
Abstract—In this paper, we consider a recent cellular network 

connection paradigm, known as a user-provided network (UPN), 

where users share connectivity and act as an access point for 

other users. To incentivize user participation in this network, we 

allow the users to trade their data plan and obtain a profit by 

selling and buying leftover data capacities (caps) from each other. 

We formulate the data trading association between buyers and 

sellers as a matching game. In this game, buyers and sellers rank 

each other based on preference functions that capture the buyers’ 

demand for data and QoS requirements, the data available for 

purchase from the sellers and energy resources. We show that 

these preferences are interdependent and influenced by existing 

network-wide matching. For this reason, the game can be 

classified as a one-to-many matching game with externalities. To 

solve the game, we propose a distributed algorithm that combines 

notions from matching theory and market equilibrium. The 

algorithm enables the players to self-organize into a stable 

matching and ensures dynamic adaptation of price to data 

demand and supply. The properties of the resulting matching are 

discussed. We also calculate operator gains and the benchmark 

price that will encourage users to join the UPN. Simulation 

results show that the proposed algorithm yields average utility 

per user improvements of up to 25% and 50% relative to random 

matching and worst case utility, respectively. 
 

I. INTRODUCTION 

The increasing demand for mobile data in current cellular 

networks and the proliferation of advanced handheld devices 

place user-provided networks (UPNs) in a prominent position 

for next-generation network architectures [1], [2]. In UPN, 

users share their connectivity and provide Internet connection 

for others without additional network infrastructure costs. 

Some UPN services rely on fixed access points like FON [3], 

while others are more flexible, and rely on mobile devices 

such as smartphones and portable devices [1], [4]. Several 

UPN business models have recently been implemented by 

different startups and operators [4], [5]. Open Garden [4], for 

instance, enables mobile users to create a mesh network and 

share their Internet connections without the intervention of a 

network operator, while Karma [5], virtual mobile operator, 

enables its subscribers to act as mobile WiFi hotspots (MiFi) to 

serve non-subscribers by offering in return free data. The 

adoption of UPNs by major network operators emphasizes the 

potential of these networks to generate gains for both users and 

operators. However, their success heavily depends on users’ 

willingness to contribute their resources.  

In this paper, we consider an operator-supervised UPN 

where users share their mobile connection and act as access 

points for users in their vicinity. Motivated by the recently 

launched traded data plans [6], where wireless service 

providers (WSP) allow users to sell and buy leftover data 

capacities from each other, we incorporate the concept of data 

plan trading into the UPN as an incentive for users to 

participate in this network. We study and design novel 

strategies for buyer-seller data trading associations, data 

trading price, and pricing mechanisms that will encourage 

users to join the UPN. In our model, we broaden the use of 

UPNs to the following cases: a) if the operator is not able to 

satisfy the users’ QoS requirements, he will encourage them to 

transmit through the UPN in return for compensation; b) if 

users use up their data plan, they can buy additional data 

through the UPN. No additional traffic control measures are 

needed and the operator will receive a profit proportional to 

the amount of data traded in the UPN.  

 Several recent studies proposed incentive mechanisms for 

UPNs motivated by the commercial practices of Open Garden 

[7] and Karma [8]. A scheme based on the Nash bargaining 

solution is presented for an Open Garden-like UPN in [7] to 

incentivize mobile users to share their connectivity and 

resources both fairly and efficiently. In [8] the operator 

determines a free quota reimbursement and data price charged 

to each user to maximize the seller´s revenue in a Karma-like 

UPN. The interaction is modelled as a non-cooperative 

Stackelberg two-stage game. However, these works focus on 

either a fixed network topology [7] or on the iteration of a 

single seller and its buyers [8]. In [1], a dynamic network 

architecture based on the UPN concept is proposed. The 

authors consider the users’ QoS requirements on access point 

selection and provide a set of contracts based on available 

connectivity (wired or wireless). However, they focus on 

centralized social welfare optimization and ignore competition 

between buyers and sellers. 

In this paper, we consider an operator-supervised UPN 

where users can trade their data plan and earn a profit by 

selling and buying leftover data capacities from each other. 

The WSP supervises the trading and ensures that the sellers’ 

trading revenue and the buyers’ purchased data are reflected in 

their bills. We formulate the buyer-seller data trading 

association as a matching game. In this game, buyers and 

sellers need to rank one another based on preference functions 

that capture data demand and QoS requirements in the case of 

buyers and, available data and energy consumption in the case 

of sellers. These preferences are independent and strongly 

influenced by the formation of other buyer-seller links. The 

proposed game can be classified as a many-to-one matching 

game with externalities. To solve this game, a distributed 

algorithm is developed that enables users to self-organize into 

a stable matching; in addition, the optimum trading price is 
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derived from market equilibrium. In such a data market, we are 

interested in answering two key questions: a) how do different 

choices by users affect each other’s decision to join the UPN? 

and, b) how does the price impact that decision?  

We assess the performance of the algorithm using 

simulations and show that it yields significant performance 

gains for all parties involved. 

The rest of the paper is organized as follows. In Section II, 

we introduce the system model and in Section III we describe 

the analytical market model for data trading. In Section IV, we 

develop our matching-theory approach to data trading. In 

Section V, we present the numerical results and finally, in 

Section VI we conclude our paper. 
 

 

Fig. 1. An example of a macro-cell data market. 

II. SYSTEM MODEL 

We consider an uplink transmission in a single macro-cell, 

as depicted in Fig. 1. It is assumed that a monopolistic wireless 

service provider (WSP) charges its subscribers a fixed fee for a 

maximum data volume in a month. The WSP limits excessive 

data usage by charging overage fees per usage exceeding the 

monthly data cap. Besides, leftover data cannot be utilized in 

subsequent months. This hybrid pricing scheme is commonly 

adopted in the cellular service market to control traffic load 

[1], [8]-[9]. For a better utilization of resources, the WSP 

allows its subscribers to sell leftover data caps while acting as 

an access point for other users in their vicinity. Such a network 

is referred to as a UPN. 

We model the behavior of users in the macro-cell data 

market as buyers and sellers. Let  = {1,…, B} and 

= BS {1,…, S} = {0,…, S}  denote the set of all buyers and 

sellers, respectively. The bandwidth allocated to buyer b by 

seller s is denoted by wbs, and the buyer’s transmission power 

is Pb. We consider that sellers use a time-division multiple-

access scheduler in which each time slot has a duration τt. 

Using this uplink transmission system implies that users 

assigned to the same seller do not interfere with each other, 

i.e., there is no intra-access point interference. Note that the 

analysis undertaken in this paper is equally applicable to other 

multiple access and scheduling schemes [10]-[12]. Further, as 

the UPN is enabled by users and interference is difficult to 

predict, we consider that the operator assigns separate macro-

cell channels for the UPN used. In this regard, buyers 

transmitting in adjacent UPNs will interfere with each other.  

Then, the capacity of the link between buyer b and the BS (s 

= 0) is, 

0 0 0 0( ) log(1 )b b b bc w   ,                        (1) 

where 2

0 0 /b b bP h   is the SNR, with hb0 indicating the 

channel gain between buyer b and BS, and σ2 the variance of 

the Gaussian noise.  

Similarly, the capacity between buyer b and seller s, s ≠ 0, is 

given by 

( ) log(1 ),    / 0bs bs bs bsc w s s                    (2) 

where 2/ ( )bs b bs bsP h I    is the SINR with hbs indicating 

the channel gain between buyer b and seller s and σ2 the 

variance of the Gaussian noise. Here, the interference 

component 
' ''bs b b sb b

I P h


 , ' \{ }b b  relates to 

transmissions from other buyers b’ to their respective sellers 

using the same sub-channels, and Pb’ and hb’s denote the 

transmit power and the channel gain between buyer b´ and 

seller s [20].  

Buyers need the resources for a specific contractual period. 

The data volume transmitted on the link between user b and s 

depends on the capacity of the link and contract duration τbs as  

2log (1 )bs bs bs bsQ w    .                         (3) 

If we assume that the BS serves the users within a frame of 

duration Δt, the connectivity availability of the BS is  

                                
0 0t                                          (4) 

where 
0

0 0bN
   and N0 is the number of users connected 

to the BS, each requesting a connectivity duration τb0. We 

consider that Δt is large enough to serve all subscribers.  

Energy cost is a critical parameter for the sellers 

participating in the UPN. The connectivity availability 

duration for a seller s, s ≠ 0, depends on the remaining battery 

duration τb and physical availability τp. Connectivity 

availability is thus  

( , ),  / 0s b s pmin s s                          (5) 

where battery duration depletes, proportionally to γ, with the 

number of users connected to the seller [13]. 

The aims of our model are to encourage buyers to select the 

service (UPN or macro-cell BS) that best satisfies their 

connectivity requirements in order to maximize their utility, 

and at the same time enable the sellers and the operator to 

make a profit. The service duration constraint and traffic 

dynamics are considered to reflect a real network.  The WSP 

acts as a central controller that supervises transactions (e.g., it 

ensures that data purchases and sales are reflected in users’ 

monthly bills).  

III. ANALYTICAL MARKET MODEL FOR DATA TRADING 

Each buyer has certain minimum requirements in terms of 

channel quality and availability of service duration (i.e., γbs ≥ 

γb,min, τbs ≥ τb,min) that a seller must satisfy. We define a 

connectivity parameter to fulfil these minimum requirements, 

        
,min ,min1,    if  and 
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Since users can purchase different data caps from the WSP, 
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and i

sQ , respectively. Users do not know exactly how much 

data they will use over the coming month. We denote as e the 

probability that a user will exceed his/her monthly cap. In such 

a case, the user needs to choose between joining the UPN or 

paying an additional fee to buy extra data directly from the 

WSP. Besides, a user may decide to join the UPN even if 

he/she has enough data available (1 – e) but in this case the 

macro-cell transmission cannot provide the required level of 

QoS.  

We assume that users may be interested in buying or selling 

a certain volume of data at a given time during the month. 

Demand for data volume will exist when a potential buyer b 

perceives profit in trading. This profit can be defined as the 

difference between the gain from using the data volume and 

the price paid to the seller for it. 

The utility of the user when transmitting to the macro-cell 

BS (s = 0) is defined as 

0 0 0 0 0( ) [ ( ( ) ) (1 ) ( )]i i

b b b b b b b b bU Q e f Q Q Q p e f Q       (7) 

where the first term is the utility when the user exceeds the 

initial data plan 
i

bQ  with probability eb and purchases 

additional data volume Qb0 at price p (price per unit of data 

exceeding the data plan). The second term is the utility when 

the user has data available with probability (1 – eb). The 

function f(·) is a non-decreasing concave function with 

decreasing marginal satisfaction. A common example of this 

function is the α-fair utility function [6] 
1

( )
1

Q
f Q










, 

where α ∈ [0,1) and θ > 0 is a scaling factor. We use (θb, αb) to 

denote the parameters for buyers and (θs, αs) sellers. 

The utility of a buyer b when buying traffic volume Qbs from 

seller s, s ≠ 0, is  

    
( ; ) [ ( ( ) )

                       (1 )( ( ) ( ))]

i

bs bs bs bs b b bs bs bs

b bs bs bs

U Q e f Q Q Q

e f Q Q r
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

   

  
         (8) 

where the first term is the utility when the buyer has exceeded 

his data plan 
i

bQ  with probability eb and π is the price per unit 

of data volume traded. The second term is the utility when the 

user has not exceeded his data plan (1 – eb) and r is the reward 

from the WSP for transmitting in the UPN.  

   In response to demand, the BS (s = 0) will obtain a utility:  

                
0 0 0 0 0( ) ( ( ) )i

b b b b bU Q f Q Q Q p                  (9) 

where Qb0 is the additional data purchased when the buyer 

exceeds the data plan. If the buyer has not exceeded the plan 

then, Qb0 = 0 and the utility will depend only on the initial data 

volume.  

Similarly, a seller s, s ≠ 0, will be willing to sell his/her 

leftover traffic volume in return for a profit. This profit can be 

defined as the gain from serving a number of buyers and the 

revenue earned from selling the resource. Thus, the utility of a 

seller when selling traffic volume Qs is  

   ( ; ) ( ( ) ( ))i

s sb sb bs s sb sb sbU Q f Q Q Q              (10) 

where i

sQ  is the monthly data volume purchased, π is the price 

per unit data volume in the secondary data market and ξ is the 

energy cost for serving as an AP.  

An example of the buyer-seller data trading association in 

the UPN is shown in Fig. 2, where buyer 1 and 2 select the 

same seller for data trading. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Illustration of data trading in UPN. 

 

By considering the previous definitions, the buyer 

optimization is as follows  

,

2

maximize    

subject to   log (1 )
bs bs

bs
Q

bs bs bs bs bs

U

Q w



   
            (11) 

where γbs is the SINR on the link between user b and s, τbs is 

the duration of that transmission and πbs is the price for the 

data traded. Buyer b selects the seller who satisfies his/her 

minimum requirements and the data volume sought is 

constrained by the capacity of the link. 

 The seller optimization problem is as follows, 

,
maximize      

subject to    ,  ,  0

                                     

sb sb

sbbQ

i

bs sb sb

sb bs

U

Q Q s s

Q Q



   





              (12) 

where the total data volume sold by seller s, s ≠ 0, 

s bs sbb
Q Q , should not exceed his/her data volume.  

Solving the buyer-seller association using classical 

optimization techniques is an NP-hard problem [1], which 

depends on the number of buyers and sellers in the network. In  

Section IV, a new data trading algorithm is presented to solve 

buyer and seller optimization in a self-organized distributed 

manner. The algorithm combines matching theory to form 

buyer-seller associations and market equilibrium to obtain the 

trading price. The matching of buyers and sellers results in a 

trading matrix T = [tbs] with entries tbs = 1, if buyer b buys data 

from seller s, or 0 otherwise. It is worth noting that the trading 

matrix also defines the topology.  

We define the revenue of the WSP in our data market as, 

0 0 , 0

, 0

[ ( )

        (1 ) ]

w b b b bs bs sb s s

b bs bss s

U e t Q p t Q

e t Q r

 



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

 


          (13) 

where the first term is the revenue obtained when the buyer 

exceeds the data plan, tbs is the optimum matching between b 

and s obtained in Section IV and ν is the proportionality 

coefficient. The second term refers to the reward r that the 

WSP pays to the buyer as an incentive to join the UPN when it 

cannot provide the QoS requirements.   

BS s 
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b2 buyer 
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IV. DATA TRADING AS A MATCHING GAME WITH 

EXTERNALITIES 

In this section, the framework of matching games is used to 

develop a self-organized buyer-seller association algorithm to 

solve the optimization problem while avoiding combinatorial 

complexity [14]. We formulate the problem as a one-to-many 

matching game between buyers and sellers in which each 

buyer can be associated with only one seller, and sellers can 

admit a certain quota of users. Buyers and sellers rank one 

another based on utility functions that capture their 

preferences. These preferences are interdependent and are 

influenced by the existing matching. Hence, the proposed 

game can be classified as a matching game with externalities. 

We formally define the notion of matching: 
 

Definition 1. A matching (or association) η is a function from 

the set  into the set   such that, 

1)  s = η(b) if and only if b = η (s),  

2) | μ(b) | = 1 and | μ(s) | ≤ nab, 

where nab is the number of buyers that can be served by seller s 

with 
i

sQ . 

A preference relation 
b

 for buyer b over the set of sellers 

 is defined as,  

'( , ) ( ', ') ( ) ( ')b bs bss s U U     .               (14) 

where sellers s, s’ ∈ , s ≠ s’, and s = η(b), s’ = η’(b). 

Analogously, a preference relation 
s
 for seller s over the set 

of buyers  is defined as,  

'( , ) ( ', ') ( ) ( ')s sb sbb b U U     .              (15) 

where buyers b, b’ ∈ , b ≠ b’ and b = η(s), b’ = η’(s). 

A. Buyer and Seller Preferences  

We define the existence of a link between buyer b and seller 

s by variable tbs;η = {tbs | η, tbs ≤ βbs } conditioned on the current 

matching η and QoS requirements. The aim of each buyer 

(seller) is to maximize his/her own utility, or equivalently, to 

become associated with the most preferred seller (buyer). 

The buyer and seller utilities given in (7)-(10) are redefined 

below to include their connectivity constraints in the utility 

function by applying the penalty function method with 

2
0,  0,  log (1 )

;  
1,   otherwise 1,   otherwise

bs sb osbs bs bs bs bs b
bs bs

Q QQ w   
 

   
  
 



 Then, the modified buyer utility is 

( ; , ) ( ; )b bs bs bs b bs bs bsU Q t U Q                   (16) 

where κ is the penalty factor, κ ≥ 0. If the buyer data demand 

violates the connectivity constraint, the penalty term κ will 

reduce the data requested.  

Similarly, the modified seller utility is 

( ; , ) ( ; )s sb sb bs s sb sb bsb
U Q t U Q              (17)   

where ρ is the penalty factor for the seller, ρ ≥  0. If the data 

volume offered by the seller exceeds his/her overall data cap, 

the penalty term ρ will reduce the data offered.  

B. Proposed solution 

Given the formulated data trading game, our goal is to find 

a stable matching, which is one of the key solution concepts of 

matching theory. Due to these externalities, the traditional 

solutions based on the deferred acceptance algorithm used in 

[14] are unsuitable since the ranking of preferences changes as 

the matching forms. Thus, we look at a new stability concept 

based on the idea of swap matching [15], [19] and extend it to 

define seller-swap and service-swap in our data trading 

market. Then, the optimum price for the data traded in such a 

matching scenario is obtained. 
 

Definition 2. Given a matching η, a pair of buyers b, b’ ∈ 
and sellers s, s’ ∈  where  (b, s), (b’, s’) ∈ η, a seller-swap 

is defined as  ' \ ( , ) ( , ')b

ss b s b s   .  

Definition 3. A service-swap is a seller-swap where seller s, s’ 

∈  with s or s’ = 0.  

A matching is stable if there are no swap matchings (i.e., 

seller-swap or service-swap) 
'

b

ss , such that: 
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 

   

   
  

A matching η is said to be stable if there is no buyer b’ or 

seller s’, for which ( ', ') ( , )sb b  , or ( ', ') ( , )bs s  . 

The stability is reached by guaranteeing that swaps only occur 

if all members involved will improve their utilities. And thus, 

the order of preferences for each player not involved in the 

swap will be unaltered.  

To solve the formulated matching game, we propose a novel 

distributed algorithm for data trading (Algorithm 1) that 

enables the players to self-organize into a stable matching that 

guarantees the required QoS. The proposed algorithm consists 

of two main stages. Stage 1 focuses on buyer and seller 

discovery, association and swap-matching evaluation, and 

Stage 2 determines the data trading price. 

First, we assume an initial price for the data πbs(0) that will 

be updated later on based on data demand and supply. The 

next stage is to form buyer-seller associations comprising a 

seller and a set of buyers. Each buyer selects a set of sellers 

that satisfy his/her QoS requirements and sorts them in 

decreasing order according to their respective utility function 

in (16). The buyer then selects the top utility-providing sellers, 

denoted by set b. Similarly, each seller s ∈ b may also be 

selected by a set of buyers. Using the same selection process, 

the seller accepts the top utility-providing buyers denoted by 

s according to their utility in (17). However, because of 

externalities the order of the buyers’ preferences may have 

changed since the seller selection. Based on the current 

matching η, buyers and sellers update their utilities and 

preferences over one another and perform service-swap and 

seller-swap until a stable matching is found. Next, we 

determine the equilibrium price for each UPN by market 

equilibrium [16]. 



The data demand and supply functions for each UPN are 

obtained by differentiating the utilities in (16) and (17) with 

respect to Qbs and Qsb, respectively, 
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where (θb, αb) and (θs, αs) denote the parameters for buyers and 

sellers in the utility f(·), respectively and κ and ρ are the 

penalty term for the buyer and seller, respectively. 

The total data demand and supply for a particular seller at 

equilibrium is 
s b

b sb s 
  . Then, the equilibrium 

price is derived iteratively using the following equation,  
 

 ( 1) ( ) ( ) ( )
s b

bs bs s b sb s
t t t t  

 
        (20) 

 

where the price in the next iteration is the difference between 

demand and supply at time t, weighted by the learning rate σ 

and added to the price in the current iteration. A positive value 

of ( ) ( )b sb s
t t   indicates that there is more demand, 

i.e., there is a shortage of data volume, and thus the price 

increases. Alternatively, if supply is greater than demand, the 

price will decrease. This process is repeated until the price 

difference |π (t + 1) – π (t)| is less than a threshold. The stability 

of the solution depends on the learning rate σs, which is 

analyzed in the sequel. This process is repeated for every 

buyer b giving rise to the optimum price *

bs  and the matching 

of buyers and sellers T*. 

For the practical implementation of the algorithm, 

communication between buyers and sellers is required only for 

trading and this can be done through the common control 

channel. The operator supervises the trading and ensures that 

the transactions are reflected in the buyers’ and sellers’ 

monthly bills. This will be done automatically by software in 

the terminals. 

 

Theorem 1. The proposed Algorithm 1 is guaranteed to 

reach a stable matching and a data trading price. 
 

Proof.  Given the limited transmission range and available 

data at the seller, the number of alternatives for both buyers 

and sellers is finite. Besides, only swaps that improve all 

players’ utility will occur. Once the stable matching is formed, 

the pricing algorithm converges to a stable price as in [16]. 

The stability of the pricing algorithm depends mainly on the 

learning rate. The most common way to analyze stability is to 

consider the eigenvalues of the Jacobian matrix of the pricing 

function in (20). Following [16], the fixed point πbs is stable if 

and only if,  
1

1 1/ 1 1/

1 1
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           (21) 

where (θb, αb) and (θs, αs) denote the parameters for buyers and 

sellers in the utility f(·). 

 
  

Algorithm 1 Dynamic Data Trading  
1: Initialize the price πbs(0)  

Stage 1 – Formation of buyer-seller associations  

2: Each buyer b chooses a set of sellers b following 
b

 as in (16): 

 1 ...b b bkU U    

3: Each seller s selects a set of buyers s following 
s

as in (17) 

4: repeat  

5:   Obtain ( )bU   and ( )sU   for the current matching η and update b 

6:    
' ( ', ) ( , ) b

ss bs s if then   

7:       Buyer b sends a proposal to seller s’ 

8:       Seller s’ computes 
' '( )b

s b ssU   for the swap matching 
'

b

ss   

9:       
' ' ( , ) ( , ) b

ss sb b if then   

10:           s’ ← s’  {b} ;  

11:           
'

b

ss   

14:      end 

15:   end 

16:   Stage 2 – Data trading price 

17:   for each buyer b in the current matching: 

18:      for each s ∈ b: 

19:        Obtain marginal data demand (18) and supply (19) 

20:        Calculate learning rate σs using (21) 

21:        Obtain price πbs(t + 1) using (20) 

22:        while | πbs(t + 1)  − πbs(t) | > ε do 

23:             Update data demand (18) and supply (19) 

24:             t = t + 1 

25:             Calculate learning rate σs using (21) 

26:             Update price πbs(t + 1) using (20) 

27:        end  

28:     end 

29:   end 

30: 
' ' ' '  : ( ', ) ( , ) and ( , ) ( , )b b b

ss ss b ss ss s b b    until   

31:  Select seller s for data trading at price π*
bs 

32: Optimum trading matrix T* is obtained 
 

 
Table 1. Price benchmark for UPN service 

 ψb0 = 0, ψbs = 0 ψb0 = 1, ψbs = 0 ψb0 = 0, ψbs = 1 ψb0 = 1, ψbs = 1 

eb = 1 π < p π < p – κ0/Qb π < p – κs /Qb 
π < p – χ/Qb 

– κ0/Qb 

1–eb=1 
π < (f(Qb) + 

rQb – f(Qb
i))/Qb 

π < (f(Qb) + rQb – 

f(Qb
i))/Qb – κ0/Qb 

π < (f(Qb) + rQb – 

f(Qb
i))/Qb – κs/Qb 

π < (f(Qb) + rQb 

– f(Qb
i))/Qb – 

κ0/Qb – κs/Qb 
 

C. Price Benchmark for UPN service 

Following the model from Section III, we derive the price 

conditions under which a service-swap will occur. Let us 

assume that the user requests the same amount of data in the 

macro-cell and the UPN, 
bQ . The user will prefer to transmit 

in the UPN if Ubs > Ub0, which occurs when 

0 0
( ) ( )

(1 )

i

b b b b s bs
b b

b b

f Q rQ f Q
e e p

Q Q

   


          (22) 

where κ0 and κs are the penalty factor for violating the 

connectivity constraint in the macro-cell and the UPN, ψb0 and 

ψbs, respectively, as explained in Section IV.A. Depending on 

the service and data availability, different price benchmarks 

are obtained for the UPN service, as shown in Table 1.  
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       Fig. 3. Comparison of the average utility per buyer.                Fig. 4. Average utility per buyer.                                Fig. 5. Average utility per seller. 

 

 

 
 

If the user exceeds the data plan (eb = 1) and both the 

macro-cell and UPN service satisfy the required QoS, the user 

will choose UPN if π < p. If the macro-cell service does not 

provide the required QoS, the benchmark price to connect to 

UPN is π < p – κ0/Qb, where there is a penalty discount. The 

same penalty is assumed for the UPN. Similarly, if the UPN 

does not provide the required QoS, the price is π < p – κs/Qb 

where χ is the penalty in the UPN. The same analysis can be 

applied when the user does not exceed the data plan (1 – eb = 1).  

V. SIMULATION RESULTS AND ANALYSIS 

We consider a single macro-cell network deployed in a 

square area of 1000 x 1000 m with the BS at the center. The 

buyers and sellers are randomly placed in the network. We set 

all users’ transmit power to 20 mW, the noise level to σ2 = 10-7 

W/Hz and the propagation loss to α = 3. We assume that 

buyers and sellers have a monthly contract for a data volume 

of 10 GB. The minimum SINR requirement varies between [1, 

20] dB and the duration of connectivity varies between [0, 15] 

minutes. The energy consumption ξ is set to 0.257 J/MB as 

estimated in [17] for 4G connection. The data usage price 

depends on the country, the data plan and the service provider. 

Based on a recent ITU publication [18], we set the price of a 

10GB data plan to 10€, and the price per GB traded in UPN 

between 0.1 and 1€. The results are averaged over 1000 runs. 

 Figure 3 shows the average utility per buyer obtained for a 

network with 10 sellers and 20 buyers, where the probability 

of exceeding the data plan is eb =0.8. The results are presented 

with respect to the transmission range, which varies from 20 to 

200 m; this corresponds to a minimum SINR of 20 dB to 1dB 

in the same range. The performance is compared with random 

matching and worst case utility. The latter refers to the 

matching that provides the lowest buyer´s utility. Note that 

these schemes were selected for comparison purposes since, to 

the best of our knowledge, this is the first paper to address the 

association problem for data trading in UPNs. Fig. 3 shows 

that, as the transmission range increases and with it the options 

to connect, our proposed scheme yields a performance 

advantage of 25% in terms of utility improvement relative to 

random match and 50% to worst case utility. Similar gains 

were observed in seller utility but the results are omitted due to 

space limitations. Buyer utility, by contrast, decreases with 

transmission range as the SINR is lower. 

 Figures 4 and 5 present the average utility per buyer and 

seller, respectively, for different values of the probability of 

exceeding the data plan, eb. As before, we assume 10 sellers 

and 20 buyers. We can see that, as eb increases, the utility for 

buyers and sellers decreases. This is because buyers need to 

pay extra for the additional data exceeding the data plan. 

Therefore, the amount of data requested is significantly lower 

than the initial data plan. The average volume of data traded 

per UPN in this scenario varied between 0.5 and 2 GB. It is 

worth noting that seller utility increases with transmission 

range as the number of potential buyers increases. 

 Figure 6 shows the average number of buyers transmitting 

to the macro-cell BS, as the number of buyers B increases and 

the number of sellers remains constant to S = 10. For high eb 

values, the number of users transmitting to the BS decreases 

and buyers prefer to join the UPN to purchase additional data. 

Furthermore, if price p in the macro-cell increases with respect 

to the price in the UPN π, an additional decrease in number of 

users is observed in the macro-cell. In particular, when price p 

doubles, the number of users transmitting to the BS decreases 

by about 25%. 

Figure 7 shows the revenue of the operator obtained in the 

UPN and BS operation. We can see that the UPN yields higher 

revenue to the operator than the BS as a higher volume of data 

is transmitted through the UPN. The revenue reaches 200% 

when users have high QoS requirements (low transmission 

range). 

Figure 8 shows the number of iterations needed for 

convergence of the data trading algorithm in stages 1 and 2 as 

B varies. Note how the number of iterations increases for 

medium-size networks, B ≤ 50, and remains constant for B > 

50. This is because as density increases, adjacent sellers will 

offer similar performance levels and thus, the number of swaps 

will decrease. It is worth noting that the convergence of stage 2 

is influenced by price initialization. If the price is initialized to 

the global market price, which is obtained as in (20) 

considering the total data demand and supply in the network, 

the number of iterations is significantly reduced. This price 

could be provided by the operator as a reference price for data 

trading. Still, the algorithm presents a reasonable convergence 

time even in very dense networks. 

 

 

  



   

 

 

 

 

 

 

 

 
 

Fig. 6. Number of buyers tx. to BS;  Fig. 7. Operator revenue in UPN and BS; Fig. 8. Average number of algorithm iterations; Fig. 9. Demand and supply in UPN. 
      

 

 

 

 

The equilibrium price in the UPN is presented in Figure 9 as 

a function of data demand and supply. Each pair of curves 

represents the demand and supply in a UPN consisting of nb 

and ns potential buyers and sellers, respectively. The 

considered pricing scheme based on market equilibrium 

adjusts the price based on the data demand and supply. The 

equilibrium price is obtained when these are equal. When the 

demand, nb, increases for a constant supply, ns, the price 

increases accordingly. This pricing scheme controls and 

incentivizes the demand for data in the UPN.   

VI. CONCLUSIONS 

In this paper, we have proposed an analytical market model 

for data trading in a UPN that captures the preferences and 

connectivity requirements of buyers, sellers and macro-cell 

BSs. We have formulated the buyer-seller association problem 

for data trading as a matching game in which buyers, sellers 

and BSs rank each other according to their preferences, and in 

which, the trading price is governed by market equilibrium. In 

this game, preferences are interdependent and influenced by 

matchings that arise. To solve the game, we have developed a 

distributed algorithm that accounts for network externalities. 

We have shown that, with the proposed algorithm, buyers, 

sellers and BSs reach a stable matching in a reasonable number 

of iterations. Our simulation results showed that the proposed 

approach can provide significant gains in terms of utility, with 

gains of up to 25% observed relative to random matching and 

up to 50% relative to worst case utility. Significant gains were 

also observed for the operator. We also analyzed the properties 

of the stable associations. 
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