
ar
X

iv
:1

80
8.

08
85

2v
1 

 [
cs

.G
T

] 
 2

7 
A

ug
 2

01
8

Multi-Operator Spectrum Sharing using Matching

Game in Small Cells Network

Tachporn Sanguanpuak∗, Sudarshan Guruacharya†, Nandana Rajatheva∗, Mehdi Bennis∗

Dusit Niyato‡, Matti Latva-Aho∗

∗Department of Communication Engineering, University of Oulu, P.O.Box 4500, FI-90014, Finland,
†Department of Electrical and Computer Engineering, University of Manitoba, Canada,

‡School of Computer Engineering, Nanyang Technology University, Singapore,

Email: {tsanguan,rrajathe,bennis,matla}@ee.oulu.fi,manoguru@hotmail.com,dniyato@ntu.edu.sg

Abstract—In this paper, we study a problem where multiple
operators (OPs) need to share a common pool of spectrum with
each other. Our objective is to maximize the social welfare,
defined as the overall weighted sum rate of the OPs. The problem
is decomposed into two parts: the first part is to allocate RBs
to OPs, which we do so by extending the framework of many-
to-one matching game with externalities. The second part is to
allocate power of small cell base stations (SBSs) belonging to
each OP, which is accomplished using reinforcement learning.
Assuming that the SBSs associated with each OPs are spatially
distributed according to Poisson point process (PPP), we show
that pairwise stable matchings achieve local maximas of the social
welfare function. We propose two algorithms to search for the
stable matchings. Simulation results show that these algorithms
are well behaved in terms of convergence and efficiency of the
solutions.

I. INTRODUCTION

Future wireless networks will have to satisfy the quality-

of-service (QoS) requirements of a large amount of appli-

cations such as video and data streaming apart from voice.

Around 2020, the new 5G mobile networks are expected to

be deployed. Multimedia applications will be supported by

5G networks [1]-[2], and the spectrum utilization will be an

important aspect [2]-[3]. Compared with 4G, the 5G will

lead to much greater spectrum allocations and high aggregate

capacity for users. Thus, network operators (OPs) will need

new spectrum allocation techniques to utilize spectrum more

effectively [2]-[3]. This is mainly due to the fact that the usage

of dedicated spectrum by OPs is found to be idle at various

times.

In co-primary or horizontal spectrum sharing, the OPs have

equal ownership of the spectrum [4]. Moreover, an a-priori

agreement should be reached on the spectrum usage with

respect to long term sharing of each OP. The co-primary

spectrum sharing with multiple-input single-output (MISO)

and multiple-input multiple-output (MIMO) multi-user in two

small cell networks were proposed in [5] and [6], respectively.

The authors consider the case when each base station assigns

its users to a shared band when the number of subcarriers in

the dedicated band is not enough to serve all users. Subcarrier

and power allocation methods are proposed in these scenarios

[5], [6]. In [7], the orthogonal spectrum sharing between two

OPs was shown to be an important aspect in improving the

overall throughput. The gains in terms of network efficiency

is enhanced by sharing spectrum between two OPs. Link level

simulation and hardware demonstrations are given. In [8], a

potential game with a learning algorithm is shown to reach

a system equilibrium which enhances spectrum efficiency

between OPs. A distributed method is given to reduce the

complexity for inter-OP spectrum sharing.

In our work, we propose a multi-OP spectrum sharing in

small cell network. Each OP is assumed to serve multiple

small base stations (SBSs) in an indoor scenario. The SBSs are

considered to be spatially distributed according to the Poisson

point process (PPP) inside a building. We also assume that

the OPs connect to a central controller which is responsible

for assigning resource blocks (RBs) from a common pool

of spectrum to the OPs. We study the spectrum assignment

problem in which the central controller can allocate multiple

RBs to an OP and multiple OPs can utilize a single RB. Each

OP is allowed to have a certain maximum number of RBs.

Since the dedicated spectrum of each OP is assumed to be

fixed, our study only focuses on allocating the shared spectrum

to the OPs.

Our objective is to maximize the social welfare given in

terms of weighted sum rate of the OPs. The solution is

considered in two parts. In the first part, RBs are assigned

from the common pool of spectrum to the OPs. Once the

OPs obtain their RBs, each SBS associated with an OP tries,

in a distributive manner, to maximize their expected rate via

power allocation so that a certain QoS is satisfied for each

user equipment (UE). A many-to-one matching game with

externalities is used to solve the first part of the problem.

We extend the many-to-one matching framework so that each

OP can be allocated more than one RB. Two methods are

introduced to solve the problem in the first part, namely greedy

swap and Monte Carlo Markov Chain (MCMC) algorithms.

The reinforcement learning method is used to solve problem

of the second part.

We also analyze the expected data rate of an SBS based on

the spatial PPP distribution of SBSs and exploit it to prove

the local optimality of pairwise stable matchings. However,

due to space constraint, the details of the derivations have

been omitted in this paper, but will be provided in a journal

version.
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The rest of the paper is organized as follows: Section

II describes the system model and stochastic geometrical

analysis of the expected rate of the SBSs. Section III presents

inter-OP spectrum sharing by using the concept of matching

theory. Section IV describes intra-OP spectrum sharing with

reinforcement learning for power allocation. The performance

evaluation results are presented in Section V. The conclusions

are given in Section VI.

II. SYSTEM MODEL

We propose a multi-OP spectrum sharing for small cells

network deployment. The macro base stations (MBs) are

assumed to transmit in channels orthogonal to the SBSs; thus,

the interference from MBs to SBSs is absent. Each OP serves

multiple SBSs, and each SBS serves a single user equipment

(UE). The spectrum of OPs serving the SBSs is assumed to be

divided into dedicated bands and a shared common band. The

shared common band can be accessed by multiple OPs and can

be allocated to their respective SBSs. The dedicated spectrum

of each OP is assumed to be fixed and predetermined. Our

study focuses only on allocating the shared spectrum to the

OPs. All the SBSs employ the orthogonal frequency division

multiple access (OFDMA) scheme for their channel access.

A set of multiple OPs is given by K with K OPs. Let the

set of SBSs subscribed to an OP-k be given by the set Fk

with Fk SBSs inside the building. We assume that each OP

has the same intensity/density of SBSs per unit area. Also,

let F = ∪k∈KFk be the set of all the SBSs. Each SBS is

assumed to serve a single UE. For each SBS-f in f ∈ F , we

will denote its associated user equipment by UE-f .

The set of RBs in the common shared band available to the

network is given by L with L RBs. Let Lk ⊂ L be the set

of RBs assigned to OP-k with Lk RBs. The SBSs associated

with OP-k are free to select any one of the RBs in Lk to serve

its UE. We assume that the SBS will randomly choose a single

RB from Lk. Hence, its transmit power allocation is restricted

to a single RB. Let the total power of each SBS be given by

ptot, which is discretized into N = ptot

δ levels, where δ is a

quanta of power. Thus, the set of transmit power levels that

an SBS-f can choose from is Pf = {δ, 2δ, . . . , Nδ}. We shall

denote the transmit power of the SBS-f by pf ∈ Pf . The SBS

is assumed to use a probabilistic scheme to select power level

n ∈ {1, . . . , N}. Thus, any given action taken by each SBS

can be represented by n.

We assume that the RB allocated to an OP can be accessed

by more than one SBS associated with that OP. Thus, the

expected rate of the UE-f associated with SBS-f is given by

Rf = E

[

log2

(

1 +
h
(l)
ffpf

∑

f ′∈Il
h
(l)
f ′fpf ′ + σ2

)]

, (1)

where pf is the transmit power of SBS-f on RB-l, h
(l)
f ′f is

the channel gain between UE-f and SBS-f ′ using RB-l. The

Il is the set of SBSs using the same RB-l while σ2 is the

noise variance. Here the expectation is taken with respect to

the channel gain, distance geometry, as well as probabilistic

channel access and power allocation strategy. We assume that

the fading is Rayleigh. The interference experienced by a UE

of an SBS can be considered as either intra-OP interference or

inter-OP interference. The intra-OP interference is caused by

the fact that the SBSs associated with a given OP can access

any RB assigned to that OP. Thus, two SBSs served by one

OP can access the same RB. On the other hand, the inter-

OP interference is caused by the fact that a given RB can be

shared by two or more OPs.

The expected system rate of OP-k will be the sum of

expected rates of each SBS. We can express the rate of OP-k
as,

ROPk
(Fk,Lk) =

∑

f∈Fk

ρfRf , (2)

where ρf is the weight at each SBS.

A. Analysis of Expected Rate

In the following section, we will first present an expression

for the expected rate of a generic SBS based on the spatial

distribution of the SBSs, after which we will use it for the

game formulations. Let the rate of a generic downlink SBS-

UE system transmitting in RB-l and at power level n be given

by

R(l)
n = log(1 + SINR(l)

n ). (3)

Here, explicitly incorporating the distance attenuation in the

SINR formula one gets,

SINR(l)
n =

h
(l)
ffr

−α
ff pf

∑

f ′∈Il
h
(l)
f ′fr

−α
f ′fpf ′ + σ2

, (4)

where α denotes pathloss exponent and rf ′f is the distance

between the UE-f and SBS-f ′. We take the expectation with

respect to the channel gains and interference nodes,

E[R(l)
n ] = E

h
(l)
ff

,I
(l)
f

[

log
(

1 +
h
(l)
ffr

−α
ff pf

I
(l)
f + σ2

)]

,

where I
(l)
f =

∑

f ′∈Il
h
(l)
f ′fr

−α
f ′fpf ′ is the aggregate interference

experienced by UE-f in RB-l. Using the fact that for positive

random variables E[x] =
∫∞

0 Pr(x > t)dt, the expectation

becomes

E[R(l)
n ] = E

I
(l)
f

[

∫ ∞

0

Pr
(

h
(l)
ff >

rαff (e
t − 1)(σ2 + I

(l)
f )t

pf

)

dt
]

.

Using Laplace transform [9] and [10], after some deriva-

tions, finally, we obtain the expected rate as,

E[R(l)
n ] =

∫ ∞

0

exp
(−λAE[√pf ′ ]

2
√
pf

√
et − 1

)

dt, (5)

where A = π2r2ff . λ is the intensity SBSs.

The above analysis holds for any SBS located at any

location. This is guaranteed by the Slivnyak’s theorem [9],

according to which the statistics for the PPP is independent of

the test location. This also implies that the SBSs transmitting

over an RB-l are identical. That is, if every SBS allocates its



power pf according to an identical randomizing principle, then

the probability mass function (PMF) of pf should be identical

to the PMF of pf ′ . Assuming that the PMF of pf ′ and pf are

stationary, then E[
√
pf ′ ] is a time independent constant. Thus,

the value of E[R
(l)
n ] depends only on the value of transmit

power level pf = nδ chosen by the SBS. Also, since SBS-f
can access any one of Lk RBs assigned to its associated OP-k
with equal probability of 1/Lk, the expected rate of SBS-f is

given by

Rf = En,l[R
(l)
n ] =

1

Lk

∑

l∈Lk

En[R
(l)
n ]. (6)

This average rate Rf depends only on λ, the intensity of

interfering SBSs.

III. MULTI-OPERATOR SPECTRUM SHARING USING

MATCHING GAME

Consider the social welfare of the network as the overall

weighted sum rate as follows:

S(µ) =
∑

l∈L

∑

k∈K

xlkwkROPk
(Fk,Lk), (7)

where X = |L| × |K| is a matching matrix {xlk : (l, k) ∈
L ×K}. We denote the matrix X as,

xlk =

{

1 iff µ(OPk) = RBl

0 otherwise
(8)

where µ is a matching. wk is the weight at the OP-k.

The objective of the matching game for the multi-OP

spectrum sharing is to maximize the social welfare. Thus, the

optimization problem can be expressed as,

S∗(µ) = max
X

∑

l∈L

∑

k∈K

xlkwkROPk
(Fk,Lk),

s.t. (C1)
∑

l∈L

xlk ≤ bl ∀l ∈ L, (9)

(C2)
∑

k∈K

xlk ≤ ck ∀k ∈ K.

Condition (C1) assures that each RB-l can be allocated to

at most bl OPs, and condition (C2) guarantees that each OP-k
gets at most ck RB.

A. Many-to-One Matching with Externalities

We define the matching game over two sets of players

(Kaug,L) with the preference relation ≻k which allows each

player k ∈ Kaug to build preferences over the set of RBs L.

In our case, we assume that the set of RBs L gives equal

preference to OPs. That is, in the allocation of an RB, there

is no preference for a specific OP. However, we follow the

framework described in [11] that directly deals with utilities

rather than preferences.

With the many-to-one matching framework, at most one RB

will be allocated to an OP. However, our problem allows us

to allocate more than one RB to an OP, as given by constraint

(C2) in (9). To tackle this problem, we create an augmented set

of players by producing identical copies of OPs. Each copy of

OP inherits all the SBSs associated with its parent OP k ∈ K.

Let Kk = {k1, . . . , kck} denote the set of identical copies

of OP-k, which we shall refer to as the set of children OP.

Thus, our augmented set of OPs is Kaug = ∪k∈KKk. Since

each child OP is assigned with at most one RB in many-to-

one matching, if the number of children OPs is equal to the

maximum number of required RB, then this method guarantees

that each parent OP can obtain more than one RB. At the same

time, by allocating at most one RB to each child OP, it ensures

that each parent OP will get the maximum number of allowed

RBs

However, it requires that the group of players Kk, which are

the set of children of OP-k, coordinate with each other such

that no two players in Kk select the same RB. Otherwise, each

parent OP will be assigned with a lower number of RBs than

the requirement. As illustrated in Fig. 1, OP-1 requires two

RBs, so it makes two copies of itself; whereas OP-2 requires

three RBs, so it makes three copies of itself.

Fig. 1. Matching between RB and OPs

For a given parent OP-k, we will take the rate of SBS and

children OP to be given by (6) and (2) respectively. We will

take the rate of parent OP-k as

ROPk
=

∑

k′∈Kk
ROPk′

|Lk|
. (10)

We extend the idea of swap matching as given in [11], which

considers peer effects of a social network and a weaker notion

of stability, known as two-sided exchange stability. We propose

a decentralized approach that can guarantee the number of RBs

required for each OP while at the same time ensuring that each

RB is not utilized by more than the desired number of OPs.

Definition 1 : For many-to-one matching, a matching is a

subset µ ⊆ L × Kaug such that |µ(k)| = 1 and |µ(l)| = bk
where µ(k) = {l ∈ L : (l, k) ∈ µ} and µ(l) = {k ∈ Kaug :
(l, k) ∈ µ}.

Also, for any k ∈ Kaug , let µ2(k) denote the co-sharers of

an RB-l which are children of the same parent OP as k. We

will denote the desirability of RB-l for any OP-k by Dk
l ∈

R
+ ∪ {0}. In our case, the desirability of an RB for children

OP is given by the weighted sum rate obtained by the OP when

it accesses that RB as given in (2). For a given matching µ,

we can write the desirability as Dk
µ(k). The utility of OP-k is

given by,

Uk(µ) = Dk
µ(k) · Iµ(k), (11)



where the indicator function I(·) is given by

Iµ(k) =

{

0 if µ2(k) 6= ∅
1 otherwise.

In other words, if two children of the same parent OP access

the same RB, they will be punished. This has the effect of

ensuring that two sibling OPs will access different RBs.

A swap matching µk′

k is a matching µ in which the OPs k
and k′ switch places while keeping all assignments of other

OPs the same.

Two possible algorithms are given as Algorithm 1 and

Algorithm 2. The Algorithm 1 proceeds in a greedy fashion to

improve the social welfare and can be implemented distribu-

tively. Since the social welfare strictly improves with each

iteration, this algorithm converges to a two-sided exchange-

stable matching. Algorithm 2 proceeds to optimize the social

welfare S via the Markov Chain Monte Carlo (MCMC)

method.

Algorithm 1 Greedy Swap Algorithm

1: for i ≤maxIterations do

2: Search for “approved” swap µk′

k

3: µ← µk′

k

4: i← i+ 1

Algorithm 2 MCMC

1: for all i ≤ maxIterations do

2: Pick a random pair of OPs {k, k′}
3: PTb

= 1

1+e−Tb(S(µk′

k
)−S(µ))

4: µ← µk′

k with probability PTb

5: if S(µk′

k ) > Sbest then

6: Sbest = S(µk′

k )
7: i← i+ 1

B. Stability of Many-to-one Matchings with Externalities

In this part, we show the existence of the many-to-one stable

matching with externalities for multi-OP spectrum sharing. We

prove that all local maxima of the social welfare are pairwise

stable. We first define what we mean by local maxima and

then give a lemma, after which we will prove the said theorem.

First, let the potential of the system be defined as,

φ(µ) =
∑

k∈Kaug

Dµ(k)Iµ(k). (12)

Definition 2: The local maximum of the potential φ(µ) is

matching µ for which there exists no matching µ′ which is

obtained from µ by swapping any two OPs k, k′ such that

φ(µ′) > φ(µ).
We now show that the desirability of RB-l for the rest of

the OPs that use this RB-l, and which are not involved in a

swap process, does not change after the swap has occurred.

Lemma 1 : For any swap matching µk′

k , Dj

µk′

k
(j)

= Dj
µ(j)

for j 6= k, k′.

Lemma 2 : Any swap matching µk′

k such that,

1) ∀i ∈ {k, k′}, Ui(µ
k′

k ) ≥ Ui(µ) and

2) ∃i ∈ {k, k′}, Ui(µ
k′

k ) > Ui(µ),

leads to φ(µk′

k ) > φ(µ).
Since the number of matchings is finite, there exists at least

one optimal matching which leads to the maximum social

welfare. The Theorem 1 ensures that this matching is pairwise-

stable.

Theorem 1 : All local maxima of φ are pairwise stable.

Corollary 1 : If Iµ(k) = 1 for all k ∈ Kaug , then all local

maxima of system objective S are pairwise stable.

IV. INTRA-OPERATOR SPECTRUM SHARING USING

REINFORCEMENT LEARNING STRATEGY

In this section, we propose a mechanism of self-organizing

networks based on reinforcement learning. We assume that all

the SBSs are able to estimate the interference they experience

at each RB and accordingly tune their transmission strategies

towards a better performance based on Q-learning.

A. Q-learning

The Q-learning model consists of a set of states S and ac-

tionsA aiming at finding a policy that maximizes the observed

rewards over the interaction time of the agents/players (i.e.,

small cells). Every SBS f ∈ Fk subscribed to an OP-k, where

k ∈ Kaug explores its environment, observes its current state

s, and takes a subsequent action a, according to a decision

policy π : s→ a.

For each OP-k belonging to the set k ∈ Kaug , let us denote

by GQk =
(

Fk, {Pf}f∈Fk
, {uf}f∈Fk

)

the Q-learning game.

Here, the players of the game are the SBSs f ∈ Fk which seek

to allocate power in the RBs assigned to their corresponding

OP. The sf (t) is the state of SBS-f at time t. The state of

an SBS is a binary variable, sf (t) ∈ {0, 1}, which indicates

whether SBS-f experiences interference in RB-l assigned to

its corresponding OP-k such that its required QoS is violated.

The QoS requirement is said to be violated when SINR
(l)
n <

SINRth, where SINR
(l)
n is given by (4). The af (t) is the

action of SBS-f , where af (t) ∈ Pf . Any given action can

be represented by an integer variable af (t) ≡ n, where n
represents the power level. Finally, uf (t) is the utility function

or payoff of SBS-f at time-instant t, which we take as the

instantaneous rate of SBS-f at time-instant t as given by (3)

if the QoS is satisfied, otherwise it is taken to be zero:

uf(t) =

{

R
(l)
n iff SINR

(l)
n ≥ SINRth

0 otherwise.
(13)

The expected discounted reward over an infinite horizon can

be given by:

V π(s) = W (s, π∗(s)) + γ
∑

v∈S

Ps,v(π(s))V
π(v), (14)

where 0 ≤ γ ≤ 1 is a discount factor and r is the

agent’s reward at time t. W (s, π∗(s)) = E{w(s, π(s))} is the

mean value of reward w(s, π(s)), and Ps,v is the transition



probability from state s to v. For a given policy π, we can

define a Q-value as:

Q∗(s, a) = W (s, a) + γ
∑

v∈S

Ps,v(a)V
π(v), (15)

which is the expected discounted reward when executing

action a at state s and then following policy π thereafter. The

actions are chosen according to their Q-values as:

P (a|s) = eQ(sk,a)/Tp

∑

a′ 6=a e
Q(sk,a′)/Tp

. (16)

The Q-learning process aims at finding Q(s, a) in a recur-

sive manner where the update equation is given in [12].

V. NUMERICAL RESULTS

In this section, we present numerical results to evaluate the

performance of our multi-OP spectrum sharing framework and

proposed algorithms. The SBSs are spatially distributed in a

PPP within a square area with sides of 20 meters, and each OP

has the same density of SBSs per unit area. For K OPs, let the

maximum number of RBs required by each OP be given by

the vector c = [c1, . . . , cK ]. The vector c tells us how many

children that each parent OP will have in the augmented OP

set. For simplicity, we assume the weights in the social utility

function and at each SBS to be wk = ρf = 1.

Each SBS has one UE associated with it. The UE is located

within 5 meters of the SBS. The pathloss between SBS and

SBS-UE at distance d meters is given by PL(d) = 37 +
20log10(d) dB, and the pathloss due to the wall is 15 dB. The

standard deviation of log-normal shadow fading is assumed

to be 4 dB. The maximum transmit power of each SBS is

10 dBm, and the noise variance is −120 dBm. The SINR

threshold at each user is 3 dB. Each plot is based on 2500
random samples.

In Fig. 2, we plot the cumulative distribution function (CDF)

of the overall social welfare (bits/sec/Hz) for different number

of OPs and different power allocation schemes. We fix the

number of available RBs to L = 5 and the number of OPs

to utilize the same RBs, bl = 4 for all l ∈ L. The set

of augmented OPs for the four different cases considered

are c = [2, 3, 4] for K = 3, c = [2, 3, 4, 2] for K = 4,

c = [2, 3, 4, 2, 2] for K = 5, and c = [2, 3, 4, 4, 5, 2] for

K = 6. We consider cases when each SBS allocates power

to its UE using uniform power allocation, Q-learning and full

power allocation. Although with full power allocation from

SBS to its UE will cause higher interference, the achievable

date rate at each UE will be calculated only if the QoS is

statisfied. Thus, with higher transmitted power from the SBSs,

the data rate will be increased. Even by using Q-learning, the

CDF is lower compared with the full power allocation, but

the Q-learning can save more power at the SBS. Furthermore,

we observe that the CDF improves with the increase of the

number of OPs. This is due to the fact that more OPs utilize

the available RBs of the common pool spectrum, and hence

the overall social utility tends to increase.
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Fig. 2. Comparison of the cumulative distribution (CDF) for different OPs
with varying power allocation schemes using MCMC algorithm

In Fig. 3, the convergence of the MCMC and greedy swap

algorithms is demonstrated with Q-learning and full power

allocation. We fix c = [2, 3, 4] for K = 3, L = 5, and

bl = 4. With full power allocation, both MCMC and greedy

swap algorithms achieve higher social welfare (bits/sec/Hz)

than using Q-learning. The greedy swap algorithm converges

faster than MCMC algorithm. On the other hand, the MCMC

algorithm provides higher social welfare with both Q-learning

and full power allocation cases compared with greedy swap

algorithm.
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Fig. 3. Comparison for the convergence of MCMC and greedy swap
algorithms with Q-learning and full power allocation

In Fig. 4, we fix the maximum number of RBs for each

OP to be c = [2, 3, 4] for K = 3, c = [2, 5, 4, 2] for K = 4,

c = [2, 3, 4, 2, 2] for K = 5, c = [2, 3, 4, 4, 5, 2] for K = 6
and bl = 4. We plot the average social welfare per each OP

(bits/sec/Hz/OP) as the number of OPs are varied. We observe

that as the number of OPs increases, the average social welfare

per OP decreases. This is because increasing the number of



OPs will cause more interference in the system. However, the

overall social welfare is still increased, as given by the CDF

of that in Fig. 2. Moreover, when we increase the number

of RBs, we can see that the average social welfare per OP

increases. This is not surprising since the number of available

RBs to be chosen from has increased.
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Fig. 4. Average social welfare per OP for L = 5, 8, 10, 14 with different
OPs

In Fig. 5, the CDF of the overall social welfare is shown

when K = 5, bl = 4, and when L = 5 and 10 for various

values of c where k = 5. We can observe that when the size

of c increases, the CDF of overall social welfare decreases

for both L = 5 and 10. For example, when c = [2, 4, 4, 5, 5]
and c = [2, 2, 1, 1, 2] for L = 10, the CDF of overall social

welfare is much better when c = [2, 2, 1, 1, 2]. This is because

increasing the value of ck has the effect of increasing the size

of the augmented set of OPs. Thus, children OP of a parent

OP can use the same RB used by the children OP of other

parent OPs, which tends can increase the interference. Hence,

it will affect to the parent OPs and decrease the overall social

welfare.

VI. CONCLUSION

In this paper, we have considered multi-OP spectrum shar-

ing in an indoor deployment scenario. We have studied a sce-

nario where multiple OPs share some parts of their spectrum

among each other. We have cast this spectrum sharing as

a social welfare maximization problem. The main problem

has been decomposed into two parts. The first part is to

assign resource blocks to multiple OPs while in the second

part each SBS associated with an OP would try to maximize

their expected rate via a distributive power allocation method.

The many-to-one matching game with externalities has been

extended to two-sided matching to deal with the first part

of problem. We have created an augmented set of players

by producing identical copies of OPs. Since each augmented

OP would be assigned to at most one RB, the number of

augmented OPs is set to be equal to the maximum number of

required RBs. This method thus guarantees that each main OP
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Fig. 5. Comparison of the cumulative distribution function (CDF) when
OPs=5 for different augmented OP ck

can obtain more than one resource block. In the second part

of the problem, Q-learning has been proposed as the power

allocation method for each SBS of an OP. Matching and Q-

learning is iteratively performed until convergence.
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