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Abstract—Space shift keying (SSK) transmission is a low-
complexity complement to spatial modulation (SM) that solely re-
lies on a spatial-constellation diagram for conveying information.
The achievable performance of SSK is determined by the channel
conditions, which in turn define the minimum Euclidean distance
(MED) of the symbols in the received SSK constellation. In this
contribution we concentrate on improving the power efficiency
of SSK transmission via symbol pre-scaling. Specifically, we pose
a pair of related optimization problems for a) enhancing the
MED at reception while satisfying a given power constraint
at the transmitter, and b) reducing the transmission power
required for achieving a given MED. The resultant optimization
problems are NP-hard, hence they are subsequently reformulated
and solved via semidefinite programming. The results presented
demonstrate that the proposed pre-scaling strategies are capable
of enhancing the attainable performance of conventional SSK,
while simultaneously extending its applicability and reducing the
complexity of the existing pre-scaling schemes.

Index Terms—Space shift keying, semidefinite programming,
pre-scaling.

I. INTRODUCTION

Both space shift keying (SSK) and spatial modulation (SM)
aim for reducing the hardware complexity of conventional
spatial multiplexing [1], [2]. Specifically, both SSK and SM
rely on encoding information into the active antenna indices,
which allows reducing the number of radio frequency (RF)
chains employed for transmission, when compared to the
family of classic spatial multiplexing schemes [1], [2]. A
theoretical characterization of the error rates experienced by
SSK, where information is solely conveyed via a spatial-
constellation diagram, and SM has been provided in [3], [4].
The development of detection algorithms for improving the
attainable performance has also constituted the focus of intense
research [5]–[7].

A parallel line of research has concentrated on the design of
constellation shaping schemes for both SSK and SM [8]–[13].
In this context, [8] analyzes the design of amplitude and phase
constellations for minimizing the average bit error probability
of SM, whereas [9] analytically studies the achievable transmit
diversity order under different design conditions. SSK’s partic-
ular characteristic of solely carrying information in the spatial
domain has also been exploited for the design of constellation
shaping strategies in [10]–[13].

The maximization of the minimum Euclidean distance
(MED) in the resultant SSK and SM constellations via symbol
pre-scaling has been the focus of [14]–[16]. In particular, the
pre-scaling strategies developed in [14], [15] rely on forcing
the received SM constellation to resemble a classic quadrature
amplitude modulation (QAM) constellation from an inter-
symbol distance perspective. However, the employment of

the regimes in [14], [15] may severely affect the system’s
signal-to-noise ratio (SNR) due to the stringent requirement
of inverting the channel coefficients, which may become
critical for ill-conditioned channels. The scheme introduced
in [16] mitigates this problem by solely applying a phase
shift by the pre-scaling procedure. However, the above designs
only consider a single antenna at the receiver, which in turn
simplifies both the characterization and shaping of the received
SM constellation.

The application of pre-scaling strategies to the more intri-
cate multiple-input multiple-output (MIMO) systems has been
promulgated in [17]–[20]. In particular, the schemes of [17],
[18] propose opportunistic power allocation methods for both
SSK and generalized SSK for the sake of improving their
performance, which implies that only the amplitude of the
transmit signals is modified. By contrast, simultaneous phase
and amplitude pre-scaling is considered in the constellation
randomization (CR) technique of [19]. This low-complexity
scheme relies on generating D complex-valued scaling factors
off-line, and subsequently employing those specific scaling
factors that maximize the MED. Moreover, the schemes in-
troduced in [20], which have been developed in parallel to
our work [21], further improve the performance by employing
a successive convex approximation technique for solving the
resultant optimization problems for maximizing the MED.

Against the above contributions, in this paper we consider
the optimization of the pre-scaling factors for SSK transmis-
sion via semidefinite programming. Specifically, we recast the
original NP-hard optimization problems for the sake of maxi-
mizing the performance of SSK transmissions via semidefinite
relaxation (SDR). This guarantees the applicability of the
proposed pre-scaling designs to multi-antenna aided receivers
by carefully adapting the schemes introduced in [14]–[16].
Additionally, the results shown in this contribution demon-
strate that the approach adopted improves the performance
of the strategy developed in [19] by taking into account the
channel conditions in the design of the pre-scaling vectors,
while it reduces the signal processing complexity of the algo-
rithms advocated in [20], where multiple convex optimization
problems had to be solved before reaching convergence. We
note however that this is achieved at the cost of a modest
performance loss for the SSK systems considered.

II. SPACE SHIFT KEYING WITH PRE-SCALING

The system model considered throughout this paper is
comprised of a transmitter having Nt antennas, and a receiver
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Fig. 1. Block diagram of the SSK communication scheme with pre-scaling and ML detection.

equipped with Nr antennas, as shown in Fig. 1. The SSK
transmitter activates a single antenna based on the input bit
stream, hence conveying a total of B = blog2 (Nt)c bits per
channel use, where b·c denotes the floor function. The received
signal y ∈ CNr×1 can be expressed as

y =
√
ρHWek + n =

√
ρhkwk + n, (1)

where ek ∈ CNt×1 is the k-th column of the identity
matrix INt , and n ∈ CNr×1 ∼ CN (0, INr ) denotes the
ubiquitous additive white-Gaussian noise vector. Moreover,
H ∈ CNr×Nt ∼ CN (0, INr

⊗ INt
) represents the Rayleigh

communication channel considered and W ∈ CNt×Nt =
diag (w) is a diagonal matrix, with its k-th diagonal coefficient
given by wk. In the previous expressions, ⊗ represents the
Kronecker product and ∼ denotes “distributed as”, while ρ
represents the average receive signal-to-noise ratio (SNR) per
receive antenna, provided that wHw = Nt. We note that the
single-RF chain benefit of SSK transmission is preserved when
pre-scaling is employed, and that the transmitted symbols
solely rely on the instantaneous channel coefficients, but not
on the alphabet and input bits.

The optimal detection strategy of the receiver obeys the
maximum likelihood (ML) criterion of

k̂ = argmin
k
||y −√ρhkŵk||2, (2)

where hk is the k-th column of H and ŵk denotes the
k-th pre-scaling coefficient employed for reception. In the
following we assume that the pre-scaling coefficients ŵk and
wk are computed independently at both the transmit and the
receive sides based on the perfect channel estimates. Hence,
no feedforwarding of the pre-scaling coefficients prior to data
transmission is required.

The performance of the SSK transmission scheme conside-
red is determined by the pairwise error probabilities [3]

P (ek → em|H) = Q

(√
ρ

2
‖hkwk − hmwm‖2

)
, m 6= k,

(3)
where Q (·) represents the Q-function, Q(u) =
1√
2π

∫∞
u
e−

t2

2 dt, and m, k ∈ 1, . . . , Nt, denote the specific
index of the antenna activated for transmission. It can be seen
from (3) that the detection performance of SSK is conditioned
by the MED of the received constellation symbols [3], which

is given by

MED = min
m,k
‖hkwk − hmwm‖2 , m 6= k. (4)

The efficient design of the SSK pre-scaling coefficients based
on the above metric constitutes the focus of this contribution.

A. MED Maximization

An appealing technique of improving the attainable perfor-
mance of conventional SSK transmission relies on maximizing
the MED, while satisfying the maximum power constraint. In
this particular case, the optimal pre-scaling vector wopt can
be obtained as a solution of the optimization problem

P0 : maximize
w

min
m,k

m 6=k

(
‖hkwk − hmwm‖2

)
(5)

subject to ‖w‖2 ≤ (PtNt).

The constraint in (5) ensures having an average transmission
power per channel use of E

{
wHk wk

}
= Pt, ∀ k ∈ 1, . . . , Nt.

The more tractable epigraph problem form of (5) is given by

P1 : maximize
w,d

d (6)

subject to ‖hkwk − hmwm‖2 ≥ d, ∀ m 6= k

‖w‖2 ≤ (PtNt).

Here, d represents the MED. Note that the above optimization
problem is not convex w.r.t. the optimization variable w due
to the existence of non-convex quadratic constraints [22], [23].

B. Power Minimization

A problem of similar character to the above consists of
procuring the pre-scaling factors that minimize the average
transmission power, while satisfying a given MED threshold
d. This optimization problem can be expressed as

P2 : minimize
w

‖w‖2 (7)

subject to ‖hkwk − hmwm‖2 ≥ d, ∀ m 6= k.

III. PRE-SCALING OPTIMIZATION FOR SSK VIA
SEMIDEFINITE PROGRAMMING

The NP-hard nature of the nonconvex quadratically con-
strained quadratic problems P1 and P2 motivates the devel-
opment of potentially suboptimal reformulations [22]–[24]. In
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Fig. 2. Impact of pre-scaling in the received constellations for a (4× 1)-element MISO system. (a) Conventional SSK and (b) Pre-scaled SSK.

particular, we recast the optimization problems P1 and P2 as
semidefinite programs by exploiting their resemblance to the
sensor network location problem [22], [25], where the aim is
to maximize the MED between adjacent sensor nodes.

A. MED Maximization

In the following we concentrate on reformulating the non-
convex optimization constraints of P1 via semidefinite relaxa-
tion [23]. Specifically, we first decompose the left-hand side
of the quadratic constraints as

‖hkwk − hmwm‖2 =

Nr∑
i=1

∥∥h(k,i)wk − h(m,i)wm∥∥2 , (8)

where h(k,i) refers to the i-th entry of hk. The i-th term of
the summation in (8) can be re-formulated as [25]∥∥h(k,i)wk − h(m,i)wm∥∥2 =

Tr

(
ei(k,m)

(
ei(k,m)

)H
wwH

)
= Tr(AFi(k,m)), (9)

where A , wwH , Fi(k,m) , ei(k,m)

(
ei(k,m)

)H
, and ei(k,m) is

a vector with two non-zero entries in the positions specified
by k and m

ei(k,m) =
[
0, . . . , h(k,i), . . . ,−h(m,i), . . . , 0

]T
. (10)

Let us define F(k,m) as

F(k,m) ,
Nr∑
i=1

Fi(k,m). (11)

Note that we have F(k,m) ∈ HNt , ∀k 6= m, where HNt repre-
sents the set of (Nt ×Nt)-element complex-valued Hermitian
matrices. Then, by substituting (8), (9) and (11) into (6), P1

can be recast as

P1 : maximize
A

d

subject to Tr
(
F(k,m)A

)
≥ d, k 6= m

Tr (A) ≤ (PtNt)

A � 0, rank (A) = 1. (12)

Here, A � 0 indicates that A is positive semidefinite, and
we have considered that ‖w‖2 = Tr

(
wwH

)
. The above

optimization problem is equivalent to that formulated in (6)
and still remains NP-hard. However, a relaxed convex version
of P1 can be obtained by dropping the non-convex constraint
rank (A) = 1, which results in

P ′1 : maximize
A

d

subject to Tr
(
F(k,m)A

)
≥ d, k 6= m

Tr (A) ≤ (PtNt) , A � 0. (13)

The optimization problem (13) is convex in the optimization
variables A and d, which facilitates the employment of
efficient convex solvers. Although intrinsically suboptimal, in
the sequel we show that the above semidefinite program is
capable of remarkably enhancing the performance attained by
conventional SSK transmission.

B. Power Minimization

Following a procedure akin to that employed for deriving
P ′1 from P1, the semidefinite relaxation of P2 yields

P ′2 : minimize
A

Tr (A)

subject to Tr
(
F(k,m)A

)
≥ d, k 6= m,

A � 0. (14)

C. Impact of Pre-Scaling on the Received Constellation

Prior to characterizing the performance of the scheme consi-
dered, we illustrate the effect of solving the optimization prob-
lem P ′2 in the received constellation using an intuitive example.
Specifically, Fig. 2(a) shows the received constellation, when
conventional SSK transmission is employed, whereas Fig. 2(b)
represents that under the same channel conditions, but apply-
ing the pre-scaling coefficients designed following P ′2 using
d = 0.3. In both figures, the distinct constellation symbols
are illustrated by different geometrical shapes. The larger
MED separation experienced by the constellation symbols
of Fig. 2(b) demonstrates that the approach considered is
indeed capable of enhancing the MED, hence improving the
overall performance of conventional SSK. Moreover, it can be
observed that the solution returned by the convex solver is



TABLE I
EXPECTATION (µ) AND STANDARD DEVIATION (σ) OF THE FIGURE OF MERIT F1 WITH Pt = 1.

Nt/Nr SSK SSK-CR SSK-SCA SSK-SDR
µ σ µ σ µ σ µ σ

2/1 6.35 21.1 1.27 0.39 1 0 1 0

2/2 2.67 3.91 1.21 0.29 1 0 1 0

4/2 4.66 9.8 1.96 0.55 1.08 0.09 1.4 0.37

4/3 3.03 2.61 1.8 0.43 1.07 0.08 1.31 0.32

capable of simultaneously reducing the average transmission
power. However, the solutions obtained by solving the relaxed
problems might become suboptimal as a consequence of
removing the non-convex rank constraint. The characterization
of this aspect in the pre-scaling scheme considered constitutes
our focus in the following.

D. Impact of the Problem Relaxation
The pre-scaling vectors obtained by the SDR of the opti-

mization problems P1 and P2 only coincide with those of P ′1
and P ′2 when we have rank(A) = 1 [22]. This implies that
the pre-scaling vector ws can be straightforwardly derived as

ws = wopt = UΣ1/2, (15)

where wopt denotes the optimal pre-scaling vector solution
to P1 and P2, while U and Σ correspond to the eigenvectors
and eigenvalues of A respectively, i.e., we have A = UΣUH .
However, the above-mentioned ideal condition rank(A) = 1 is
not always satisfied, and therefore we resort to randomization
strategies for finding close-to-optimal solutions [22], [24].
Specifically, the pre-scaling vectors are obtained as [24]

ws = cUΣ1/2v, (16)

where v is a vector comprised of the exponential random
variables characterized by, vi = ejθi , θi ∼ U(0, 2π], which
are uniformly distributed on the unit circle of the com-
plex plane satisfying E

{
vvH

}
= INt

. Here, the constant
c guarantees that the problem constraints are satisfied. We
remark that the solutions ws obtained as a result of (15)
and (16) are sub-optimal when we have rank(A) 6= 1, i.e.,
Ws , wsw

H
s 6= woptw

H
opt [22], [24].

An accurate characterization of the impact of the above
degradation should rely on contrasting the resultant value of
the objective function, namely the MED attained or the optimal
transmission power, obtained by the optimization problems
P1,P2 and their relaxed versions P ′1,P ′2. This characterization
is, however, impractical due to the computational hardness of
deriving the optimal solution to the original problems P1 and
P2 [22], [24]. For this reason, we characterize the impact of
relaxation by exploiting that the value, f

′?, of the objective
function delivered by SDR provides a useful bound to the
optimal problem [24]. Therefore, a relevant figure of merit F
can be defined as [24]

F{1,2} =
f

′?
{1,2}

fs{1,2}
, (17)

where f
′?
{1,2} denotes the specific value of the objective func-

tion in P ′{1,2}, when the solution directly retrieved by the
solver A is employed, while fs{1,2} corresponds to the par-
ticular value of the objective function obtained after applying
(15) or (16), i.e. by employing Ws = wsw

H
s . In the above

expressions, the subscripts refer to the optimization problem
considered, i.e., P1 or P2. At this point we stress that the
solutions retrieved by the solver A are different from those
obtained after randomization Ws when we have rank(A) 6= 1.
The figure of merit F in (17) can also be generalized both to
SSK and to CR-aided SSK (SSK-CR) [19], as well as to SSK
based on sucessive convex approximation (SSK-SCA) [21] to
determine the solution’s proximity to the optimal one.

Table I characterizes both the expectation and the standard
deviation of F1, explicitly quantifying the degradation of the
solutions provided by the schemes considered in this paper.
In this particular case, f

′?
1 and fs1 correspond to the MED

obtained by employing A and Ws respectively. Note that
F1 ≥ 1, since the MED bound f

′?
1 obtained by the solver is

always larger than or equal to the MED fs1 attained after ran-
domization. D = 20 candidate scaling vectors are considered
for SSK-CR [19], [21]. Remarkably, the results of Table I show
that both the proposed semidefinite relaxation (SSK-SDR) and
SSK-SCA always achieve the optimal solution for Nt = 2,
which can be explained by the Shapiro-Barvinok-Pataki bound
[20]. It can also be observed that the proposed SSK-SDR pre-
scaling is capable of reducing both the expectation and the
standard deviation of the figure of merit F , when compared to
conventional SSK and SSK-CR. In other words, the solutions
retrieved by the proposed SSK-SDR are closer to the solution
of the optimal problem P1. Indeed, the results of Table
I indicate that the benefits offered by the proposed SDR-
based technique become more pronounced for reduced system
dimensions. Simultaneously, it can be seen that the SSK-SCA
algorithm, which was published throughout the development
of this work [21], is capable of providing better solutions than
the proposed SSK-SDR scheme. Nonetheless, in the following
we will show that the closer proximity of the SSK-SCA
solutions to the optimal ones is achieved at the expense of
a substantial increase in their computational complexity, and
that the performance differences remain modest.

IV. NUMERICAL RESULTS

Both the attainable performance and power efficiency im-
provements offered by the proposed strategy are analyzed in



0 5 10 15

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
it
 e

rr
o

r 
ra

te
 (

B
E

R
)

 

 

SSK 4x3.
SSK−CR, 4x3.
SSK−SDR, 4x3.
SSK−SCA, 4x3.
SSK 2x2.
SSK−CR, 2x2.
SSK−SDR, 2x2.
SSK−SCA, 2x2.

Fig. 3. BER vs. SNR for both a) (2× 2) and b) (4× 3) MIMO systems.

this section. Specifically, we compare the proposed scheme
to conventional SSK transmission operating without pre-
scaling (SSK), to the SSK constellation randomization scheme
developed in [19] (SSK-CR), and to the sucessive convex
approximation strategies of [20] (SSK-SCA). The number of
random pre-scaling coefficients is D = 20 for SSK-CR, as
in Sec. III-D [19], [21]. Moreover, we consider the SSK-SCA
algorithms to be converged when the Euclidean norm of the
relative error for consecutive solutions satisfies ξ ≤ 10−3,
which indicates a faster convergence than the ξ ≤ 10−5 value
considered in [20]. This faster convergence is achieved without
perceptible performance differences.

Fig. 3 shows the evolution of the bit error rates (BERs)
upon increasing the SNR (ρ in (1)) for both (2 × 2)- and
(4× 3)-element MIMO systems. The results demonstrate that
our pre-scaling strategies are able to substantially improve
the performance attained by conventional SSK. Specifically,
it can be seen that SSK-SDR reduces the error rates of both
SSK and SSK-CR, while it slightly degrades the performance
of the more complex SSK-SCA for the (4 × 3) MIMO
system. We note that both SSK-SDR and SSK-SCA improve
the performance w.r.t. SSK-CR, since they are capable of
approaching the globally optimal solution for MIMO systems
associated with Nt = 2, as detailed in Sec. III-D.

The empirical probability density function (PDF) of the
relative computational time required for obtaining the results
of Fig. 3 for the (4 × 3) MIMO system is shown in Fig. 4.
We show the percentage of the relative times with respect to
the maximum time required for the SSK-SCA algorithm for
a fair comparison, since the absolute time measure depends
on the specific computational capabilities. For this reason, the
analysis of the computational time required has been tested
using the same computational capabilities and without the
influence of any other active processes. The results of Fig. 4
show that the proposed SSK-SDR pre-scaling technique offers
a substantial complexity advantage over the SSK-SCA scheme.
This can be explained by the SSK-SCA requirement of solving
multiple convex problems before approaching convergence.
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We note that the computational time improvements manifest
themselves both in the average time and its maximum, which
is a critical parameter for real-time applications. Clearly, both
the SSK-SDR and the SSK-SCA schemes are more complex
than SSK-CR, since the computation of the pre-scaling factors
is performed off-line for the latter. Nonetheless, SSK-SDR
is capable of offering a compelling complexity-performance
trade-off due to the performance improvements provided.

The results of Fig. 5 show the average transmission power
of the systems considered upon increasing the number of
receive antennas Nr, d = 2, and Nt = {2, 4}. Without loss
of generality, we assume having an instantaneous maximum
transmission power of 20 Watts, which may only be necessary
for ill-conditioned channels and it is in line with the need of
imposing a practical constraint on realistic power amplifiers.
Fig. 5 clearly shows the advantages of incorporating a larger
number of receive antennas for reducing the transmission
power required to attain a given target performance. Moreover,
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it can be seen from Fig. 5 that the differences in the trans-
mitted power among the different pre-scaling strategies are
maximized, when the number of receive antennas is reduced.
For instance, Fig. 5 shows that the employment of SSK-SDR in
a (4× 4) MIMO system allows us to reduce the average trans-
mission power by 0.5 Watts compared to SSK-CR, whereas
SSK-SCA further improves the former by 0.25 Watts.

A more detailed view of the impact of varying the MED
thresholds on the transmission power required can be observed
in Fig. 6. This figure depicts the increase in the transmission
power required for satisfying higher MED thresholds. The
results of Fig. 6 show that the benefits of applying pre-scaling
are maximized at high SNRs. It can also be observed that the
proposed SSK-SDR is capable of outperforming SSK-CR, and
that SSK-SCA is capable of further approaching the optimal
pre-scaling in the scenarios considered, albeit at the expense
of a higher computational complexity.

V. CONCLUSIONS

The efficient design of pre-scaling coefficients for enhancing
the power efficiency of SSK transmission has been the focus
of this work. The proposed approach is based on relaxing
the optimal but NP-hard pre-scaling problems for obtaining a
convex formulation that facilitates the application of standard
convex solvers. The results derived have shown that the refor-
mulated optimization problems are capable of enhancing both
the BER performance and the energy efficiency of existing
SSK schemes at a moderate complexity.
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