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Abstract—In this paper, we study the downlink performance of between the APs and UEs, small-cell networks have smaller
two important 5G network architectures, i.e. massive multple- path loss and co-channel interferences while requiringetow
input multiple-output (M-MIMOQO) and small-cell densificati on. power consumption, hence improving both spectral and gnerg

We propose a comparative modeling for the two systems, where ffici . Th . f Il-cell d ificati h
the user and antenna/base station (BS) locations are diskiited einciencies. € gain ot smail-cell densification, however

according to Poisson point processes (PPPs). We then levgea IS subject to more complicated cell planning and inter-cell
both the stochastic geometry results and large-system anical coordination/cooperation|[8].

tool to study the SIR distribution and the average Shannon  The evolution of high spectral/energy efficiency for 5G thus
and outage rates of each network. By comparing these results yoqits in two opposing ideas: concentrating the antermas t

we observe that for user-average spectral efficiency, smatkll S
densification is favorable in crowded areas with moderate tdigh form M-MIMO BSs, and distributing them to form small cells.

user density and massive MIMO with low user density. However It is thus natural to ask which approach performs better and
small-cell systems outperform M-MIMO in all cases when the under which scenarios. Despite many works studying either

performance metric is the energy efficiency. The results oftis  M-MIMO or small-cell networks, there exists few work in
paper are useful for the optimal design of practical 5G netweks. |ierature comparing their performance. One of the reasons
is due to system modeling: no existing framework so far
_ Index Terms—Fifth generation (5G) systems, massive multiple- gllows for an effective collation. In this paper, we aim to
|nputmultlple-output(MIMO),small cell densification, st ochastic partially answer the above question using the metrics of
geometry, large system analysis. g . .
spectral and energy efficiencies. In particular, we resort t
stochastic geometry and random matrix theory (RMT) for the
|. INTRODUCTION analysis. A brief introduction of stochastic geometry cé&soa

The fifth generation (5G) communications system nee@§ found in [9]. o
to deliver improvement over 4G, e.g. much higher user dataRMT, also referred as large-system analysis in literature,
rate/spectral efficiency, enhanced eco-friendliness aretgy Was usgq to investigate large multi-user linear receivers a
efficiency, seamless communications, and low latency @c. [c0de division multiple access (CDMA) networks [10]. [11]
To meet the required performance, densified topologies wifd various MIMO setups_[12]/ [13]. While exact analyses
two main approaches, i.e., massive multiple-input muetipl '€ realizable under_f|n|te-d|men5|o_nal matrix theory [1Hgy _
output (M-MIMO) and small-cell densification, are promigin often Igaql to compllcatgd expressions hence do not provide
candidate technologies|[2]. useful insights. The seminal monogra_ph [15] and other works

In M-MIMO, each base station (BS) employs a Iarge—sca!?éave shown that Igrge—system ar_1al){5|s can reveal many more
antenna array in linear, cylindrical, or other shapes. HEngd iNnteresting properties of communication systems. Funticee,
number of antennas not only provides more diversity to tiféthough the analysis is mathematically accurate only for
transmission but also “hardens” the channel, allowing loW2r9e random vectors/matrices, the obtained results remai
complexity but sharp beamforming towards the user equiQQOd approximations for finite-dimensional cases. Reygn_tl
ments (UEs)[[B]. The results are less interference and higi@any studies have also advanced the so-called “deteriinist
spectral and energy efficiencies. The main drawback of Ngduivalent” approach to investigate more sophisticatetesy
MIMO is the channel estimation/acquisition and feedbacRcdels [16].
which require a high accuracy to attain the gain that M- M-MIMO, which employs a large number of trans-
MIMO promises[4]-[6]. Pilot contamination, itself an etirgy Mit/receive antennas, is a natural application of largetesy
problem, also restricts the benefits of M-MIMO [4]] [7]. analysis. A detailed survey can be found|in [171, whlch lists

In contrast, small-cell networks consists of many mifany key M-MIMO performance analyses considering hard-
croffemto cells with limited number of antennas, typicallye Waré impairments [18], channel state information (CSl)-est

or two, at each access point (AP). Due to the short distarf@&tion/acquisition[5],[[7], and resource allocation(meing
schemes| [19],[]20]. Note that most of the M-MIMO studies
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two topologies. The contributions of our paper are sumnadrizcell densification are given in Sectidn$ V VI, respetyive
as follows: Finally, Sectior VIl concludes the paper with some remarks.

Notations: Scalars and vectors/matrices are denoted by

« System Modeling: We propose a model for M-MIMO
S lower-case and bold-face lower-case/upper-case letters,
and small-cell networks which incorporates the random-

ness of both transmitting distributed antennas (DAs)/B§£J ectively. The conjugate, transpose, and conjugatepioses

* AYA NH i
and single-antenna UEs. Particularly, the DA/BS and U erators are denot(‘ad' by)*, ()", and ()7, re.spectlvely.

; o : . ! Al; ; stands for thgi, j)th element of the matrixd. Ex|']
locations are distributed according to Poisson point prg- "

cess (PPPs) with possibly different densities. Therefor ?notes the statistical expectation over a random varidble

there exists a transmission probability that some trarsmi rg)('jgté'r'rlnwi'n:?]? g?t;-in;etﬁ;esreerslt teh;i\tre?;e' dl;rrtl)(;atir;u;;\;?rm,
ting antennas/BSs are turned off due to no associated  esp !

We assume a time/frequency division multiplexing accesg_M identity matrix. R**v an(_j cr denot_e the space of
(TDMA/FDMA) scheme in which the transmitting nodesx._by'y real and cpmplex matrlces,_resp_ect_lvely. Fln_ally, the
associated with more than one UE will communicat%IrCUIarIy §ymme2tr_|c complex Gaussian dlst2r|but|0n witisan
with only one UE in each resource block. Finally, wé' and variancer* is represented bgA (u, o).

assume non-coordinated DAs/BSs and employ conjugate

beamforming, which is optimal for non-coordinated M- !l- STOCHASTIC MODELING FORMASSIVE MIMO AND
MIMO with single-antenna UEs. SMALL -CELL SYSTEMS

o M-MIMO and Small-Cell Network Analysis: We study A. M-MIMO System

the performance of M-MIMO and show that the signal- \\e consider a M-MIMO system where BS and UE locations
to-interference ratio (SIR) distribution at a typical UEgye distributed according to homogeneous PPRs anddc .,

is similar to that under a non-fading ad-hoc networkys intensitiesAc, = Ay and A,y = Ap. = A, respectively.
Here, the important differences between the two caspgch UE is associated with the nearest BS each with

are the M-MIMO gain and transmission probability. Asyntennas. Here, we assume that each BS is scheduled to serve
discussed before, the results for fading ad hoc networkg|y one UE at each time/frequency slot due to time/frequenc
can be directly extended to the small-cell counterparigiision multiple access (TDMA/FDMA). In each slot, the

transmission probability. We therefore utilize the result

from [9, Sections Il and V] to derive the bounds for the Yoo =he o + Z hy vow +ncp, (1)

SIR distribution of M-MIMO and small-cell networks. b'eB/{b}

tE;ased on these analyses, we further obtain the bounds\}‘vonrereg is the set of transmitting BS#&. ,, , is the channel
oth the average Shannon and outage rates of the two YSiween B and the associated UE of BSandzcy is the

) : : o

tems. To better characterize the small interference regime + sianal f BS' Here h B o _

the performance of M-MIMO and small-cell networks is &> 3'9{)6‘ rom - ETE, oy =y §c,_b/,b C:b7,bs
also derived under the assumption of asymptotically sméffvb = deyy, 1S @ large scale fading |Anclud|ng path loss
UE density. with o denoting the path loss exponerite,, , follows a

« Comparison between M-MIMO and Small-Cell Den- statistical distributionic i, ~ CN(0,1), Vb, € B; and
sification: We reveal that small-cell densification yieldsc,s is the additive white Gaussian noise (AWGN) distributed
better rates than M-MIMO when the user density i@sCN(0,02). For a fair comparison with small-cell systems,
moderate or large compared to the transmitting nod¢e assume that each BS has a total power constrainf B
density and number of antennas. However, M-MIM@nd thereforé|xzc i[> = M Pr.
outperforms small-cell systems under the asymptotically We consider a practical regime in which each BS only
small UE density regime. This implies that there exists knows the channel between itself and the associated UE via,
UE density threshold lower than which we should emplo§-9., channel estimation and feedback. Under such assumpti
M-MIMO and higher than which small-cell densificationeach BS implements the conjugate beamforming to transmit
is more preferable, when spectral efficiency is the perfosignals to its respective UEs.
mance metric. We further compare the energy efficiency Fig. [I shows one channel realization of the M-MIMO
performance and show that small-cell always outperforrgystem model. Here, the service area is assumed to be a square
M-MIMO. The results are therefore useful for the optimaliegion of20 x 20. The BS and user densities axe , = 0.05
design of the upcoming 5G heterogeneous networks. and A, = 0.15, respectively. Note that as the UE density is

not sufficiently larger than the transmitter density, songsB

Thg rest of the paper is organized as follows. Sec{fﬂ)n e not associated to any user. The corresponding cells are
describes our M-MIMO and small-cell network models, whicly - 1 o by green color for a clear illustration

incorporate the randomness of both transmitting nodes and

UEs, for a fair comparison between M-MIMO and small-cell

densification. In Sections ]Il anld 1V, we investigate the mB. Small-Cell System

MIMO and small-cell systems introduced in Sectign I, based For a fair comparison, we consider a small-cell system
on the results from |9, Sections Ill and 1V]. The spectral andhere distributed antenna (DA) and UE locations are dis-
energy efficiency comparisons between M-MIMO and smalfributed according to homogeneous PRPs; and ®p ,, of



By using Lemmadll, the transmission probability of BSs is
approximated as [22]

A —3.5
~1—|(1 k ) 4
cc ( + 3.5/\b) @)

Note that given the transmission probabiliy, the trans-
mitting BS locations are thus distributed according to a PPP
bcy with density)\ab = €cNp.

A. Conjugate Beamforming - Large System Analysis

Since all BSs employ conjugate beamforming, the transmit
signalzc is

VMPrhcpy

SC.b, 5
Theaall O ®)

TCp = WCpSCh =

0 4
0 2 4 6 8 10 12 14 16 18 20

Fig. 1: A channel realization for either M-MIMO or small-tel Wherewc, = VM Prhcpp/||hcps| € C¥*1 is the con-
systems. Here “0”, “x”, and straight lines denote the traittem jugate beamformer of BS. As a consequence, the received
(BS/DA), user, and boundaries between cells. The cellsouithny signal of the UE associated to BSis given as follows

user are marked by green color.
yep = VMPr||he )

intensitiesAp , = M X, and Ap ., = Ay, respectively, in the VMPrhg y yhow
Euclidean plane. Each DA is associated with the nearest UE. Z

For simple description, we consider one resource block,(e.g
frequency and time), which is taken by only one UE, i.e., one The SINR of the UE associated to BStherefore can be

DA serves one user at a time. The received signal atiser expressed as

SC.b

e o xoy +ncy, (6)
v eB/{b} G0

2
Ypk =hpkkpk+ Y. hDkwTpr 1Dk, (2 SINR, = }]I\/[PTHhC’b’bL
kK eK/{k} S MPr héy yhowy v hey phoy b o2
2 n
where K is the user sethp s is channel gain between veB/{b} iger
user k and selected DA for usek’; zp is the transmit dr Hﬁ H2
signal from userk; and np is the AWGN CN(0,02). Cbb ||
_ . ~H -~ ~H -~
Here,hp ki = \/Ep.k i hp ke ks €k pr = dpy o 1S @ large —n hovishoyyhoyvhovs = ol
scale fading including path loss with denoting the path ) deip ~ 3 MPy
loss exponent; andp - follows a statistical distribution beB/{by Hhc,b/,b/
hp kw ~ CN(0,1), Yk, k' € K, k' # k. We assume equal @)

power constraint at each DA, i.eE|zpk|> = Pr. Note ~
that we can consider Fi§l]l 1 as a channel realization for theNote that the vector serieéﬂ € CMx1 gsatisfy the
small-cell system model with the DA and UE densities beingondition of [16, Theorem 3.4]. Therefore, we have

)\D,b =0.05 and )\, = 0.15. -~ 2 M— o0
Hhc,b,bH /M ——1, 8
. M ASSIVEMIMO SYSTEM ANALYSIS Based on[(8), the SINR of the UE associated to BB

In this section, we investigate the performance of M-MIM@Xxpressed as
systems based on the results in our paper [9, Section I8t,Fir Owm £ SINR,
we derive the distribution of the signal-to-interferenias- R 9
noise ratio (SINR) and SIR. Note that if the UE intensityis dé,’é,b Hhc’b’bH /M
not sufficiently larger thar,, then some M-MIMO BSs may

~H =~ ~H =
not possibly be associated to any UE, and thus, do not transmi e hey vhew vhey phoy b o2
signals. Therefore, it is necessary to study the transamissi beB)(b) G0 ula 2 M?2Pr
probability of each BS. The following result provides thear H C.onY
distribution of Voronoi cells. Mes Mad:l ,
ol - | Mo 2 9)
Lemma 1 ( [21]): Given a PPRb with homogeneous den - -2 (
sity \. The probability distribution function (PDF) of, D daf{,/7b|hb/|2+ M;?
the area of a typical Voronoi cell formed from, can be b E€Dc,a/{b} T
approximated as _ R _
4585 where by, £ ZCblblrobnd’. g gre ij.d. random variables
fs(x) ~ ° A3.5$2.5e—3.5)\1. (3) . . . ' C,b’ b’ ) o
['(3.5) each distributing a§A/(0,1). The form [3) is similar to that




1 T

investigated in[[9, Section V]. It has been shown tHat (9] [ ST NSO SRS S
is difficult to study, in particular to derive the cumulative o9 .o L PR
distribution probability (CDF) bounds. As discussed fin [9, I AT T i
. H 08 - -7 NI )\ =4
Section V], we can well approximate : o u
0.7 Fat B
— 712 —p x| 7 ‘
Do ddlyplhwlr Y ddy, A0 E L/ A 1
b'edo,a/{b} b Edca/{b} Tob) s n
= 05F ) o 1
As a consequence, we have 5 ! v
Looaff ) (B ERSRIRE
Mdgk o i T
Qu ~ S —. (11) 03 ¢ - =01 1
Z di’u‘/ + a.n 02 :-ff /////) |
bed b b M Pr ) ~ Simulation
€c.a/{b} 01f 1 477 - — — Analytical Lower BoundH
VA4 -~ Analytical Upper Bound
B. Probability Distribution % 5 10 15 20 2 0 35 40 45 50

We note that the form of the SINR if_({L1) is similar to
that investigated in_[9, Section Il]. Therefore, we can gppl
the results for the outage probability, average achievidiks
and outage rate in [9, Section II] here. The only but impdrtan
difference is that the interfering BSs’ locations are distred 18
according to the PPR¢ 4 with density \,, while the PDF of
the nearest distance follows that from P8P ; with density
Xp. The following corollaries follow same reasonings as’in [9, i, ™
Theorem 1, (9), and (10)]. The proofs are given in Appendi» § 12|
[A] where we only highlight the differences for brevity.

Corollary 1: Assume that the transmitting BSs follows a

PPP(T)CVd with densitch_,d. The Laplace transform (112,\*,'1
can be expressed as

Fig. 2: Simulated SINR CDF and its bounds](1B).](14) for M-MOM
with M = 64, u = 3.7, A, = 1, and Pr/o® = 15 dB.

2 . .
Simulation
o Analytical value 2£C/(p—2)

161

Average of M
o
o

Lap ) =nn [ o] o5 — ’
1 (s)=m ex — - = —
o' b P / MEpp | CdY o2} B S s S
1 _s/M s \2/K 2 s R — Y A S
el ()7 (-2 2) Y e
€c H Path-loss exponent y
Corollary 2: Given thatM — oo, the lower and upper gy 3: average ofi/SINR; ! for M-MIMO with M — 64, ;1 = 3.7,
bounds of the SIR distribution are given as follows Ao = 1, and Pr/o? = 15 dB.
0, 0<q< M,(13a)
LB H
Foulg) = 1— _ i M <gq, (13b) not accu_rate in UE—;parse networks. Fyrthgr results for M-
ecM kg +1—ec MIMO with asymptotically small UE density will be presented
in SectionII-D.
FYB(g) =1 1 (14) In Figs.[2 and B, we confirm the validity of Corollaries
i) = 1+ ecBnsaM —2/1g2/1n" @ and[3, respectively. From Fi§] 3, it is observed that the

Similar to [9, (10)], [I#) is rigorously proved only for: (a)assumption that the transmitting BSs follow a PP£; with

q > M, and (b)g < M with ¢ — 0 or ¢ — M. The following densitch_,d = ec Ay With ec _given in [4) is quite accurate.
result is a counterpart of [9, Corollary 1] for massive MIMJ10Wever, the upper bound is only close to the exact SINR
when M — oo. The proof can be deduced from Appendigistribution whem, is sufficiently large §., > A, by intensive

and thus is omitted for brevity. Note that Corolldfy Fimulations), as shown in Fig] 2. As, decreases compared
does not require the approximatidi(10) sife [MSIR; ] to )\, the upper bound(14) becomes looser. The reason is that
already averages over the channel fading. some inequalities, used to derive the upper bound in Appendi

Corollary 3: Assuming a very larga/, the expectation of A=Bl are not strict especially whee: is small. The lower -
MSIR, Tis given asEq [MSIR; '] = % bpund, hoyvev_er, is not affected by the UE density due to its
Remark 1: Itis important to remind that Corollarigs 2 aid FiMPle derivation.
are derived by assuming that the noise power is negligilde, i )
o2 = 0, and considering the SIR instead of SINR. In smaff- Average Achievable and Outage Rate
UE density network, i.e.A, > \,, such assumption is not Based on Corollar{/]2, we investigate the average Shannon
accurate anymore since the interfering sources are far avemd outage rates for M-MIMO systems. We note that due
and the interfering power is small. The noise effect therefoto TDMA/FDMA, each user is only served for a fraction of
is more important. As a consequence, Corolldries 2[@nd 3 éirae or a sub-band. Assuming that all users have the same



transmission priority, that fraction can be defined 7@\%—

where N, ,, is the number of users in cell The foIIovxl;iﬁg b A’*/\A lleemmi® |
result establisheR [NV ,,]. JUEE o

Lemma 2: The expectation of the number of users inag |\ .-~ 9] |
typical cell b is given as g i://@“ )a\\ [ T

_)\C,u_)\u %8 /B"//// \\/, 7

. [Nb,U] - /\C=b B /\_b (15) é 8 - )\u -o4 —&— Simulation
=1 I
Proof: Please refer to Appendix]B. | ) oI ~ @ ~ Analytical Lower Bound
As expected, the average number of users in a cell ig |, = Analytical Unper Bound)|
proportional to the UE density while inversely proportibna < A =4

to the BS density. The simple linear scaling is surprising, b 2l L . fg;\t;;;;;;::—:é |

intuitive. The reason is due to the homogeneity of both BS an g,,ﬁfﬁ{ - ?: o 4 L o
Eagt

UE PPPs, which does not create clusters of either BSs or UE
Therefore, with\, UEs and\, BSs in a region oft km?, we

14

0

I I I
20 30 40 50
Number of transmit antennas M

70

expect tp see the UEs homogeneou_sly dlstrll_outed across I§1II§IJ 4: Average user rate and its bounds (18) &7 (19) for WA
BSs, which leads ta,/\,. By comparing the simulated and 1, respect toM. Here, i = 3.7, Ay = 1, and Py /o> = 15 dB.
analytical values oE [N, , ], intensive simulations confirm the
validity of Lemmal2. The comparison is not presented due to A
b
1.2
{5

the space constraint. ORZ (1) = min
Here, the termmin 4 1, i—b in Corollaried 4 and5 is due

Note that the rate of an UE associated to BB given as
where the fractionL— is due to TDMA/FDMA. We thus the fact that TDMA is applied only whenv;,, > 1, and
Ny we have approximated

obtain the average Shannon rate of a typical user as follows

@ E[

log, (1 +1)
2/
1+ ecfna (75) /t

(21)

1
Ry = 57— log; (1+ SINRy) (16)

)

el L] L _ N
Now|  E[Npu] M

Ru =Eog, 00, [Roul } E [log, (1 4+ SINRy)] . (22)

(17)

b,u

. In Figs.[4 and’b, we compare the average and outage user
Here, (a) is due to TDMA/FDMA and the fact that the raeq with the bounds given IR (18){21). We first observe tha
random variables SINRand N, ., are independent given thatine scaling laws of the bounds are closely matched with the

TDMA/FDMA is applied. true rates. The gap, however, seems to increase as the UE-BS

Based on Corollary]2 and Lemnid 2, we can derive theyngjty ratio becomes smaller. Nevertheless, the bourals ar

bounds for the average achievable rate and the outage ratg,&sy| for further studies on the M-MIMO performance under
follows. The proofs are similar to that df/[9, Lemmas 3 angaious network models.

4] and omitted for brevity.
Corollary 4: The average user raty is bounded above

T helow byRUB LB i
and below byRy® and Ry, respectively, where D. Asymptotically Small UE Density

RUB = min{l, %} <10g2(1 + M)

+
~/10g2(1+M) ecM=2/r(2t —1)2/1 +1 — ¢

LB
RM

zmin{

b
1, —
Ay

dt

wis

) , (18)
dt

1+ Ecﬂn_fdM72/“(2t — 1)2/“ '

In this section, we investigate the performance of M-MIMO
under the asymptotically small UE density regime. As the
transmission probabilityc approaches, the interference also
goes to0) since the interfering BSs are farther apart from each
other. In such cases, we can ignore the interference but not
the noise due to its dominant effect. The SINR can now be
approximated as the SNR and expressed as

19 RIS 2
9 i o

OQm = SINR, ~ SNR, =

Corollary 5: The outage user rate QfRn) is upper- and

on
lower-bounded by OFf () and ORF (), respectively, where op
UB as. MPrdc,,
ORy™ (1) ' = (23)
Ao "
in<1,— »1 1 0<n<M, (20a . .
mm{ ’ /\u} og>(1+ 1), sns M, (208) Since the PDF oflc; is
- . Ab logy (1 + 1)
1,— , M <n. 20b Ay’
mm{ Au } o ()" +1-ec - (200) fe (@) = 2mApme ™ (24)
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Fig. 5: Outage rate and its bouns](20) and (21) for M-MIMOhwit Fig. 6: Simulated SINR distribution, analytical resulf(3&and
M =64, 4 =37, N =1, andPr/o* = 15 dB. bounds [(3B),[(34) for small-cell system wittp , = M), = 64,

u=3.7, and Pr/o* = 15 dB.

it is straightforward to derive the SINR distribution asléols

2P h obey Rayleigh distribution, the coverage probability feeu
Pr{Qm < ¢} = Pf{dc,b,b > ( QT) }
qoy

o) 0.2
M4/ np2/n Pr(Qsw>q) = 7TM/\b/ GXP{ — Lqut/?
— oxp (-mbiT . (25) 0 Pr

4/p 2/p
On/
1 — M Mpv [1+6Dq2/“p (qu/“,%)} }dv.

k is expressed as

Therefore, the average Shannon and outage rates are given

as (30)
oo M4/“P§/“ A direct corollary of Lemma 6 is the SIR distribution for
R = /0 ll T exp <_7T/\b ol (ot — 1y2/m dt; (26)  the cases2/Pr = 0 given as follows.
" Corollary 6: The SIR distribution of a small cell system is
given as
M4/,uP2/M
ORw(n) = logy(1 + 1) |1 —exp <—7T)\bT2T/# Fou () = 1 1 (31)
On 7 Q q)=1-— .
(27) " Lt eng/tp (¢, )
Again, we obtain the SIR CDF, average achievable rate, and
IV. SMALL -CELL SYSTEM ANALYSIS outage rate bounds for the small-cell system. The diffe¥enc

- i . . . . . between the following Corollari¢s [7] 8 arid [9, Lemma 6] are
Similar to M-MIMO, if the UE intensityA, is not suff that the interfering cells follows a PPP with densify)\;, and

ciently larger than\;, then some DAs in the small-cell systeme ch DA might need to serve multiple UES via TDMA/FDMA.

may not be a;somated to any UE, and Fhus, do not ”‘.’J‘”?'\‘/‘\%e note that the expectation of the number of UEs associated
signals. Applying Lemmall, we can derive the transmission

probability of a DA in our system as [22] with a typical DA is given as (cf. Lemmal2)

- A A

)\u 3.5 E [Nk ] _ D,u _ U

~1—|(1 . 28 o ’

v < * 3.5M)\b) (28) App M

The transmitting DAs thus can be modeled as a homoge-The proofs for the following results are similar to those of
neous PPRp, , obtained by thinning the DA PP®, , with [9; Lemmas 5 and 6], and thus omitted for brevity.

a probabilitye» that DA is activated. In this case, the SINR Corollary 7: The lower and upper bounds for the distribu-

(32)

of a typical UEL can be described as tion of Qsm defined in [(2D) are given as
o 2
|PD k| di b Pr 1
Qsm = —% e P — . (29 F (¢)=1—E, . (33)
Dkvewn, /iy ki [ Prdl + o7 o L 2eparer (2, 142)
Using ep, we can obtain the coverage probability of a UB () =1 — 1 (34)
typical userk in Lemmal3 [23]. Qsu\d) = 1+ epBag®/*’

Lemma 3 ( [23]): Given that the transmitting DAs are . _ o
modeled as PPB, , and both desired and interfering signalgvhere|h|* is exponentially distributed.
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it is straightforward to derive the SINR distribution asléols

Corollary 8: The average Shannon rafesy(a) and the PQ/“|h|2/N
()]

outage rate ORu(«,n) are bounded below, respectively, by Pr{Qsw < ¢} = E,

Ui/ILQQ/#

LB . MMy ° dt
Ty = min 1, == o 1+epfa(2_1)/n  Wwhere the random variable~ CN(0,1).
bPrd (35) Therefore, the average Shannon and outage rate are

, MM\, logy (141) o PY/Mp|2/n
OR\(n) = 1 2 : 36 = / - — —
s() mm{ LD W } 1+ epBan?/# (36)  Rsu 0 B e Uf;/”(? —1)2/n at,

Again, the termmin {1, I‘iAbi is due to the fact that

TDMA/FDMA is applied only whenNy ,, > 1, and we have
approximated Rsm(1)
Pz/l‘|h|2/u
1 1 My @7 = logo(14+1n) | 1 —Ey |exp —WM/\bZT :
New  E[Nea A o e
(42)

In Fig. [, we compare the SINR distribution, analytical _ )
result [31), and bound5 (83]_{34) for two small-cell system To derive th_e boundsfo_EGl(]E(]ﬁlZ), we note that the function
It is observed that the upper-bourid](34), although simple,‘?Xp(_,O‘Iﬂ) W'th,ﬂ, < 1is convex inz > 0. Therefore,
quite tight when compared with the lower-boufid](33). Fig&PPlying Jensen's inequality, we obtain
[1 and8 illustrate the average and outage user rate for \&riou PR, [|h]/#]
small-cell systems. We also show the analytical rate lower Fqos.(q) > exp <—7TM)\bT—>
bounds given in Corollaryl8 for comparison. In contrast #® th
M-MIMO case, the bounds for small-cell systems are quite
tight. Note that we do not derive and present the analytical = exp <—7TM)\b
upper bounds for the rates here since they are complicated

Ué/#qz/u

2/ 2
PP+ D) & e @
U;ll/qu/M Qsm

and of limited use for subsequent analyses. (43)
The upper bounds faRsy and ORyw () are therefore given
A. Asymptotically Small UE Density as 2/u )
Under the asymptotically small UE density regime, the pus /OO 1—exp | —7Mx, PR T+ ) dt.
interference is negligible and the SINR of small-cell syste ai‘/“(zt —1)2/n
can be expressed as (44)
- 2
hp kx| d 5 Pr
Qsm = SINR;, ~ SNR; = % (38)  ORsi(n)
| | " P'T(1 4 2)
Since the PDF ofiy , is =logy(1+n) [ 1—exp —WM/\bTW“
on QoM

Fops (@) = 20 M Npwe ™™ MM (39) (45)



V. RATE COMPARISON FORM-MIMO AND SMALL -CELL 18} ,

Bl M=16,ji=4.2
SYSTEMS o -

M-MIMO and small-cell represent two densification ap- _ o :
proaches in 5G communication systems. The lack of a perfo < | =~ -
mance comparison between them is even more surprising give &
the fact that each approach has attracted significant ittent § e &;\M= 16,
in the literature. In this section, we exploit the newly obéal & 10l =<
results in Sectionsll and 1V to draw several observations o g \\*%\\\
M-MIMO and small-cell networks, revealing which approach g o M B

is better and under which setup. Here, the metric is the eutac< 4|
rate for simple arguments, but our observations can belyeadi
extended to the average Shannon rate. The key parameter h 4’ ‘
is the UE density\,,. — 5~ Smali-cell

2

10"
User density )\u

A. Very Large UE Density: A\, > M A,
9: Comparison of the achievable user rate between M-®IIM
In this case, the lower bounds of the outage rate are reducg,aj small-cell systems with, — 1.

to
ORE(n) = A logy (1 + 1) (a6) Al the reason is again due to the effect of multiplexing a
Na 1+ ecPnsaM —2/mp2/i’ large number of users under TDMA/FDMA M-MIMO.
Remark 2: In Section$ V-A an@ V=B, a stronger and stricter
5 M, log, (1+17) result which states that G (n) > OR}2(n) is also provable
ORgu(n) = Ao L+ epfBuan/r’ (47 using the same arguments. However, we have used the lower

as bounds OK? (1) instead due to the symmetry and for the ease
whereec ~ 1 — (1 + A 2 ~ 1. Simple manipulation of explanation.

shows that O (1) > ORLE (1) iff
M + M2/ Pec B * > 1+ epfan®*.  (48)

C. Asymptotically Small UE Density: A, < A,
Assuming a small UE density, it is difficult to compare
As a loose approximation_(#8) holds ifi*~2/#¢¢Bnsq > M-MIMO and small-cell systems since the M-MIMO lower
¢p B, Which is true sincen.a > B, €c ~ 1 > ep, andM is bounds are not close to the exact distribution or rates. ik th
large. We thus observe that a small-cell system outperfarmgubsection, we consider the asymptotic regime wheyes
M-MIMO counterpart when the UE density is very large. Thi¥ery small compared to, to reveal some insights for the
is due to the effect of multiplexing large number of usersamndsmall UE density case. Note that

TDMA/FDMA, which diminishes the interference-mitigation 2/ 2/
. o P Mo P 2
benefit of M-MIMO. exp <—”7TM4/“> < exp <—” boT r(1 + —))

Gill/uqz/# G;t/qu/#
. . (53)
B. Intermediate UE density: A\, < Ay < M,
Slnce3 e is small, we have wheny < 4 and M is large enough, i.eM%_1 >T 1+% .
s From [26), [2V),[(44), and_(45), it is straightforward to yeo
el <1+ Au ) o M (a9) thatRu > REG and ORu(y) > OREH(n).
3.5MX\, MM, The above result essentially asserts that M-MIMO outper-

éo s small-cell densification, albeit when the UE densgy i

Based on[(21) an 6), we can express the outage rate
[(21) and.(86) P g asymptotlcally small angk < 4. Combined with observations

ORE (1)) = Ay log, (1 +1) (50) from Sections[V-A and_V-B, we note that there exists a
Ao 1+ €cBngaM —2/mn2/n’ threshold with smaller UE density than which we should
employ M-MIMO and larger UE density than which small-cell
5 logs, (1 + 1) densification is more preferable, in terms of spectral efficy.
OR%M@?) = (51) As an example, we compare the achievable user rates of M-

+ enfran MIMO and small-cell systems in Fi@l 9. Note that as the path-

The condition for OB%(n) > ORE (1) is loss exponent, approached, A\, needs to be smaller so that
1 Ay , M-MIMO rate can outperform small-cell counterpart. When
sl > Yt ﬁcm /M. (52) >4, the M-MIMO rate is always worse than that of small-
cell, as suggested by (53).
We note that[(52) is true since > /’\\—b and M > M?/#, We would like to highlight here that our study have not
Therefore, s small-cell system outperforms a M-MIMO coureonsidered the deployment cost, the signaling overhead, th
terparts when the UE density is moderate. Similar to Sectiblandover implementation, etc. We have also not considered

1+ —+



multiuser beamforming in M-MIMO. Due to the space conhold even with multiuser beamforming/precoding applied at
straint, we leave such interesting and important investga each M-MIMO BS.
as our future works. From SectiondV an@ VI, we observe another important
Note that we can consider small-cell and M-MIMO systemaspect of the trade-off between M-MIMO and small-cell den-
as two extrema of a balancing problem, where the numbsification. Particularly, even through M-MIMO have a higher
of BS antennas and BS density can vary while their produgpectral efficiency as under small UE density regime, small-
always equals talM )\,. In other words, the problem is tocell densification might still be a preferable option forteéar
distribute the antennas from a pool with density)\, so communication systems due to its higher EE performance.
that the resulting rate performance is optimal. The analysi
of this problem is partially covered by Sections Il and IV. VII. CONCLUSIONS
The above arguments suggest that the optimal setup shoulth this paper, we have compared the spectral and energy
be a moderate M-MIMO system with sufficient beamformingfficiencies of massive MIMO and small-cell systems. Par-
gain and a sufficiently dense BS deployment. ticularly, we have derived SIR distribution bounds for both
systems, based on which the average Shannon and outage rate
bounds are obtained. We have also analyzed the performance
of M-MIMO and small-cell under asymptotically small UE
density regime, which represents UE-sparse networks. The M
Apart from spectral efficiency, energy efficiency (EE) isoialspmiMo and small-cell systems were then compared in terms
an important factor for evaluating future communicatiors n of spectral and energy efficiencies. For the rate performanc
works due to several environmental concerns. In this sectiqye observe that M-MIMO surpasses small-cell densification
we compare M-MIMO and small-cell systems using EE as thgnen the UE density is small compared with BS/AP density
metric. In the literature, a conventional definition for BEE i  gnd number of antennas, and vice versa. However, small-
» Raps cell network yields better energy efficiency than M-MIMO
EE= ——— (54) counterpart under all cases. The results of this paper afelus
for the optimal design of practical 5G networks and other 5G

where Papss and Rapjss are the transmit power and sum-System performance analyses.

rate of the corresponding AP/BS to all users, respectively.

VI. ENERGY EFFICIENCY COMPARISON FORM-MIMO
AND SMALL -CELL SYSTEMS

9
Pappss

However, for ease of analysis, we consider the following EE APPENDIX A
definition based on the outage rate PROOE OECOROLLARIES[AND 2
0 A. Proof of Corollary [l
EE(y) 2 OReres(n). 5 y -
Papss Given thatdc, = . The Laplace transform is given as

We can interpret Ef)) as the energy efficiency of the[g’ (26)]
AP/BS given that the user SINR satisfies the constraint SIN N —ahs 302 —s/M
. o - d, =x)=e M — T\ 1—
> 7. Observations for EE based ofi{54) can be similarfy@u (sldopp =) =e eXp{ mAcpa” (1 — e

obtained. Note that due to the transmission probabilitg, th ~ s\2/m 2 s

expected transmission power for each M-MIMO BS and small- —mAch (_) T <1 W M) }v (57)
cell AP are given as¢cM Pr and ep Pr, respectively. We R

first consider the moderate to large UE density regime wheMered = 7. Now we observe thadc,,, is the distance
Ay < A\, and obtain from an arbitrary origin to the nearest point of a PPP with

density \,. The PDF ofd¢ ;5 is expressed as follows
EEléB( ): ORIéE/I(n) > ORII\_/IB(n) > ORII\_/IB(U) — EEkAB( ) I
M7 epPr epPr ecM Pr s fDoy, (T) = 2w Apme ™ (58)
(56) The Laplace transform of SINR is thus obtained as

sinceep < e, M > 1, and OR, (1) > ORE(n) from Lo-1 (5)
Sectiong V-A and V-B. oo
Furthermore, under the asymptotically small UE density= Loing-1 (8|dops = ) fDey, (4)d
0

regime with\, < )\, we haveec ~ 3= andep ~ 1\?“

A Ap” 0o
Therefore,ec > ep. From [26), @),@1), and_(42), itis _ Qﬁ/\b/ xexp{ _ %z“é—wxabx? {1 4 A)‘_b
0

straightforward to show that Elg > EEy and Ekm(n) > feX)
EEwm(n) by noting that the exponential function approaches /M 5 \2/m 2 s\
as M grows large. —e + (M) v (1 T M) }dw
H _

The above result reveals that small-cell systems are more oo syt/262 . 1
energy-efficient than M-MIMO counterparts with large, mod- = m\b/ exp{ - FP L — TAchY {1 + —
erate, or asymptotically small UE densities. Strictly deg, 0 T2 €«
such results do not cover the small UE density regime. —es/M (i) /”7 (1 _ z7i) }dy. (59)
However, we conjecture that small cells outperforms M-MIMO M p M

in terms of EE under all cases. This conclusion is likely to This concludes the proof of Corollaby 1.
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B. Proof of Corollary 2 where &y = ’j—fg After some manipulations, it is observed
For ease of presentation, we will consid@y, /M. The that (66) holds true if and only if

lower bound is given as 2 _ 2 _
OS M_2q2/l$§§/# 1+M_2€§/# 1q4/MGC’Bn—fd
FLB _ / FLB d _ d , ,
ow/Mm(2) ) o /mdldeps =) fpg,, (2)dx < 6053/’ (ﬂn-fd _ 53/’ ) g1+ 1 — o+ ec(€og)”
B / (1 a eixcvbﬁ(qz/hl)mz) 2nde ™ d + (1 —€c) (ﬁn-fd - 53/#) ¢*". (67)
0
S P S— (60)  Now note that withBnsq = Y27 and e, = 242 we
€cq?’m +1—eo have nfd = (u—2)2/k 0= p=2r
Now assume thatlc,, = =, ¢ > 1, and{ > 1. Similar 9 1 9
to [9, (39)], the distribution for massive MIMO case can be Bota — &' = y 25”'“’5_ - mﬂ”‘f"v (68)
- 0

bounded as _
FQM/I\{(Q|dC,b,b _ ,T) <1-— e—}:c,bw((gq)wu_l)wz which leads to

- 2/ ( B 2/#) Ap _ 2 2fu-1 asp
+ o Rour(lEn? 1) 2N 22/ H1 g2/ m 61 ec&y’" ( Pnta — &' ) @ g 250 q*"ec Bnd
p—2 ’ (69)
We therefore obtain Furthermore, we obtain
2 _
Fou/m(a) ec(é0a)** + (1 - ec) (ﬂn—fd - 55/“) ¢ - mqﬂugg/“ '
i N /K 2 2
< 27r)\b/ (1 _ e Aewm (€0 -1)e ):ve_”)‘b”” dx 9)2/n—1 2 2
0 = 2/#% <60(u+2)+(1—ec)%_2)
2 2/pu—1,.2/p 00 _
+ (2m\y)%ec ;“ ¢/t / B (e +1-ec)a® g, o 2)2/n1 A
M= 0 =q¢/Mt——elecpu+ (1 —¢c —)20. (70)
_1 1 (1 —2)2/n ( ( )u
B ec(€q)?/F+1—ec Combining [69) and[{70) we thus showed tHaf] (67) holds
26052/u—1q2/u 1 62) true. Therefore, for > 1, we conclude that
B 2 (60(6(])2/“ +1-— Ec)2 1 UB
F, <l-——————=F . 71
@4 1 Qu/a(4) < 1+ ecBnsag® ™ Qu/m (@) (1)
B £2/1 (ecq?m +1 — ec) Similar to [9, Lemma 2], we can show that
252/“*150(]2/“ 1 1
+ — F gg<l— ——— (72)
=2 En (et +1—ec)’ Qur () 1+ ecBrtag?/*
() (- 2)2_ 9 1 asq — 0 or g < 1 butg — 1. Intensive simulations show that

- = : (63) (72) holds true for all intermediate valués< ¢ < 1 as well.
_ 2/ _ .

(= 2)gH 2/ ccq™t + 1 = cc This concludes the proof of Corollafy 2.
where in(a) we have defined

2/ 1 _ APPENDIXB
2 60(5;;/” ++1 cc. (64) PROOF OFLEMMA 2]

€c —€c
Applying Lemma[1, the PDF of, the area of a typical

and (b) is due to the fact thag?/#~! < €2/#~1 with 11 > 2 voronoi cell formed fromd;, can be given ag 21, (12)]
and0 < ec < 1. Note that{ has the same support gs 4555
_ . 3.5,..2.5

3

i.e., ¢ € [1,00). The next step is to find the maximum of the fs(z) = 3 35N (73)
function I'(3.5)
R Y Since the UEs are distributed according to a homogeneous
(p—2)§ -2 . : o .
f (5) = ohe (65) PPP with density\,,, the probability of the number of UEs in
(1 —2)¢ an arear is given by
given thatgA > 1. The optimalg* is %3 This value is a Ly A
guidance for our subsequent analysis. PH{N, = n|area= z} = e Y (74)
Specifically, from [(&P), we will show that The distribution of the number of UEs is thus equal to
1 1
l-—>1- o0
1+ ecBnsaq®/* — ec(é0q)?H +1 —ec P{Ny, =n} = / PH{ Ny, = nlarea= z} fs(x)dz
0
2¢ 2/Mflqz/“ 1 3.5 n
o . (66) 3.5 A

_ )\3.5_ > n+2.5 —()\u+3.5>\b)wd 75
L=2  (ec(boq)"+1—ec) T(3.5)" !A v * (75)
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Note that by using [24, (3.371)], we can express the distribpl7] Massive =~ MIMO  info  point.  Available  online  at:

tion of the number of UEs as http://www.massivemimo.eu/research-library.
[18] E. Bjrnson, J. Hoydis, M. Kountouris, and M. Debbah, ‘8dave MIMO
Pr{Nbu = n} systems with non-ideal hardware: energy efficiency, esima and
’ . capacity limits,” |IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 7112—
(2n+5)I! 3.5%5 oo 1 35 7139, Nov. 2014.
= ] 2 Ml T T ey [19] H. Huh, G. Caire, H. C. Papadopoulos, and S. A. Rampdisiahiev-
n! 15 x 2 Au+ 3.5 ing massive MIMO spectral efficiency with a not-so-large tem of

(76) antennas,"IEEE Trans. Wrreless Commun., vol. 11, no. 9, pp. 3226—
) . o i 3239, Sep. 2012.
This expression, however, is difficult to manipulate. In thgo) H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy apdcsral effi-
following derivation, we use_(75) instead. The expectatibn ciency of very large multiuser MIMO systemd[FEE Trans. Commun.,
Ny iS given as vol. 61, no. 4, pp. 1436-1449, Apr. 2013.
v [21] J. S. Ferenca and Z. Neda, “On the size distribution ag$tm Voronoi

00 cells,” Phys. Stat. Mech. Appl., vol. 385, no. 2, pp. 518-526, Aug. 2007.
_ _ [22] S. Lee and K. Huang, “Coverage and economy of cellulavoeks with
E [Nb’“] Z nPI’{NbM n} many base stations|EEE Commun. Lett., vol. 16, no. 7, pp. 1038-1040,
n=1 Jul. 2012. _ o
3.53:5 o0 [ O Angn [23] J. Joung, H. D. Nguyen, and S. Sun, “Pecuniary efficienfcglistributed
= 2'5 Z nlu ) 28~ (Aut3.520)z g antenna systems|EEE Wreless Commun. Lett., vol. 19, no. 5, pp. 775—
I'(3.5) — 778, May 2015.
3.5 0o [24] I. S. Gradshteyn and I. M. RyzhikTable of Integrals, Series and
(@) 3.5 3.5 o 3-5X@ 3.5 1. (®) )\_u (77) Products, 7th ed, A. Jeffrey and D. Zwillinger (Editors), AcademieBs,
T35 Y, N 2007.

where(a) comes from the fact that -, n% = e*z and(b)
is due to[[24, (3.371)]. This concludes the proof of Lenirha 2.
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