ̂C,d/{b}

d−µ
C,b′,b. (10)

As a consequence, we have

QM ≈
Md−µ

C,b,b

∑
b′∈Φ̂C,d/{b}

d−µ
C,b′,b +

σ2
n

MPT

. (11)

B. Probability Distribution

We note that the form of the SINR in (11) is similar to
that investigated in [9, Section II]. Therefore, we can apply
the results for the outage probability, average achievablerate,
and outage rate in [9, Section II] here. The only but important
difference is that the interfering BSs’ locations are distributed
according to the PPP̂ΦC,d with densityλ̂d, while the PDF of
the nearest distance follows that from PPPΦC,d with density
λb. The following corollaries follow same reasonings as in [9,
Theorem 1, (9), and (10)]. The proofs are given in Appendix
A, where we only highlight the differences for brevity.

Corollary 1: Assume that the transmitting BSs follows a

PPPΦ̂C,d with densityλ̂C,d. The Laplace transform ofQ−1
M

can be expressed as

LQ−1

M
(s) = πλb

∫ ∞

0

exp

{
− syµ/2σ2

n

M2PT
− πλ̂C,dy

[
1 +

1

ǫC
− e−s/M +

( s

M

)2/µ
γ

(
1− 2

µ
,
s

M

)]}
dy, (12)

Corollary 2: Given thatM → ∞, the lower and upper
bounds of the SIR distribution are given as follows

F LB
QM

(q) =





0, 0 ≤ q < M ,(13a)

1− 1

ǫCM
− 2

µ q
2
µ + 1− ǫC

, M ≤ q, (13b)

FUB
QM

(q) = 1− 1

1 + ǫCβn-fdM−2/µq2/µ
. (14)

Similar to [9, (10)], (14) is rigorously proved only for: (a)
q ≥ M , and (b)q < M with q → 0 or q → M . The following
result is a counterpart of [9, Corollary 1] for massive MIMO
when M → ∞. The proof can be deduced from Appendix
A-B, and thus is omitted for brevity. Note that Corollary 3
does not require the approximation (10) sinceEΦ

[
MSIR−1

b

]

already averages over the channel fading.
Corollary 3: Assuming a very largeM , the expectation of

MSIR−1
b is given asEΦ

[
MSIR−1

b

]
= 2ǫC

µ−2 .
Remark 1: It is important to remind that Corollaries 2 and 3

are derived by assuming that the noise power is negligible, i.e.,
σ2 = 0, and considering the SIR instead of SINR. In small
UE density network, i.e.,λb ≫ λu, such assumption is not
accurate anymore since the interfering sources are far away
and the interfering power is small. The noise effect therefore
is more important. As a consequence, Corollaries 2 and 3 are
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not accurate in UE-sparse networks. Further results for M-
MIMO with asymptotically small UE density will be presented
in Section III-D.

In Figs. 2 and 3, we confirm the validity of Corollaries
2 and 3, respectively. From Fig. 3, it is observed that the
assumption that the transmitting BSs follow a PPPΦ̂C,d with
density λ̂C,d = ǫCλb with ǫC given in (4) is quite accurate.
However, the upper bound is only close to the exact SINR
distribution whenλu is sufficiently large (λu ≥ λb by intensive
simulations), as shown in Fig. 2. Asλu decreases compared
to λb, the upper bound (14) becomes looser. The reason is that
some inequalities, used to derive the upper bound in Appendix
A-B, are not strict especially whenǫC is small. The lower
bound, however, is not affected by the UE density due to its
simple derivation.

C. Average Achievable and Outage Rate

Based on Corollary 2, we investigate the average Shannon
and outage rates for M-MIMO systems. We note that due
to TDMA/FDMA, each user is only served for a fraction of
time or a sub-band. Assuming that all users have the same
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transmission priority, that fraction can be defined as1Nb,u
,

whereNb,u is the number of users in cellb. The following
result establishesE [Nb,u].

Lemma 2: The expectation of the number of users in a
typical cell b is given as

E [Nb,u] =
λC,u

λC,b
=

λu

λb
. (15)

Proof: Please refer to Appendix B.
As expected, the average number of users in a cell is

proportional to the UE density while inversely proportional
to the BS density. The simple linear scaling is surprising, but
intuitive. The reason is due to the homogeneity of both BS and
UE PPPs, which does not create clusters of either BSs or UEs.
Therefore, withλu UEs andλb BSs in a region of1 km2, we
expect to see the UEs homogeneously distributed across all
BSs, which leads toλu/λb. By comparing the simulated and
analytical values ofE [Nb,u], intensive simulations confirm the
validity of Lemma 2. The comparison is not presented due to
the space constraint.

Note that the rate of an UE associated to BSb is given as

Rb,u =
1

Nb,u
log2 (1 + SINRb) , (16)

where the fraction 1
Nb,u

is due to TDMA/FDMA. We thus
obtain the average Shannon rate of a typical user as follows

RM = EΦC,b,ΦC,u [Rb,u]
(a)
= E

[
1

Nb,u

]
E [log2 (1 + SINRb)] .

(17)

Here, (a) is due to TDMA/FDMA and the fact that the
random variables SINRb andNb,u are independent given that
TDMA/FDMA is applied.

Based on Corollary 2 and Lemma 2, we can derive the
bounds for the average achievable rate and the outage rate as
follows. The proofs are similar to that of [9, Lemmas 3 and
4] and omitted for brevity.

Corollary 4: The average user rateRM is bounded above
and below byRUB

M andRLB
M , respectively, where

RUB
M = min

{
1,

λb

λu

}(
log2(1 +M)

+

∫ ∞

log2(1+M)

dt

ǫCM−2/µ(2t − 1)2/µ + 1− ǫC

)
, (18)

RLB
M = min

{
1,

λb

λu

}∫ ∞

0

dt

1 + ǫCβn-fdM−2/µ(2t − 1)2/µ
.

(19)

Corollary 5: The outage user rate ORM(η) is upper- and
lower-bounded by ORUB

M (η) and ORLB
M (η), respectively, where

ORUB
M (η)

=





min

{
1,

λb

λu

}
log2(1 + η), 0 ≤ η ≤ M , (20a)

min

{
1,

λb

λu

}
log2(1 + η)

ǫC
(

η
M

)2/µ
+ 1− ǫC

, M < η. (20b)
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with respect toM . Here,µ = 3.7, λb = 1, andPT /σ

2
= 15 dB.

ORLB
M (η) = min

{
1,

λb

λu

}
log2 (1 + η)

1 + ǫCβn-fd
(

η
M

)2/µ . (21)

Here, the termmin
{
1, λb

λu

}
in Corollaries 4 and 5 is due

to the fact that TDMA is applied only whenNb,u > 1, and
we have approximated

E

[
1

Nb,u

]
≈ 1

E [Nb,u]
=

λb

λu
. (22)

In Figs. 4 and 5, we compare the average and outage user
rates with the bounds given in (18)-(21). We first observe that
the scaling laws of the bounds are closely matched with the
true rates. The gap, however, seems to increase as the UE-BS
density ratio becomes smaller. Nevertheless, the bounds are
useful for further studies on the M-MIMO performance under
various network models.

D. Asymptotically Small UE Density

In this section, we investigate the performance of M-MIMO
under the asymptotically small UE density regime. As the
transmission probabilityǫC approaches0, the interference also
goes to0 since the interfering BSs are farther apart from each
other. In such cases, we can ignore the interference but not
the noise due to its dominant effect. The SINR can now be
approximated as the SNR and expressed as

QM = SINRb ≈ SNRb =
MPTd

−µ
C,b,b

∥∥∥ĥC,b,b

∥∥∥
2

σ2
n

a.s.−−→
M2PTd

−µ
C,b,b

σ2
n

. (23)

Since the PDF ofdC,b,b is

fDC,b,b
(x) = 2πλbxe

−πλbx
2

, (24)
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Fig. 5: Outage rate and its bounds (20) and (21) for M-MIMO with
M = 64, µ = 3.7, λb = 1, andPT /σ

2
= 15 dB.

it is straightforward to derive the SINR distribution as follows

Pr{QM ≤ q} = Pr

{
dC,b,b ≥

(
M2PT

qσ2
n

)1/µ
}

= exp

(
−πλb

M4/µP
2/µ
T

σ
4/µ
n q2/µ

)
. (25)

Therefore, the average Shannon and outage rates are given
as

RM =

∫ ∞

0

[
1− exp

(
−πλb

M4/µP
2/µ
T

σ
4/µ
n (2t − 1)2/µ

)]
dt, (26)

ORM(η) = log2(1 + η)

[
1− exp

(
−πλb

M4/µP
2/µ
T

σ
4/µ
n η2/µ

)]
.

(27)

IV. SMALL -CELL SYSTEM ANALYSIS

Similar to M-MIMO, if the UE intensityλu is not suffi-
ciently larger thanλb, then some DAs in the small-cell system
may not be associated to any UE, and thus, do not transmit
signals. Applying Lemma 1, we can derive the transmission
probability of a DA in our system as [22]

ǫD ≈ 1−
(
1 +

λu

3.5Mλb

)−3.5

. (28)

The transmitting DAs thus can be modeled as a homoge-
neous PPP̂ΦD,b obtained by thinning the DA PPPΦD,b with
a probabilityǫD that DA is activated. In this case, the SINR
of a typical UEk can be described as

QSM ,

∣∣ĥD,k,k

∣∣2d−µ
k,kPT

∑K
k′∈ΦD,b/{k}

∣∣ĥk,k′

∣∣2PTd
−µ
k,k′ + σ2

n

. (29)

Using ǫD, we can obtain the coverage probability of a
typical userk in Lemma 3 [23].

Lemma 3 ( [23]): Given that the transmitting DAs are
modeled as PPP̂ΦD,b and both desired and interfering signals

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7  λ
u
 = 4

 λ
u
 = 1

x

S
IN

R
 C

D
F

 F
X
(x

)

 

 

Simulation
Analytical CDF
Analytical Upper Bound
Analytical Lower Bound

Fig. 6: Simulated SINR distribution, analytical result (31), and
bounds (33), (34) for small-cell system withλD,b = Mλb = 64,
µ = 3.7, andPT /σ

2
= 15 dB.

obey Rayleigh distribution, the coverage probability for user
k is expressed as

Pr (QSM ≥ q) = πMλb

∫ ∞

0

exp

{
− σ2

n

PT
qvµ/2

− πMλbv
[
1 + ǫDq2/µρ

(
q−2/µ,

µ

2

)]}
dv.

(30)

A direct corollary of Lemma 6 is the SIR distribution for
the caseσ2

n/PT = 0 given as follows.
Corollary 6: The SIR distribution of a small cell system is

given as

FQSM(q) = 1− 1

1 + ǫDq2/µρ
(
q−2/µ, µ

2

) . (31)

Again, we obtain the SIR CDF, average achievable rate, and
outage rate bounds for the small-cell system. The differences
between the following Corollaries 7, 8 and [9, Lemma 6] are
that the interfering cells follows a PPP with densityǫDλb, and
each DA might need to serve multiple UEs via TDMA/FDMA.
We note that the expectation of the number of UEs associated
with a typical DA k is given as (cf. Lemma 2)

E [Nk,u] =
λD,u

λD,b
=

λu

Mλb
. (32)

The proofs for the following results are similar to those of
[9, Lemmas 5 and 6], and thus omitted for brevity.

Corollary 7: The lower and upper bounds for the distribu-
tion of QSM defined in (29) are given as

F LB
QSM

(q) = 1− Eh


 1

1 + 2ǫDq2/µ

µ|h|2/µ Γ
(

2
µ ,

|h|2
q

)


 , (33)

FUB
QSM

(q) = 1− 1

1 + ǫDβfdq2/µ
, (34)

where|h|2 is exponentially distributed.
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2
= 15 dB,

andλD,b = Mλb.

Corollary 8: The average Shannon rateRSM(α) and the
outage rate ORSM(α, η) are bounded below, respectively, by

RLB
SM = min

{
1,

Mλb

λu

}∫ ∞

0

dt

1 + ǫDβfd (2t − 1)
2/µ

,

(35)

ORLB
SM(η) = min

{
1,

Mλb

λu

}
log2 (1 + η)

1 + ǫDβfdη2/µ
. (36)

Again, the termmin
{
1, Mλb

λu

}
is due to the fact that

TDMA/FDMA is applied only whenNk,u > 1, and we have
approximated

1

Nk,u
≈ 1

E [Nk,u]
=

Mλb

λu
. (37)

In Fig. 6, we compare the SINR distribution, analytical
result (31), and bounds (33), (34) for two small-cell systems.
It is observed that the upper-bound (34), although simple, is
quite tight when compared with the lower-bound (33). Figs.
7 and 8 illustrate the average and outage user rate for various
small-cell systems. We also show the analytical rate lower
bounds given in Corollary 8 for comparison. In contrast to the
M-MIMO case, the bounds for small-cell systems are quite
tight. Note that we do not derive and present the analytical
upper bounds for the rates here since they are complicated
and of limited use for subsequent analyses.

A. Asymptotically Small UE Density

Under the asymptotically small UE density regime, the
interference is negligible and the SINR of small-cell system
can be expressed as

QSM = SINRk ≈ SNRk =

∣∣ĥD,k,k

∣∣2d−µ
k,kPT

σ2
n

. (38)

Since the PDF ofdk,k is

fDk,k
(x) = 2πMλbxe

−πMλbx
2

, (39)
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Fig. 8: Outage rate and its lower bound (36) for small-cell system
with λD,b = Mλb = 16, µ = 3.7, andPT /σ

2
= 15 dB.

it is straightforward to derive the SINR distribution as follows

Pr{QSM ≤ q} = Eh

[
exp

(
−πMλb

P
2/µ
T |h|2/µ

σ
4/µ
n q2/µ

)]
, (40)

where the random variableh ∼ CN (0, 1).
Therefore, the average Shannon and outage rate are

RSM =

∫ ∞

0

(
1− Eh

[
exp

(
−πMλb

P
2/µ
T |h|2/µ

σ
4/µ
n (2t − 1)2/µ

)])
dt,

(41)

ORSM(η)

= log2(1 + η)

(
1− Eh

[
exp

(
−πMλb

P
2/µ
T |h|2/µ

σ
4/µ
n η2/µ

)])
.

(42)

To derive the bounds for (40)-(42), we note that the function
exp(−αxβ) with β ≤ 1 is convex in x > 0. Therefore,
applying Jensen’s inequality, we obtain

FQSM(q) ≥ exp

(
−πMλb

P
2/µ
T Eh

[
|h|2/µ

]

σ
4/µ
n q2/µ

)

= exp

(
−πMλb

P
2/µ
T Γ(1 + 2

µ )

σ
4/µ
n q2/µ

)
, F LB

QSM
(q).

(43)

The upper bounds forRSM and ORSM(η) are therefore given
as

RUB
SM =

∫ ∞

0

(
1− exp

(
−πMλb

P
2/µ
T Γ(1 + 2

µ )

σ
4/µ
n (2t − 1)2/µ

))
dt,

(44)

ORUB
SM(η)

= log2(1 + η)

(
1− exp

(
−πMλb

P
2/µ
T Γ(1 + 2

µ )

σ
4/µ
n q2/µ

))
.

(45)
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V. RATE COMPARISON FORM-MIMO AND SMALL -CELL

SYSTEMS

M-MIMO and small-cell represent two densification ap-
proaches in 5G communication systems. The lack of a perfor-
mance comparison between them is even more surprising given
the fact that each approach has attracted significant attention
in the literature. In this section, we exploit the newly obtained
results in Sections III and IV to draw several observations on
M-MIMO and small-cell networks, revealing which approach
is better and under which setup. Here, the metric is the outage
rate for simple arguments, but our observations can be readily
extended to the average Shannon rate. The key parameter here
is the UE densityλu.

A. Very Large UE Density: λu ≥ Mλb

In this case, the lower bounds of the outage rate are reduced
to

ORLB
M (η) =

λb

λu

log2 (1 + η)

1 + ǫCβn-fdM−2/µη2/µ
, (46)

ORLB
SM(η) =

Mλb

λu

log2 (1 + η)

1 + ǫDβfdη2/µ
, (47)

whereǫC ≈ 1 −
(
1 + λu

3.5λb

)−3.5

≈ 1. Simple manipulation

shows that ORLB
SM(η) ≥ ORLB

M (η) iff

M +M1−2/µǫCβn-fdη
2/µ ≥ 1 + ǫDβfdη

2/µ. (48)

As a loose approximation, (48) holds ifM1−2/µǫCβn-fd ≥
ǫDβfd, which is true sinceβn-fd > βfd, ǫC ≈ 1 ≥ ǫD, andM is
large. We thus observe that a small-cell system outperformsa
M-MIMO counterpart when the UE density is very large. This
is due to the effect of multiplexing large number of users under
TDMA/FDMA, which diminishes the interference-mitigation
benefit of M-MIMO.

B. Intermediate UE density: λb < λu < Mλb

Since λu

3.5Mλb
is small, we have

ǫD ≈ 1−
(
1 +

λu

3.5Mλb

)−3.5

≈ λu

Mλb
. (49)

Based on (21) and (36), we can express the outage rates as

ORLB
M (η) =

λb

λu

log2 (1 + η)

1 + ǫCβn-fdM−2/µη2/µ
, (50)

ORLB
SM(η) =

log2 (1 + η)

1 + ǫDβfdη2/µ
. (51)

The condition for ORLB
SM(η) ≥ ORLB

M (η) is

1 +
1

M2/µ
ǫCβn-fdη

2/µ ≥ λb

λu
+

1

M
βfdη

2/µ. (52)

We note that (52) is true since1 ≥ λb

λu
andM ≥ M2/µ.

Therefore, s small-cell system outperforms a M-MIMO coun-
terparts when the UE density is moderate. Similar to Section
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Fig. 9: Comparison of the achievable user rate between M-MIMO
and small-cell systems withλb = 1.

V-A, the reason is again due to the effect of multiplexing a
large number of users under TDMA/FDMA M-MIMO.

Remark 2: In Sections V-A and V-B, a stronger and stricter
result which states that ORLB

SM(η) ≥ ORUB
M (η) is also provable

using the same arguments. However, we have used the lower
bounds ORLB

M (η) instead due to the symmetry and for the ease
of explanation.

C. Asymptotically Small UE Density: λu ≪ λb

Assuming a small UE density, it is difficult to compare
M-MIMO and small-cell systems since the M-MIMO lower
bounds are not close to the exact distribution or rates. In this
subsection, we consider the asymptotic regime whereλu is
very small compared toλb to reveal some insights for the
small UE density case. Note that

exp

(
−πλbP

2/µ
T

σ
4/µ
n q2/µ

M4/µ

)
≤ exp

(
−πλbP

2/µ
T

σ
4/µ
n q2/µ

MΓ
(
1 +

2

µ

))
,

(53)

whenµ < 4 andM is large enough, i.e.,M
4
µ−1 > Γ

(
1+ 2

µ

)
.

From (26), (27), (44), and (45), it is straightforward to prove
thatRM ≥ RUB

SM and ORM(η) ≥ ORUB
SM(η).

The above result essentially asserts that M-MIMO outper-
forms small-cell densification, albeit when the UE density is
asymptotically small andµ < 4. Combined with observations
from Sections V-A and V-B, we note that there exists a
threshold with smaller UE density than which we should
employ M-MIMO and larger UE density than which small-cell
densification is more preferable, in terms of spectral efficiency.
As an example, we compare the achievable user rates of M-
MIMO and small-cell systems in Fig. 9. Note that as the path-
loss exponentµ approaches4, λu needs to be smaller so that
M-MIMO rate can outperform small-cell counterpart. When
µ ≥ 4, the M-MIMO rate is always worse than that of small-
cell, as suggested by (53).

We would like to highlight here that our study have not
considered the deployment cost, the signaling overhead, the
handover implementation, etc. We have also not considered
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multiuser beamforming in M-MIMO. Due to the space con-
straint, we leave such interesting and important investigations
as our future works.

Note that we can consider small-cell and M-MIMO systems
as two extrema of a balancing problem, where the number
of BS antennas and BS density can vary while their product
always equals toMλb. In other words, the problem is to
distribute the antennas from a pool with densityMλb so
that the resulting rate performance is optimal. The analysis
of this problem is partially covered by Sections III and IV.
The above arguments suggest that the optimal setup should
be a moderate M-MIMO system with sufficient beamforming
gain and a sufficiently dense BS deployment.

VI. ENERGY EFFICIENCY COMPARISON FORM-MIMO
AND SMALL -CELL SYSTEMS

Apart from spectral efficiency, energy efficiency (EE) is also
an important factor for evaluating future communications net-
works due to several environmental concerns. In this section,
we compare M-MIMO and small-cell systems using EE as the
metric. In the literature, a conventional definition for EE is

EE,
RAP/BS

PAP/BS
, (54)

wherePAP/BS and RAP/BS are the transmit power and sum-
rate of the corresponding AP/BS to all users, respectively.
However, for ease of analysis, we consider the following EE
definition based on the outage rate

EE(η) ,
ORAP/BS(η)

PAP/BS
. (55)

We can interpret EE(η) as the energy efficiency of the
AP/BS given that the user SINR satisfies the constraint SINR
≥ η. Observations for EE based on (54) can be similarly
obtained. Note that due to the transmission probability, the
expected transmission power for each M-MIMO BS and small-
cell AP are given asǫCMPT and ǫDPT , respectively. We
first consider the moderate to large UE density regime where
λb < λu and obtain

EELB
SM(η) =

ORLB
SM(η)

ǫDPT
>

ORLB
M (η)

ǫDPT
≫ ORLB

M (η)

ǫCMPT
= EELB

M (η),

(56)

since ǫD < ǫC , M ≫ 1, and ORLB
SM(η) > ORLB

M (η) from
Sections V-A and V-B.

Furthermore, under the asymptotically small UE density
regime withλu ≪ λb, we haveǫC ≈ λu

λb
and ǫD ≈ λu

Mλb
.

Therefore,ǫC ≫ ǫD. From (26), (27), (41), and (42), it is
straightforward to show that EESM > EEM and EESM(η) >
EEM(η) by noting that the exponential function approaches0
asM grows large.

The above result reveals that small-cell systems are more
energy-efficient than M-MIMO counterparts with large, mod-
erate, or asymptotically small UE densities. Strictly speaking,
such results do not cover the small UE density regime.
However, we conjecture that small cells outperforms M-MIMO
in terms of EE under all cases. This conclusion is likely to

hold even with multiuser beamforming/precoding applied at
each M-MIMO BS.

From Sections V and VI, we observe another important
aspect of the trade-off between M-MIMO and small-cell den-
sification. Particularly, even through M-MIMO have a higher
spectral efficiency as under small UE density regime, small-
cell densification might still be a preferable option for certain
communication systems due to its higher EE performance.

VII. C ONCLUSIONS

In this paper, we have compared the spectral and energy
efficiencies of massive MIMO and small-cell systems. Par-
ticularly, we have derived SIR distribution bounds for both
systems, based on which the average Shannon and outage rate
bounds are obtained. We have also analyzed the performance
of M-MIMO and small-cell under asymptotically small UE
density regime, which represents UE-sparse networks. The M-
MIMO and small-cell systems were then compared in terms
of spectral and energy efficiencies. For the rate performance,
we observe that M-MIMO surpasses small-cell densification
when the UE density is small compared with BS/AP density
and number of antennas, and vice versa. However, small-
cell network yields better energy efficiency than M-MIMO
counterpart under all cases. The results of this paper are useful
for the optimal design of practical 5G networks and other 5G
system performance analyses.

APPENDIX A
PROOF OFCOROLLARIES 1 AND 2

A. Proof of Corollary 1

Given thatdC,b,b = x. The Laplace transform is given as
[9, (26)]

LQ−1

M
(s|dC,b,b = x) = e−

s
M xµδ exp

{
− πλ̂C,bx

2(1− e−s/M )

− πλ̂C,b

( s

M

)2/µ
x2γ

(
1− 2

µ
,
s

M

)}
, (57)

whereδ =
σ2
n

MPT
. Now we observe thatdC,b,b is the distance

from an arbitrary origin to the nearest point of a PPP with
densityλb. The PDF ofdC,b,b is expressed as follows

fDC,b,b
(x) = 2πλbxe

−πλbx
2

. (58)

The Laplace transform of SINR−1
b is thus obtained as

LQ−1

M
(s)

=

∫ ∞

0

LSINR−1 (s|dC,b,b = x) fDC,b,b
(x)dx

= 2πλb

∫ ∞

0

x exp

{
− s

M
xµδ − πλ̂C,bx

2

[
1 +

λb

λ̂C,b

− e−s/M +
( s

M

)2/µ
γ

(
1− 2

µ
,
s

M

)]}
dx

= πλb

∫ ∞

0

exp

{
− syµ/2σ2

n

M2PT
− πλ̂C,by

[
1 +

1

ǫC

− e−s/M +
( s

M

)2/µ
γ

(
1− 2

µ
,
s

M

)]}
dy. (59)

This concludes the proof of Corollary 1.
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B. Proof of Corollary 2

For ease of presentation, we will considerQM/M . The
lower bound is given as

F LB
QM/M (q) =

∫ ∞

0

F LB
QM/M (q|dC,b,b = x)fDC,b,b

(x)dx

=

∫ ∞

0

(
1− e−λ̂C,bπ(q2/µ−1)x2

)
2πλbxe

−πλbx
2

dx

= 1− 1

ǫCq2/µ + 1− ǫC
. (60)

Now assume thatdC,b,b = x, q ≥ 1, and ξ ≥ 1. Similar
to [9, (39)], the distribution for massive MIMO case can be
bounded as

FQM/M (q|dC,b,b = x) ≤ 1− e−λ̂C,bπ((ξq)2/µ−1)x2

+ e−λ̂C,bπ((ξq)2/µ−1)x2 2πλ̂C,bx
2ξ2/µ−1q2/µ

µ− 2
, (61)

We therefore obtain

FQM/M (q)

≤ 2πλb

∫ ∞

0

(
1− e−λ̂C,bπ((ξq)2/µ−1)x2

)
xe−πλbx

2

dx

+
(2πλb)

2ǫCξ
2/µ−1q2/µ

µ− 2

∫ ∞

0

x3e−πλb(ǫC(ξq)2/µ+1−ǫC)x2

dx

= 1− 1

ǫC(ξq)2/µ + 1− ǫC

+
2ǫCξ

2/µ−1q2/µ

µ− 2

1
(
ǫC(ξq)2/µ + 1− ǫC

)2 (62)

(a)
= 1− 1

ξ̂2/µ
(
ǫCq2/µ + 1− ǫC

)

+
2ξ2/µ−1ǫCq

2/µ

µ− 2

1

ξ̂4/µ
(
ǫCq2/µ + 1− ǫC

)2

(b)

≤ 1− (µ− 2)ξ̂ − 2

(µ− 2)ξ̂1+2/µ

1

ǫCq2/µ + 1− ǫC
, (63)

where in(a) we have defined

ξ̂ ,
ǫC(ξq)

2/µ + 1− ǫC
ǫCq2/µ + 1− ǫC

; (64)

and (b) is due to the fact thatξ2/µ−1 ≤ ξ̂2/µ−1 with µ > 2
and 0 ≤ ǫC ≤ 1. Note that ξ̂ has the same support asξ,
i.e., ξ̂ ∈ [1,∞). The next step is to find the maximum of the
function

f
(
ξ̂
)
=

(µ− 2)ξ̂ − 2

(µ− 2)ξ̂1+2/µ
(65)

given that ξ̂ ≥ 1. The optimal ξ̂∗ is µ+2
µ−2 . This value is a

guidance for our subsequent analysis.
Specifically, from (62), we will show that

1− 1

1 + ǫCβn-fdq2/µ
≥ 1− 1

ǫC(ξ0q)2/µ + 1− ǫC

+
2ǫCξ

2/µ−1
0 q2/µ

µ− 2

1
(
ǫC(ξ0q)2/µ + 1− ǫC

)2 , (66)

where ξ0 = µ+2
µ−2 . After some manipulations, it is observed

that (66) holds true if and only if

2

µ− 2
q2/µξ

2/µ−1
0 +

2

µ− 2
ξ
2/µ−1
0 q4/µǫCβn-fd

≤ ǫCξ
2/µ
0

(
βn-fd − ξ

2/µ
0

)
q4/µ + 1− ǫC + ǫC(ξ0q)

2/µ

+ (1− ǫC)
(
βn-fd − ξ

2/µ
0

)
q2/µ. (67)

Now note that withβn-fd = (µ+2)2/µ+1

µ(µ−2)2/µ
and ξ0 = µ+2

µ−2 , we
have

βn-fd − ξ
2/µ
0 =

2

µ− 2
βn-fd

1

ξ0
=

2

µ+ 2
βn-fd, (68)

which leads to

ǫCξ
2/µ
0

(
βn-fd − ξ

2/µ
0

)
q4/µ =

2

µ− 2
ξ
2/µ−1
0 q4/µǫCβn-fd.

(69)

Furthermore, we obtain

ǫC(ξ0q)
2/µ + (1− ǫC)

(
βn-fd − ξ

2/µ
0

)
q2/µ − 2

µ− 2
q2/µξ

2/µ−1
0

= q2/µ
(µ+ 2)2/µ−1

(µ− 2)2/µ

(
ǫC(µ+ 2) + (1− ǫC)

2(µ+ 2)

µ
− 2

)

= q2/µ
(µ+ 2)2/µ−1

(µ− 2)2/µ

(
ǫCµ+ (1− ǫC)

4

µ

)
≥ 0. (70)

Combining (69) and (70) we thus showed that (67) holds
true. Therefore, forq ≥ 1, we conclude that

FQM/M (q) ≤ 1− 1

1 + ǫCβn-fdq2/µ
= FUB

QM/M (q). (71)

Similar to [9, Lemma 2], we can show that

FQM/M (q) < 1− 1

1 + ǫCβn-fdq2/µ
(72)

asq → 0 or q < 1 but q → 1. Intensive simulations show that
(72) holds true for all intermediate values0 < q < 1 as well.

This concludes the proof of Corollary 2.

APPENDIX B
PROOF OFLEMMA 2

Applying Lemma 1, the PDF ofS, the area of a typical
Voronoi cell formed fromΦC,b, can be given as [21, (12)]

fS(x) =
3.53.5

Γ(3.5)
λ3.5
b x2.5e−3.5λbx. (73)

Since the UEs are distributed according to a homogeneous
PPP with densityλu, the probability of the number of UEs in
an areax is given by

Pr{Nu = n|area= x} = e−λux
λn
ux

n

n!
. (74)

The distribution of the number of UEs is thus equal to

Pr{Nb,u = n} =

∫ ∞

0

Pr{Nb,u = n|area= x}fS(x)dx

=
3.53.5

Γ(3.5)
λ3.5
b

λn
u

n!

∫ ∞

0

xn+2.5e−(λu+3.5λb)xdx (75)
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Note that by using [24, (3.371)], we can express the distribu-
tion of the number of UEs as

Pr{Nb,u = n}

=
(2n+ 5)!!

n!

3.53.5

15× 2n
λ3.5
b λn

u

(
1

λu + 3.5λb

)n+3.5

.

(76)

This expression, however, is difficult to manipulate. In the
following derivation, we use (75) instead. The expectationof
Nb,u is given as

E [Nb,u] =

∞∑

n=1

nPr{Nb,u = n}

=
3.53.5

Γ(3.5)
λ3.5
b

∫ ∞

0

( ∞∑

n=1

n
λn
ux

n

n!

)
n2.5e−(λu+3.5λb)xdx

(a)
=

3.53.5

Γ(3.5)
λ3.5
b λu

∫ ∞

0

e−3.5λbxx3.5dx
(b)
=

λu

λb
, (77)

where(a) comes from the fact that
∑∞

n=1 n
xn

n! = exx and(b)
is due to [24, (3.371)]. This concludes the proof of Lemma 2.
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