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Abstract—In this paper, we design a resource allocation algo- optimal multiuser scheduling schemes guaranteeing a tiemg-
rithm for multiuser simultaneous wireless information and power  minimum harvested energy for SWIPT were reported_in [7].
trar:jsflerl systetmslfor t?] reallisti.c;hnond-lin.ear.enfergy lhatm:jesing (EH)  The fundamental element of SWIPT systems that enables
model. In particular, the algorithm design is formulated asa non- ) - s .
convex optimization problem for the maximization of the long- RF-EH is the EH circuit. The EH circuit includes a re_ctlfler
term average total harvested power at EH receivers subjectar @S theé component that converts the power of the received RF
quality of service requirements for information decoding receivers. Signal to direct current (DC) power with a certain convemsio
To obtain a tractable solution, we transform the correspondng efficiency [8]. On the other hand, the design of resource
non-convex sum-of-ratios objective function into an equiglent gllocation algorithms in SWIPT systems relies on an aceurat
objective function in parametric subtractive form. This leads to mathematical model for the characteristics of the EH circui

a computationally efficient iterative resource allocationalgorithm. implemented at the EH receiver. For instance. practically a
Numerical results reveal a significant performance gain thacan P : ' P y

be achieved if the resource allocation algorithm design isased on  €Xisting works, e.g.[11],[[4}]7], assume a specific linead E
the non-linear EH model instead of the traditional linear model. ~ model for the RF-to-DC power conversion. However, prattica

EH circuits usually result in non-linear end-to-end WPT-{8]
|. INTRODUCTION [10]. Therefore, the traditional linear EH model adopted in
Energy harvesting (EH) is an appealing solution for enaplinhe literature for resource allocation algorithm desigrymat
self-sustainable wireless devices in communication N0 be able to capture the non-linear characteristics of thedRF-
Thereby, the inconvenience of recharging and replacingbat DC power conversion in practical RF-EH systems. Recently,
ies can be avoided by harvesting energy from different gnerg practical non-linear EH model was proposed/inl [11], along
sources, such as solar and wind. Recently, wireless pow@th a beamforming algorithm for a downlink multi-antenna
transfer (WPT) via radio frequency (RF) signals has reckivgwI|PT system serving multiple information receivers (IRs)
considerable attention as it provides an ubiquitous, iv@3t and multiple energy harvesting receivers (ERs). Spedifical
stable, and controllable source of ener@y [1], [2]. Morepvethe beamforming algorithm in_[11] was designed for short-
additional benefits can be reaped by employing informatioferm maximization of the total harvested power at the ERs,
carrying signals for WPT, which enables simultaneous w8®!l while guaranteeing minimum required signal-to-interfere-
information and power transfer (SWIPT) [3]. plus-noise ratios (SINRs) at multiple IRs. The results[ifi][1
SWIPT introduces a paradigm shift for system, receivegvealed that resource allocation algorithms designedHer
and resource allocation algorithm design for communicati@imple linear EH model, which is widely used in the liter@tur
systems due to the newly imposed challenges in deliverifghy lead to resource allocation mismatches for practical no
information and energy concurrently. In particular, thésea linear EH circuits. However, the problem of joint user sahied
fundamental trade-off between EH and information decodingg and long-term power allocation for SWIPT systems with
(ID), as was shown in_[3]. Thereby, resource allocation playractical non-linear EH circuits has not been considered in
a particularly important role for improving the system perthe literature, yet. Although scheduling schemes that aipl
formance of SWIPT networks. Iri][2], the authors proposedultiuser diversity for improving the performance of muster
a power allocation algorithm for near-field communicatiogWIPT systems were studied inl [6]] [7], the authors adopted
systems. However, the authors of [2] and [3] assumed thak existing linear EH model for the end-to-end WPT, which
the receivers are able to harvest energy from the recei@dy lead to suboptimal performance in practice.
signal, while simultaneously decoding the embedded inferm |n this paper, we adopt the practical non-linear EH model
tion, which is not feasible in practice, yet, due to pradticaom [L1] and study the optimal algorithm design for joineus
limitations of EH circuits. Consequently, hybrid poweritiplg  scheduling and long-term power allocation in order to feati
receivers and separate receivers were proposed for SWIPTER and to exploit multiuser diversity in multiuser downlink
[4] and [8], respectively. Additionally, a simple time-gefing SWIPT systems. Thereby, the resource allocation algorithm
receiver was proposed for alternating between ID and Edésign is formulated as a non-convex optimization problétn w
across different time slot§/[4]. For multiuser downlink Wl 3 sum-of-ratios objective function. Exploiting a recensui
systems, suboptimal order-based scheduling schemesatiodeal from the mathematical literaturg [12], this difficult noorvex
the trade-off between the ergodic achievable rates and fh@blem is solved optimally by a computationally efficietatri
average amounts of harvested energy of the users were ppegive algorithm after transforming the sum-of-ratios atijee
in [6]. Furthermore, adopting the same system model aslin [@linction into an equivalent objective function in subtieet
Robert Schober is also with the University of British ColuenbThis work form. Simulation results reveal significant improvemens |
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Humboldt Foundation. resource allocation algorithm design instead of the siripéar
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9 y based on a linear energy harvesting model [1], [4]-[7]:

EH model. PR = nPerrr ()
1. SYSTEM MODEL where Per-rr is the received RF power at the ER and: [0, 1]

aiﬁ £ fixed constant that reflects the quality of the RF-to-DC
conversion circuit, i.e., the power conversion efficieriey. (3)
implies that the energy conversion efficiency is indepehden
A. Channel Model of the input pow& level at the ER. However, it is expected
g]at practical EH circuits introduce non-linearity intcetiend-
fo-end WPT, cf. [[B]+[I0]. In particular, due to limitations
in practical EH circuits, the RF power conversion efficiency
Jnproves with increasing power with diminishing returngilun
Ereaches a saturation valug] [8], which corresponds to the
ximum possible harvested energy. In contrast, accortding

In this section, we present the adopted channel model
introduce the considered non-linear EH model.

We consider a downlink multiuser system, where a singl
antenna base station broadcasts the RF signak tsingle-
antenna receivers capable of ID and EH, cf. Figire 1.
note that the receivers may also exploit other energy seur
such that their power supply does not solely rely on tH

h ted th h RF-EH. T ission in th t . . . .
POWST narveste roug ransmission in tne sys the linear EH model if{3) assumed in the current literattive,

is divided into 7' orthogonal time slots. In every time slot T . o
g Y arvested power can arbitrarily linearly increase with ithaut

n € {1,...,T}, we perform joint user scheduling and powe : . :
allocation to optimize the system performance. We assu g power. Hence, adoptm_g the_llnear EH receiver model may
ad to a resource allocation mismatch. In order to be able to

a frequency flat slow fading channel. The downlink recelvecaapture the effects of practical EH circuits on the endrid-e

symbol at uset € {1,..., K} in time slotn is given by power conversion, we adopt the practical non-linear EH rhode
ye(n) =/ Pr(n)hg(n)zr(n) + zk(n), (1) recently proposed in [11]:
wherez(n) is the transmitted symbolP.(n) is the transmit Fy(n) = [\Ifk(n) — MQ] a- 1 @
power, andh(n) is the channel gain coefficient including the A= 1-0Q T 14 ead’
joint effects of multipath fading and path loss for ugen time Wi (n) M (5)
k

slotn. For the transmitted symbol, we assume a zero mean sym-
bol with unit variance, i.e E{|zx(n)|?} = 1,Yn, k, whereE{-} _ . . . .
stands for statistical expectation. Furthermaygn) represents Herﬁ, \I/k(")_ 'Sd tg?: traditional Iog|sft|c funl;:t!on_wnh Irespect
the additive white Gaussian noise (AWGN) in time siadt user to the received RF powePe, (n) of userk in time slotn,
k with zero mean and varianee®. Assuming perfect channel 77 k- The practical non-linear EH model can capture the joint

state information (CSI) at the user, the maximum achievalj"fgeCts ,Of d|_fferenF non-l|n(.ear phgqqme_na_ caysed by hawiwa
data rate (bit/s/Hz), i.e., the instantaneous capacityuéer k constraints including C.II’CU.II sensitivity limitations @rcurrent
in time slotn is given by Ieakag_e[[Q],] by adjusting the parameters, andM [17].
In particular,M denotes the maximum harvested power at an
Pk(n)hk(n)) @) ER when the EH circuit is saturated, whiteandb are related
o2 ' to the detailed EH circuit specifications. Paramefefsa, and
b can be easily obtained by standard curve fitting based on
measurement data for a given EH circuit implementation.\s a
ample, FigurEl3 shows that the curve fitting for the noedin
model in [4) with parameterd/ = 0.024, b = 0.0014,
anda = 1500 closely matches experimental results provided in
B. Energy Harvesting Model [10] for the wireless power harvested by a practical EH éircu

Figurel2 depicts the EH receiver part of a general SWIPT S)ch‘i_gureIZB also illustrates the inability of the linear model(8)

tem. In general, the RF-EH circuit consists of a bandpass, fit to accurately model the characteristics of practical Elduits
rectifying circuit, and a low-pass filter followed by a bagtég]. °OVer the entire range of input powers.

The ba”dpass and Iow-pass _fllters perform pa;swe filterfng O1n this work, a normalized energy unit is assumed, i.e., elper-second.
the signal in order to achieve impedance matching and reimoweother words, the terms “energy” and “power” are interdjeable.

T 11 e aPer Rk () =)’

Culo) = tog, (1+

In each time slot, a single receiver is selected as the IRI0HExp
ing the broadcast nature of the wireless channel, the rengain
K — 1 receivers are scheduled as ERs to opportunistica
harvest RF energy.



k in time slotn. In the considered problem, we focus on the
long-term system performance f@f — oo. Constraints C1
and C2 are imposed to guarantee that in each time rslot
at most one user is served by the transmitter for ID. C3 is a
constraint on the average radiated powgy, and C4 constrains
the maximum transmit powePyax in each time slot, which
may be limited because of hardware constraints. Moreover, C
represents a quality of service (QoS) constraint, wh&én)

is the maximum achievable data rate [ih (2) for ukdn time
slot n. C5 ensures that the average data rate of ksereds to
satisfy the minimum required data raf&eq, -
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0 Linear EH model (Eq. (3) The objective function in[{6) is a sum-of-ratios function
10 20 30 20 50 60 70 which is a non-convex function. Furthermore, the binargger
Input RF power (m) constraint C1 makes the optimization problem combinaktaria
, _ nature. In order to efficiently solve problefd (6), we tramsfo
Fig. 3. Comparison between measurement data froi [10],aheskted power ., . bl . |E I bl h
for the non-linear EH model if14), and the linear EH model@. ( 'F Into a more tr"flclta € eqU'Ya ptlmlzatIOh problem. The
first step in obtaining a solution for the considered nonvean

problem in [6) is to transform the sum-of-ratios objective
[1l. RESOURCEALLOCATION function.

In the following, we adopt the non-linear EH modellfi (4) and Objective Function Transformationin general, computa-
study the resource allocation algorithm design for the dimkn tionally efficient algorithms, such as the Dinkelbach meitho
multiuser SWIPT system in Figuié 1. Joint user schedulirdy afiL3] or the Charnes-Cooper transformation, can be adopted t
power allocation is performed assuming availability of f0BI solve non-linear optimization problems having a singléera
at the base statiof. Furthermore, sinc€) does not affect the objective function and a convex feasible set. However,ehes
design of the optimal user scheduling and power allocatiin, popular approaches cannot be applied to sum-of-ratiostivge
(@), for notational simplicity and without loss of genetgliwe functions. The method recently introduced|in][12], on theeot
directly use¥(n), Vn, k, from (@) to represent the harvestechand, offers a solution to the sum-of-ratios problem and was

power at the ERs. shown to achieve the global optimum. Following the same
o ) procedure as i [12], in the following theorem, we introdace
A. Optimization Problem Formulation transformation for the objective function ifl (6).

The system design objective is to maximize the average toﬁ.l
harvested power in the system for the practical non-lingar E0
model. Hence, we formulate the resource allocation algarit
design as the following optimization problem, with respext
the user selection and the power allocation variablgs;) and
Py(n), ¥n, k, respectively:

eorem 1. Lets; (n) and P} (n) be the optimal solution to the
ptimization problem in@). Then, there exist two parameters
wr(n) and gj(n), ¥n, k, such thats; (n), and P} (n) are also
the optimal solution to the following optimization problem

T K
Z ZMZ (n)|;V[—BZ (n) (1 + e~ (PR, (n)hk(n)—b))

1 T K M L n=1k=1
i maximize .
masimis 7373 e © RN g o
s.t. Cl: si(n) € {0,1},Vn, k, Here, C is the feasible solution set of the problem @). In
K addition, the optimization variables;(n) and P;(n) must
C2: sp(n) < 1,Vn, satisfy the system of equations:
l;:lT p ﬂ;(n)(l + e*a(PE*Rk (n)hk(n)fb)) -M=0, (8)
C3: = " % Puln)si(n) < Pay () (14 7o ORI 1 = 0,vn k. (9)
n=1k=1
K Proof: Please refer td [12] for a proof of Theordm 1. W
C4: D Pu(n)sk(n) < Prax ¥, Theoren( states that for the maximization problem with a
1 N sum-of-ratios objective function i l(6), there exists amieg-
LT lent optimization problem with an objective function in par
C5: = Z Cr(n)sg(n) > Creq , Vk. metric subtractive form, such that both problem formulasio
T - . 2 . . .
1 lead to the same optimal user selection and power allocation

) ” _ policy. As a result, we can focus on the equivalent objective
Variable Fer, (n) = .(1 - Sk(n))(zfﬂ 5j(n)P; (n))vv_nv k, N function in [7) in the rest of this paper. Moreover, the ojitian
the objective function is the total RF power received at Effyn problem can be solved efficiently by an iterative reseur
2CSl can be obtained in every time slot by exploiting feedbfiokn users allocation algorithm, as will be shown in the next section.

in frequency division duplex (FDD) systems and channelprecity in time 3In this paper, two optimization problems are consideredvatgnt if both
division duplex (TDD) systems. problems share the same solution.



. . . TABLE |
C. lterative Resource Allocation Algorithm ITERATIVE RESOURCEALLOCATION ALGORITHM.

In the following, we focus on the design of a computational!xl 1 Teralive R Allocaton Aldorin
efficient algorithm for achieving the globally optimal stn 90_”_ .m gra ve esour.ce i oca '9” .go.rl m
of the resource allocation optimization problem (6) Thet Initialize (rjna)amum number of iterationgmax, iteration indexm = 0,
. . . ’ and B (n), Vn, k
algorithm consists of two nested loops. In the inner loop, we: ékp(ergt {Outﬁé‘r(f())ogn
solve the optimization problem with the transformed object 3:  Solve the transformed inner loop convex optimizationbtem in [10)
function in [7) for given (uu,(n), Be(n)), ¥n, k. Then, in the for given 7" (n) and 8;*(n) and obtain the intermediate solution for

virtual /
outer loop, we find the optima}.; (), 85 (n)), ¥Yn, k, satisfying seln), i), and Db, vk

! | _ 4: if convergence condition i 8)1(9) is satisfidten
equations[(B) and19), cf. Algorithm 1 in Talile I. 5: Convergence #ue _ ‘
1) Solution of the Inner LoopAlthough the objective func- & g optimal user selection and power allocation
tion in (@) 1S In _SUbtrac_uve form and concave W|th_ r_esp_ecgz Updatey (n) andgy" (n), Vn, k, according to the modified Newton
to the optimization variables, the transformed optimizati method m), and setv = m + 1
problem is still non-convex due to binary constraint C1 anlc%_ endc‘i;”"efgence false

the coupling between the optimization variables(n) and 11 yntl Convergence #rue or m = Imax
Py(n) in constraints C3, C4, and C5. To obtain a tractabte
problem formulation, we first handle the binary constraidt C
in @)/(7). For this purpose, we apply time-sharing relaodmt
by following a similar approach as ifnl[7]._[14]. In particula
we relax the user selection variablegn) in constraint C1 of
©)/(@) such that the variables can assume real values betw
0 and 1, i.e.,, C1:0 < si(n) < 1,Vn,k. The user selec-
tion variables can now be interpreted as time-sharing fact
for the K users during time slot:. Next, to facilitate the
power allocation under time-sharing, we introduce the learyi
variable P/(n) = Py(n)si(n), Vn,k, to the optimization
problem. The new optimization variable/(n) represents the Theorem 2. Problems(7) and (I0) are equivalent and have
actual transmitted power in the RF of the transmitter fahe same optimal solution, despite the time-sharing retlaran
user k in time slot n under the time-sharing assumptioneonstraintC1 of (IQ). In particular, the time-sharing relaxation
Besides, we also introduce an auxiliary optimization \@lga is tight and the optimal solution off0) satisfies constraint C1
pymud(p) = (1 — Sk(n))szzl Py (n), which represents thein (7), i.e., si(n) € {0,1}, ¥n, k.

actual received power at EH receivérin time slot n, to ,

decouple the optimization variables in the objective fioret  PT00f: Please refer to the Appendix. o

Consequently, the inner loop optimization problem, whic wAs shown in_ the Appendix, although we consider an infinite
solve in each iteration of the resource allocation algarith NUmber of time slots and long-term averages for the total

is rewritten with respect to the optimization variablegn), narvested energy and the sum ratelin (7), the optimal mattius
Pl(n), andp}ginum(n) as: power allocation and scheduling policies depend only on the

current time slot, i.e., online scheduling is optimal.

Specifically, if the time-sharing relaxation is tight, j.e.
sk(n) € {0,1},Vn, k, then [I0) is equivalent to the optimiza-
tion problem in [¥). We note that the optimization problem in
@1]) is jointly concave with respect to the optimizationigates

and can be efficiently solved by standard numerical methads f
gonvex programs, such as the gradient method or the interior
point method[[15]. In other words, optimal power allocatard
scheduling policies fo{10) can be obtained numericaligwiN

we study the tightness of the adopted time-sharing relaxati

I K virtua 2) Solution of the Outer Loopin the outer loop of the
_ —a(Py Y(n)hy(n)—b . . .
n;,gj‘k(mk” Bi(n) (17D sorithm, cf. Tablell, we find the optimaluf (n), 8;(n)),
maximize T Vn, k, that satisfy [(B) and[{9). For that purpose, we imple-
S",(ﬁ?{ui’(‘(?)’ ment the modified Newton method [12], as shown in the
k n

following. For notational simplicity, we introduce paratee

K
1. 6\/0< <1.Vn.k. C2: <1.V P = [plv."'7p2N] = [/’le'-'auNaﬂlvv'"'ua'\vﬂN] = (iu’v/@)
S < sk(n) < 1,90, k, ;Sk(n) =5 and functionsg;(p;) = pi(1 + e oB" |’“*b)) -1, and
JRS K en+ilpnti) = pyi(l + efa(P:malhﬁb)) — M, wherei €
a3 .= Pl(n) < Py, C4:Y Pl(n) < Paax,Vn, {1,---,N}, andN = TK is the number of terms in the sum.
T ,; ; g kz::l § In [12], it is proven that the optimal solutiop* = (u*, 3*) is
1T P! (n)hi(n) achieved if and only itp(p) = [¢1,- - , pan] = 0 is satisfied.
C5:= S si(n) log, (1 + 16("7’“(2”) > Cheq, VK, In the m-th iteration, we update = (u, 3), in the following
= sk(n)o manner:
C6 Py (1) < (1 — $3(n)) Panax, Y, ki, p" = p" + (", (11)
K m ’ -1 -1 i
| virtual , whereq™ = [¢'(p)] '¢(p), and[-|~! denotes the inverse of
C7 Py (n) < Zpk(")’v”’ k, a matrix. Here,y'(p) is the Jacobian matrix of(p) [12].
L k=1 Moreover,(™ is defined as the largest that satisfies:
C8 :pyirtual(n) > 0, Vn, k. (10)

m l_m l m
Constraints C6-C8 are introduced due to the proposed trans- lelp™ +ea™)ll < (1 = o) e lp™)ll (12)
formation including the auxiliary variabl?y™a!(n). These wherel € {1,2,---}, ¢ € (0,1), 6 € (0,1), and|-|| denotes
constraints guarantee that variab?gi”“a'(n) is consistent with the Euclidean vector norm. It is shown in]12, Theorem 3.3} th
the original problem formulation. the modified Newton method converges to the unique solution
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gatis:fyi(#g kg) )ar\:\gr:f&g;lnear rate for any starting point, Whllethe received RF signal for increasing user distance from the

Remark:We note that the computational complexity of th ase _stat_lon. Besides, _the_ RF'tO'DC conversmn_efﬂmeﬁdyeo
proposed algorithm is polynomial time, which is considere H circuit degrades significantly at lower received RF power

to be fast and computationally efficient in the literatuir®,[1 values due to sensitivity limitations][8]. On the other hati .
Chapter 34]. This characteristic is desirable for realeti'nm: total harvested power increases when there are more users in

plementation of the algorithm. the system, since a Iarger portion of the radiated power ean b
harvested. For comparison, we also plot the performance of a
IV. RESULTS baseline scherflén Figure[3. The baseline scheme maximizes

In this section, we evaluate the performance of the proposé@ total harvested power assuming the conventional linear
resource allocation algorithm design for the practical -nofnodel in [3) subject to the constraint set [d (6), i.e., the EH
linear EH model through computer simulations. For the djecimodel assumed for optimization is not matched to the praictic
simulation settings, we assume a carrier frequenc¢y16fMHz  hon-linear model adopted in the simulation. The conversion
and a signal bandwidth o200 kHz [17]. The thermal noise €fficiency for the linear model was chosen torpe 0.5 [6], [7].
power is o2 = —120 dBm. The simulations are performedPue to the resulting resource allocation mismatch, thelivgse
for 10 and 15 users in the system by averaging over differeffcheme results in an evidently smaller amount of total fsaece
channel realizations. We assume the path loss model defi®&@rgy compared to the proposed scheme.
in [18], with a path loss exponent of two. The multipath In Figure[®, we show the average total harvested power versus
fading coefficients are modelled as independent and iddltic the maximum transmit power allowand®,.x. We assume that
distributed Rician fading with Rician factordB. The transmit the distance between the base station and each usgenisters.
antenna gain is set td8 dBi, while the receive antenna gainThe average total harvested power is an increasing funwatithn
is 0 dBi. The average radiated powét,, is constrained to respect toPyax for the proposed resource allocation algorithm
20% of the maximum transmit powePyax. For the non-linear optimized for the non-linear EH model. This increasing tren
EH model parameters, cf](4L1(5), we assuMe= 24 mW, continues until the maximum possible power is harvested at
which corresponds to the maximum harvested power at the B EH receivers, i.e., all EH circuits are saturated. On the
receiver. Besides, we adopt= 1500 andb = 0.0014, which other hand, the average total harvested power is almostartns
are obtained by curve fitting from the measurement data with respect toPynax for the baseline scheme, which was again
[10]. We assumeieq = 3 bit/s/Hz for the ID users. Extensiveoptimized for the linear EH model. In fact, the baseline sche
simulations (not shown here) have revealed that, in gendal may cause saturation in some EH receivers and undertitilizat
proposed iterative resource allocation algorithm coreertp of other EH receivers because of the characteristics of dine n
the globally optimal solution after less thaf iterations. linear EH circuits. For instance, the linear scheme allexain

Figure[4 depicts the average total harvested power versixgeedingly large amount of resources to the user with tee be
the distance of the users from the base station for the pegposhannel conditions for EH. In contrast, the proposed resour
resource allocation algorithm. The maximum transmittedgro allocation algorithm optimized for the non-linear modes-di
in every time instant was chosen to .. = 46 dBm. tributes the available power more evenly across EH recgiver
Furthermore, for simplicity, we assume equal distancesé@t and across time in order to avoid saturation and underatiitin.
the base station and all users, such that all users havertre sa
channel gain-to-noise ratio. Figuté 4 shows that the aeerag
total harvested power is a decreasing function with resmect * We note that the results iil[6].][7] are not used for comparias the

. . . .abjective in [6], [7] was the maximization of the users’ suater under EH
the distance of the users from the base station. This is ;nanag

! : nstraints assuming the linear EH model, which differsnfrihe objective in
because of the pronounced reduction of the power densitytiof paper.



V. CONCLUSIONS

wherek*=argmaxy
In this paper, we designed a joint scheduling and powgser selection index for ID in time s

(15(1151)2 Fr.(n)+ gk (n)? denotes the optimal
ot. We note that the

allocation algorithm for the maximization of the long-termi-agrange multipliers in the scheduling policy depend onty o

average total harvested power in a multiuser SWIPT systethe

statistics of the channels. Hence, they can be calculate

where a practical non-linear EH model for the end-to-erfiffline, e.g. using the gradient method, and then be used for
WPT was adopted. Simulation results revealed that adoptingnline scheduling as long as the channel statistics remain

realistic non-linear EH model instead of the conventiomeaddr

unchanged. As a result, the optimal scheduling rule[id (15)

model for resource allocation algorithm design may substatepends only on the CSI in the current time slot and the
tially increase the performance of SWIPT systems employisfiannel statistics, i.e., online scheduling is optimathaigh

practical EH circuits.

the considered optimization problem [d (7) considers amiefi

number of time slots and long-term averages for the total

APPENDIX - PROOF OFTHEOREM 2
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