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Abstract—We consider an energy minimization problem for
cooperative LTE networks. To reduce energy consumption, we
investigate how to jointly optimize the transmit power and
the association between cells and user equipments (UEs), by
taking into consideration joint transmission (JT), one of the
coordinated multipoint (CoMP) techniques. We formulate the
optimization problem mathematically. For solving the problem,
a dynamic power allocation algorithm that adjusts the transmit
power of all cells, and an algorithm for optimizing the cell-UE
association, are proposed. The two algorithms are iteratively used
in an algorithmic framework to enhance the energy performance.
Numerically, the proposed algorithms can lead to lower energy
consumption than the optimal energy setting in the non-JT case.
In comparison to fixed power allocation in JT, the proposed
dynamic power allocation algorithm is able to significantly reduce
the energy consumption.

I. INTRODUCTION

Improving energy efficiency is one of the urgent tasks
in the future cellular systems, due to both economic and
environmental reasons [1]. The numerous user equipments
(UEs) with high data traffic demand and the mass deployment
of base stations can lead to high energy consumption in
cellular networks [2]. Considering the existence of inter-cell
interference, how to satisfy all UEs’ data demand with low
energy consumption is challenging.

To deliver data demand for the associated UEs in a cell,
an amount of time-frequency resource will be consumed for
data transmission. The transmit power of a cell can affect the
usage of time-frequency resource in the cell. The proportion
of the consumed time-frequency resource for transmission in
a cell is defined as cell’s load. To characterize the influence
between inter-cell interference and cells’ load, a so called
“load-coupling” model has been proposed in [3]–[6]. By
adopting this model, several energy minimization problems
have been investigated in [7], [8], where the authors proved
that, given users’ demand, the total energy consumption can
be reduced by increasing the load of all cells. However,
the result is limited to non-cooperative cellular systems. In
other words, no UE in the cellular network can be served
by multiple cells simultaneously. This cooperation technique
is called joint transmission (JT). As one of the coordinated
multipoint (CoMP) techiniques, JT is able to enhance the
efficiency of the time-frequency resource usage, via exploiting
the potential interference signal reuse for data transmission [9].

In this paper, with JT, we investigate the energy consump-
tion in networks by optimizing power allocation and cell-

UE association. We present the following contributions. First,
we formulate the considered energy consumption problem
mathematically. Second, we provide theoretical analysis for
the problem solving. We show that when JT is taken into con-
sideration, the full load optimality conclusion in [7], [8] may
not hold in general. Third, considering the high computational
complexity in solving the optimization problem, we propose
two algorithms, for optimizing the power allocation and the
cell-UE association, respectively. The two proposed algorithms
can be jointly used to improve the energy performance in
polynomial time. In the proposed algorithm, based on our
theoretical analysis, we systematically scale down the transmit
power and optimize the cell-UE association for JT. Finally, we
numerically illustrate that the proposed algorithm is capable of
improving the performance of network energy consumption,
compared with the optimal energy setting [7] in the non-JT
case. Moreover, we show that the proposed power allocation
algorithm outperforms the fixed transmit power schemes in JT
case, on the performance of energy consumption.

Notations: We denote a (tall) vector by a bold lower case
letter, say x. We denote x > 0 and x > 1 if xi > 0 and xi > 1,
respectively, for all i; similarly for the inequality <. We denote
x > x′ if there exist at least one i with xi > x ′i, and for other
k 6= i we have xk > x ′k; similarly for the less-equality 6.

II. SYSTEM MODEL

A. Network Model

Denote the set of all cells by I. Denote the set of all UEs by
J. Let n = |I| and m = |J|. Each UE is served at least by one
cell with non-zero demand. Given that Ij denotes the set of
cells currently serving UE j, and Ji the set of UEs currently
served by cell i, respectively, the cell-UE association, is then
decided. Note that i ∈ Ij ⇔ j ∈ Ji. This means, if Ij is fixed,
then is Ji, and vise versa. For clarity, we use both of them to
indicate the cell-UE association, to keep the coherence in the
context.

B. Load Coupling

We introduce the load coupling model in this subsection.
For convenience, we fix Ij (and Ji) in the expression of the
signal-to-interference-and-noise-ratio (SINR) and the cell load.

We define the load of any cell i in Eq. (1). The bitrate de-
mand of UE j is represented by dj (dj > 0). The network-wide
demand is represented by the vector d = [d1,d2, . . . ,dm]. The
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SINR of UE j is denoted by γj. The network-wide SINR is
denoted by γ = [γ1,γ2, . . . ,γm]. We use the term “resource
unit (RU)” to refer to one or more than one resource blocks
in orthogonal-frequency-division multiple access (OFDMA).
Without loss of generality, an RU is imposed to be the minimal
unit for resource allocation. The bandwidth per RU is denoted
by B. In the denominator in Eq. (2), B log2(1+γj) computes
the achievable bitrate per RU. We assume there are M RUs
in total, such that MB log2(1 + γj) is the total achievable
bitrate for UE j. Denote yj = dj/(MB log2(1 + γj)), and yj
represents the proportion of RUs required for UE j to satisfy
dj. The summation of yj for all j ∈ Ji, is called the load of
cell i, represented by xi. Denote the network-wide load by the
vector x = [x1, x2, . . . , xn]. As we can see in Eq. (1), xi is a
function of γ, d and the association between i and its serving
UEs, aka. Ji. We denote this function by fi(γ,d, Ji).

xi := fi(γ,d, Ji) =
∑
j∈Ji

dj

MB log2 (1 + γj)
(1)

γj := hj(x,p, Ij) =

∑
i∈Ij pigij∑

k∈I\Ij pkgkjxk + σ2 (2)

Eq. (2), shows the SINR of any UE j. Notation pi is the
transmit power of cell i per RU. The network-wide power
is denoted by the vector p = [p1,p2, . . . ,pn]. The channel
gain from cell i to UE j is denoted by gij. In the numerator,
the transmit power received at UE j from all its serving
cells Ij is computed by

∑
i∈Ij pigij. In the denominator,∑

k∈I\Ik pkgkjxk computes the interference power received
at UE j from cell k. In an extreme case that none of the RUs
in cell k is occupied for transmission, we have xk = 0 and
the term pkgkjxk = 0. This means that UE j does not receive
interference on any RU of cell k, no matter which RUs j is
now occupied in its serving cells. On the contrary, if all RUs
in cell k are occupied for transmission (meaning that k is in
full load and xk = 1), then UE j always receives interference
from cell k, no matter which RUs are used by j on its serving
cells. In this case, the interference from cell k to UE j is
computed by pkgkj. Generally, for any RU in cell i, the value
of xk reflects the likelihood the cell i receives the interference
from cell k on this RU. Note that the SINR γj is a function
of the network-wide power p, the load x, and the association
between j and its serving cells Ij. We denote this function by
hj(x,p, Ij).

As we can see by the discussion above, for any UE j, the
load of its interfering cells k ∈ I\Ij impacts the SINR γj,
further causing an influence on the load of j’s serving cells
i ∈ Ij. This characteristics that the usage of RUs on different
cells are mutually influenced, is called load coupling. Eq (3)
shows this relationship in a network-wide perspective.

Load Coupling:
{
γ = h(x,p, Î)
x = f(γ,d, Ĵ)

(3)

For the load coupling, the composition of function f and
h, i.e. f(h(x,p, Î),d, Ĵ), is a standard interference function

(SIF) [10] in x. The proof of this is in [12]. The definition of
the SIF is given below [2].

Definition 1. A function f: Rm
+ → R++ is called an SIF if

the following properties hold:

1) (Scalability) αf(x) > f(αx), ∀x ∈ Rm
+ , α > 1.

2) (Monotonicity) f(x) > f(x′), if x > x′.

In [10], the convergence point of an SIF is proved to
be unique, and can be obtained by the fix-point iteration.
Suppose the association between cell and UE is fixed. For
any given power vector p and demand vector d, we have a
unique load vector x satisfying x = f(h(x,p),d). We call
the relationship of the mutual influence between p and x
the power-load coupling. For the SIF, we introduce some
propositions and lemmas. They work as fundamentals for
the analysis on theoretical aspects for energy minimization.
Proposition 1 comes directly from the monotonicity of the SIF.
The proof of Lemma 1 and Lemma 2 can be found in [11].
Proposition 1 and Proposition 2 are used as the fundamental
for proving Lemma 3 and Lemma 4 in Section IV, respectively.

Proposition 1. For the sequence x(0), x(1), . . . generated by
fix-point iteration, if there exists k satisfying f(x(k)) 6
f(x(k−1)), then the sequence x(k), x(k+1), . . . is monotonously
decreasing (in every component), otherwise if f(x(k)) >
f(x(k−1)), then the sequence is monotonously increasing (in
every component).

Lemma 1. The function R → R : x 7→ 1/ log[1/(1 + 1
x
)] is

concave.

Lemma 2. Suppose A ∈ Rn×m and b ∈ Rn. Define ϕ :
Rn
+ → R. If ϕ is concave, so is f(Ax+ b).

Proposition 2. Scalability holds for f(h(σ2, x)) in [σ2, x].

Proof. The function f(h(σ2, x)) can be obtained by making
linear transformation for x in the function 1/ log2(1/(1 +
1/x)), of which the concavity still holds after the transfor-
mation, according to Lemma 1 and Lemma 2. Hence the
conclusion.

III. PROBLEM FORMULATION

The energy minimization problem (MinE), is formulated in
this section. For the sake of mathematical presentation, the
association, i.e. Î (or Ĵ), is replaced by an n ×m matrix κ.
And κij = 1 means that cell i is currently serving UE j.
In other words, we have κij = 1 ⇔ i ∈ Ij and j ∈ Ji,
κij = 0 ⇔ i /∈ Ij and j /∈ Ji, with κij ∈ {0, 1}. The objective
is to minimize the total energy consumption for transmission.
Recall that for all i ∈ I, pi is the transmit power per RU in cell
i, and xi is the proportion of allocated RUs for transmission
in cell i. Therefore, the total energy consumed in cell i is
pTx =

∑
i∈I pi(xi ×M), where xi ×M is the number of



occupied RUs in cell i. The formulation is as follows.

[MinE] min
κ,d,p,x

pTx (4a)

s.t. x = f(h(x,p,κ),d,κ) (4b)
p 6 pmax (4c)
d > dmin (4d)
0 < xi 6 1 ∀i ∈ I (4e)
κij ∈ {0, 1} ∀i ∈ I, j ∈ J (4f)

Due to that M is a constant, we set the objective of MinE
to be

∑
i∈I pixi, shown in (4a) in MinE. We impose (4b) to

be the power-load coupling constraint. The inequalities (4c)
and (4d) are constraints for the maximal transmit power and
the minimal user demand, respectively. In constraint (4e), the
cell load is limited to be no more than x = 1, aka. the full
load. The cell-UE association is one of the variables in MinE,
imposed to be binary in (4f). The variables in MinE are κ, d,
x, and p.

IV. ENERGY MINIMIZATION: ANALYSIS AND SOLUTION

In this section, we give theoretical analysis on how to
optimize the transmission energy. Based on the theoretical
properties, we respectively propose a power allocation algo-
rithm and an algorithm to optimize the cell-UE association.

Proposition 3. d = dmin is optimal for MinE.

Proof. According to Proposition 1, if we reduce the data rate,
then the load at convergence will decrease. Thus the optimal
setting of demand is d = dmin.

According to Proposition 3, we can set d to dmin in MinE
without loss of optimality. For the clarity of discussion, we set
d = dmin. Then the variables in this section are the power p,
the load x and the association κ. For the sake of presentation,
we use Fix{f(h(x,p,κ),κ)} to denote the fixed point of the
function f(h(x,p,κ),κ). We formally define the notations of
p, p′, x and x′, in Definition 2 below.

A. Analysis on Power Allocation

In [7], [8], the authors showed the optimality of the full load
in the non-JT case. However, in the JT case, this conclusion
does not hold, because the full load may not be possible for
all cells. For example, suppose there are two cells c1 and c2,
and two UEs u1 and u2. Cell c1 serves u1 and u2, and cell c2
serves only u2. If the demands of both u1 and u2 are non-zero,
then c2 cannot be in full load. Even we know the optimal load
setting for MinE, the power solution is not always unique. Due
to these reasons, the conclusion in [7], [8] does not hold in
general with JT. In this subsection, we show that, in but not
limited to the JT case, the energy performance always benefits
from letting the power of all cells be scaled down uniformly.

Definition 2. Given any association κ, we define the notations
p, p′, x and x′ as follows.

1) Denote p′ = p/α, with α > 1.

2) Denote x = f(h(x,p)), i.e. x is the fixed point corre-
sponding to p.

3) Denote x′ = f(h(x′,p′)), i.e. x′ is the fixed point
corresponding to p′.

In Definition 2, p′ is the power scaled down from p by the
scaling constant α > 1. The load x′ is the fixed point in the
power-load coupling equations with the power p′. Lemma 3
and Lemma 4 show properties for such a scaling operation
on p. Lemma 3 shows that, when the power is scaled down,
the load increases. Lemma 4 gives an upper bound on the
increased load x′. Based on Lemma 4, we get Theorem 1
that serves as a theoretical support for the proposed power
allocation algorithm. Based on Lemma 3 and Theorem 1, we
propose our power allocation algorithm.

Lemma 3. x′ > x.

Proof. We fix κ in MinE in the proof. Let x(1) =
f(h(p′, x(0))) with x(0) = x. According to Eq. (2), we
can verify that f(h(p/α, x)) = f(h(σ2α, x,p)). Because
f(h(σ2α, x,p)) is increasing in σ2, we have x(1) > x(0) = x.
By Proposition 1, we have x′ > x. Hence the conclusion.

Lemma 4. x′ < αx.

Proof. We fix κ in MinE in the proof. By Lemma 2,
f(h(σ2, x)) is concave in σ2, and thus the scalability holds
for σ2. Denote by x(1) the first iteration round, with x(1) =
f(h(p/α, x(0))) and x(0) = x. According to Lemma 2, we
have x(1) < αx. Then the remaining proof can be established
by mathematical induction. Suppose for some k > 1, we have
x(k) < αx. By the monotonicity of f(h(ασ2, x,p)) in x, and
Lemma 2, we have x(k+1) 6 x(k) < αx. Because we have
x(k) < αx for k = 1, we can conclude that x(k) < αx holds
for any k > 2, until the convergence x′ = f(h(p′, x′)) is
reached. Hence the conclusion.

Theorem 1. p′Tx′ 6 pTx.

Proof. According to Lemma 4, we have x′ < αx. So

p′Tx′ =
pT

α
x′ <

pT

α
· αx = pTx, (5)

hence the conclusion.

Based on Lemma 3 and Theorem 1, we design a bisec-
tion search based algorithm, namely, POwer scaLed dOwn,
(POLO), to compute a power allocation that improves the
energy performance. POLO is shown in Algorithm 1. The
input of POLO is the power p, the load x and the association
κ. The output is the optimized power allocation p′ and
its corresponding load vector x′. Let us see how POLO
works. The basic idea of POLO is to find a scaling constant
β (0 < β < 1), that makes the new power p′ to be less than
the original power p, while not violating the maximum load
constraint x 6 1. By Lemma 3, we know that the load will
increase from x to x′, when we reduce the power from p to p′.
On the other hand, the total energy consumption will decrease
with p′ and x′, according to Theorem 1. As shown in Line 4,



Algorithm 1: Power Allocation (POLO)
Input: p, x, κ, ε
Output: 〈p′, x′〉

1 β̌← 0, β̂← 1, p′ ← p+ ε, p′′ ← p;
2 while ||p′ − p′′|| > ε do
3 β← (β̌+ β̂)/2;
4 p′′ ← p′;
5 p′ ← βp;
6 x′ ← Fix{f(h(x,p′,κ),κ)};
7 x← x′;
8 if maxi∈I x

′
i > 1 then

9 β̌← β;
10 else
11 β̂← β;
12 end
13 end

x is updated to x′ in each iteration round. When the norm of
p′ −p′′ is no more than a given small value ε, it means that
β is (in respect of ε) at convergence to the maximum value
that makes x′ satisfying the full load constraint (4e). In this
case, POLO ends and returns the new power allocation p′ and
the corresponding load x′.

B. Analysis on Association Optimization

With the power allocation algorithm POLO, the total energy
decreases with the increase of the network load x. If there
exists a cell i with xi = 1, we cannot find a scaling constant
0 < β < 1 to further reduce the power. In this subsection, we
propose an algorithm to optimize the association that reduces
the network load via JT. We use c and u to denote any cell
and any UE in the network, respectively, to avoid conflicting
with the index i and j. Before we change the association, the
load and SINR functions are denoted by fc(x) and hu(γ) for
any c ∈ I and u ∈ J, respectively.

Consider the case of adding a link from a cell c to a UE u.
Suppose UE u is currently served by the cell(s) in Iu and there
is some cell c /∈ Iu. Suppose the set of UEs served by cell c is
Jc. The set of UE u’s serving cells expands from Iu to Iu∪{c}.
Then UE u does not receive interference from cell c anymore,
so the set of cells generating interference to u contracts from
I\Ij to I\(Ij∪ {c}). The SINR function of UE u after making
c to serve u, is denoted by h+u , shown in Eq. (6). Note that
for any j 6= u, the association between UE j and its serving
cells Ij does not change. That is, we have h+j (x) = hj(x), for
all j 6= u. Denote h+(x) = [h+1 (x),h

+
2 (x), . . . ,h+m(x)].

h+u(x) =

∑
i∈Iu

⋃
{c} pigiu∑

k∈I\(Ij∪{c}) pkgkuxku + σ2 (6)

For cell c, the set of its serving UE is expanded from Jc to
Jc∪ {u}. We formulate the load function of cell c, represented
by notation f+c , in Eq. (7). Note that for any i 6= c, the
association between cell i and its served UEs Ji does not

Algorithm 2: Association Allocation (AOLO)
Input: p, x, κ, τ
Output: 〈κ′, x′〉

1 for ∀κij = 0 in κ do
2 x(0) ← x;
3 for k← 1 to τ do
4 if κij = 0 then
5 κ ′ij ← 1;
6 x(k) ← f

(
h(x(k−1),p,κ′),κ

)
;

7 if x(k)i 6 fi
(
h(x(k),p,κ′),κ′

)
then

8 κij ← κ ′ij;
9 x′ ← Fix{f(h(x,p,κ′),κ′)};

10 end
11 end
12 end
13 end

change. In other words, we have f+i (x) = fi(x), for all i 6= c.
Denote f+(γ) = [f+1 (γ), f

+
2 (γ), . . . , f+n(γ)].

f+c (γ) =
∑

j∈Jc

⋃
{u}

rj

MB log2 (1 + γu)
(7)

We show the following theorem, given as a sufficient
condition to judge if adding the downlink from c to u can
reduce the network load x. The notation ◦ used below denotes
the function compound relationship [11]. That is, f ◦ h(·) is
equivalent to f(h(·)).

Theorem 2. Suppose x̃ = f◦h(x̃) and x = f+ ◦h+(x). Then
x 6 x̃ if ∃k > 1 in the iteration x(k) = f ◦ h+(x(k−1)) such
that f+c ◦ h+(x(k)) 6 x(k)c , where x(0) = x̃.

Proof. We construct the following steps. In the first k iteration
rounds (iteration t ∈ [1,k]), let x(t) = f ◦ h+(x(t−1)). By
Eq. (6), we have x(1) = f ◦ h+(x(0)) 6 f ◦ h(x(0)) = x(0).
Thus by Lemma 1, x(k) 6 x(k−1) 6 · · · 6 x(0) holds. For
the remaining iteration rounds (iteration t > k), let x(k+1) =
f+ ◦h+(x(k)). According to the condition in Theorem 2, f+c ◦
h+(x(k)) 6 x

(k)
c holds. For any i 6= c, by Eq. (7), we have

f+i ◦h
+(x(k)) = fi ◦h+(x(k)). Since x(k−1) > x(k), we have

fi ◦h+(x(k)) 6 fi ◦h+(x(k−1)) = x(k) holds. Then we have
x(k+1) = f+ ◦h+(x(k)) 6 x(k). By Lemma 1, at convergence
we have x = f+ ◦ h+(x) 6 · · · 6 x(k+1) 6 x(k). Combined
with x(k) 6 x(0), we get the conclusion.

Based on Theorem 2, an algorithm for optimizing AssOcia-
tion for reducing the LOad, namely AOLO, is proposed. AOLO
is shown in Algorithm 2. The basic idea of AOLO, is to check
all cell-UE pairs without a downlink, to see if adding a link
from the cell to the UE can reduce the network load x, by the
derived sufficient condition in Theorem 2. Since the transmit
power p is not changed in AOLO, the energy consumption,
pTx, is reduced. In AOLO, the parameter τ is a given constant,
indicating the maximal number of iteration rounds to check if
the condition in Theorem 2 can be satisfied. AOLO checks



all elements κij with κij = 0 in κ. As shown in Line 9, the
fix-point iteration is executed only if the new association κ′

is ascertained to lead to a reduction on the network load x.
AOLO ends when no improvement on the load can be found
by the sufficient condition in Theorem 2. In this case, the
new association κ′ and its corresponding network load x′ are
returned.

V. ALGORITHM DESIGN AND ANALYSIS

Based on the two algorithms POLO and AOLO, we propose
an algorithm that jointly optimizes the power p and the
association κ. The proposed algorithm is named PALO and
shown in Algorithm 3. The basic idea of PALO is to improve
the power allocation and association allocation by POLO and
AOLO, iteratively. In every iteration round, the old tuple of
power, association, and load, 〈p,κ, x〉, is updated to the new
tuple 〈p′, x′,κ′〉. In Line 3, we get a new tuple of power
and load, 〈p′, x′〉, with p′ < p and pTx > p′Tx′. In Line
4, under the power allocation p′, we further seek for a new
tuple of association and load, 〈κ′, x′′〉, with x′ > x′′. Then,
in each round of the loop shown in Lines 1–5, we have the
inequality pTx > p′Tx′ > p′Tx′′. Therefore, the energy is
improved round by round, until we cannot reduce the network
load by adding JT link. In this case, AOLO cannot find a new
association that reduce the load, so we have κ′ = κ. Besides,
since the β obtained from POLO is now the maximal value
that does not make the load vector to violate the full load
constraint, β cannot be updated again. Therefore PALO ends.
Theorem 3 shows that PALO is in polynomial time.

Theorem 3. Suppose that computing the fixed point of f(h(x))
is of the complexity O(K), then PALO runs in O(Km2n2).

Proof. In POLO, the maximal possible distance between p′

and p′′ is less than that between pmax and 0, due to the
assumption that we have p > 0 for any p. Consider the worst
case, that the initial power is pmax and the finally optimized
power is a very small positive value. Let pmax be the largest
value in pmax, we have Eq. (8) holds.√

(p ′1 − p
′′
1 )

2 + · · ·+ (p ′n − p ′′n)
2 <

√
nβ2 (pmax)2 (8)

We get ||p′−p′′|| < ε if and only if β 6 ε/(
√
npmax). This

can be verified by replace any such β in Eq. (8), i.e.

||p′ − p′′|| <

√
n

(
ε√

npmax

)2

(pmax)2 = ε (9)

Algorithm 3: Power-Association Allocation (PALO)
Input: p, x, κ, ε, τ
Output: p′, κ′

1 repeat
2 〈p′, x′〉 ← POLO(p, x,κ, ε);
3 〈κ′, x′′〉 ← AOLO(p′, x′,κ, τ);
4 〈p, x,κ〉 ← 〈p′, x′′,κ′〉;
5 until κ = κ′;
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Fig. 1. Optimal non-JT vs. Sub-optimal JT

Thus, to get β 6 ε/(
√
npmax) by reducing β via the

bisection search, the complexity is O(log2

[(√
npmax)/ε

])
=

O(log2 n). So POLO runs in O(K log2 n). In AOLO, the
outer loop repeats at most m × n round. So AOLO is of the
complexity O(Kmn). In PALO, note that the loop repeats at
most m×n round. Then the computation complexity of PALO
is calculated as

O(mn)× [O(K log2 n) +O(Kmn)] = O(Km
2n2) (10)

Hence the conclusion.

VI. PERFORMANCE EVALUATION

A. Simulation Settings

We show numerical results in this section. In the simulation,
there are 7 macro cells (MCs) in total. Two small cells
(SCs) are placed around each MC. Thirty UEs are randomly
distributed in each hexagon. The network operates at 2 GHz.
Each RU is set to 180 kHz bandwidth and the bandwidth for
each cell is 4.5 MHz. The noise power spectral density is
set to -174 dBm/Hz. The path loss for the MCs follows the
standard 3GPP urban macro (UMa) model [13]. The path loss
for the SCs follows the standard 3GPP urban micro (UMi)
model of hexagonal deployment. The shadowing coefficients
are generated by the log-normal distribution with 6 dB and 3
dB standard deviation [13], for MCs and SCs, repectively. The
maximum transmit power levels for MCs and SCs are set to
200 mW and 50 mW per RU, respectively. Each UE is initially
connected to the cell (an MC or SC) with the best received
signal power, i.e., the network is initialized without JT. We run
the simulation on 15 groups of data. The final results shown
in this section are averaged from them.

B. Numerical Results

Fig. 1 shows the results of total energy consumption among
three cases. In the case of optimal energy in non-JT, each UE
is served only by one cell (the cell with the best received signal
power). Due to the full load optimality in the non-JT case [7],
each cell in this case is set to full load. The power of the non-
JT case is then computed under the full load. In the case AOLO
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Fig. 2. Performance of POLO under JT

shown in Fig. 1, only the algorithm AOLO is applied. In other
words, the transmit power is as same as that in the non-JT case,
while the cell load is reduced by making some cells to serve
UEs via JT. In the case PALO, the algorithm PALO is applied
on the non-JT case. On average, the optimal energy in non-JT
can be reduced by 4.01% via optimizing the association by
AOLO. By iteratively using AOLO and POLO, i.e. PALO, the
energy can be further reduced by 6.71%. Compared with the
initial non-JT case, the energy is reduced by 9.82% by PALO.
The improvement becomes larger with the increase of the user
demand.

In Fig. 2, we investigate the performance of the power
allocation algorithm POLO under JT. The cell-UE association
for each user demand is computed by PALO. In CASE 1,
we set the transmit power for MCs and SCs per RU to 160
mW and 40 mW, respectively. In CASE 2, we respectively
set 120 mW and 30 mW for MCs and SCs. We then apply
POLO on both of the two cases. As we can see, the power
allocation algorithm POLO significantly reduces the energy
consumption for both CASE 1 and CASE 2. Numerically,
POLO reduces the energy by 54.90% and 45.28% for CASE 1
and CASE 2, respectively. One can observe that the lower the
user demand is, the more the energy consumption is reduced.
This is because, when the user demand is low, the maximal cell
load level is relatively low. Thus, the power can be reduced
more with the cell being not overloaded, thus leading to more
reduction on the energy. When the demand is 540 Kbps, there
exists one cell at full load in the simulation, for both CASE
1 and CASE 2. The power cannot be reduced by POLO in
this situation, otherwise there will be at least one cell i with
xi > 1, violating the load constraint. For other demands less
than 540 Kbps, there is visually no difference between the
performance of POLO applied on CASE 1 and CASE 2. One
can observe that POLO is effective in energy saving in the JT
case, when the cell-UE association is fixed.

VII. CONCLUSION

We have investigated the energy minimization problem
under the load-coupling model in JT scenarios. We remark

that the conclusion of full load optimality in the previous work
[7], [8] does not hold with JT in general. Thus, the scheme of
optimal power and load setting in non-JT does not apply in
the JT cases. For energy saving in JT, we consider to jointly
optimize the power allocation and cell-UE association. Two
algorithms are then proposed. We show theoretically that these
two algorithms naturally combined with each other for energy
saving. We numerically showed that the proposed algorithms
improve the energy performance in comparison with the
optimal energy setting in non-JT. In JT, the proposed power
allocation algorithm significantly improves the performance of
total energy consumption, compared to those with the setting
of fixed power levels.
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