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Abstract—The use of extremely high frequency (EHF) or
millimeter-wave (mmWave) band has attracted significant at-
tention for the next generation wireless access networks. As
demonstrated by recent measurements, mmWave frequencies
render themselves quite sensitive to “blocking” caused by ob-
stacles like foliage, humans, vehicles, etc. However, there is a
dearth of analytical models for characterizing such blocking and
the consequent effect on the signal reliability. In this paper, we
propose a novel, general, and tractable model for characterizing
the blocking caused by humans (assuming them to be randomly
located in the environment) to mmWave propagation as a
function of system parameters like transmitter-receiver locations
and dimensions, as well as density and dimensions of humans.
Moreover, the proposed model is validated using a ray-launcher
tool. Utilizing the proposed model, the blockage probability is
shown to increase with human density and separation between the
transmitter-receiver pair. Furthermore, the developed analysis is
shown to demonstrate the existence of a transmitter antenna
height that maximizes the received signal strength, which in
turn is a function of the transmitter-receiver distance and their
dimensions.

Index Terms—Fifth-generation networks; cellular mmWave
communications; urban environment; human-body blockage.

I. INTRODUCTION AND MOTIVATION

The dearth of spectrum in the conventional ultra-high fre-
quency (UHF) bands coupled with increasing wireless traffic
has led industry and academia to consider employing EHF or
mmWave as one of the candidate technologies for the next
generation of wireless access networks (or “5G”) [1]. Given
that electromagnetic waves cannot travel around obstacles with
the dimensions exceeding their wavelength, numerous objects
(like humans, buildings, etc.) in the environment, which did
not affect UHF signals significantly, would lead to propagation
losses for mmWave transmissions [2]. As high wireless traffic
demand areas, attractive for deploying mmWave wireless net-
works, tend to be highly populated too (e.g., city square, mall,
etc.), characterizing the effect of humans around the receiver
on the mmWave signal blockage is quite important.

Although there has been considerable progress in channel
modeling for mmWave [3], [4], [5], [6], the investigation on
blockage modeling for mmWave has been limited. In [4], a
model was proposed to characterize the blocking of the line
of sight (LoS) path by buildings. In the proposed model, the
receiver dimension was assumed to be infinitesimally-small
and the blockers (those high enough to block LoS) were
distributed uniformly, without considering alternative deploy-

ment patterns. The derived model was quite similar to the
exponential distance dependent decay approaches traditionally
used in 3GPP urban outdoor micro-cellular model [3] and
proposed in the context of mmWave in [6]. Another simple
ball based blocking model for buildings was proposed in [5].
Coverage and capacity obtained from these aforementioned
models was compared with that obtained from real building
data in [7].

Compared to UHF, communications in mmWave networks
are expected to operate over shorter distances and in crowded
urban environments [6]. Since the height of the transmitter
could be much lower than that of traditional base stations
(BS), humans surrounding the receiver can act as blockers
to signal propagation. Hence, in addition to the heights of the
receiver and the transmitter, the distance between them, and
the spatial dimensions of blocking objects, the random heights
of humans also need to be accounted for. Further, due to much
smaller distances between the transmitter and the receiver, and
accounting for the possible antenna arrays at the receiver [6],
the linear dimensions of the receiver may be non-negligible in
practice. None of the prior works address these issues in their
models.

In this paper, we propose a novel and tractable model
for characterizing the probability of human-body blockage.
The proposed model represents humans as cylinders with
arbitrarily distributed heights and radii, whose centers follow
the Poisson Point Process (PPP) in two dimensions. Employing
the tools from stochastic geometry and renewal processes,
the blockage probability of the LoS path between transmitter-
receiver is derived as a function of receiver dimension and
the transmitter-receiver separation. The case with infinitesimal
receiver dimensions is a special scenario of the developed
analysis. The proposed model is validated by comparing with
the blocking probability obtained from detailed mmWave ray-
launching simulations, which in turn lends credence to the
offered design insights. Using our analysis, the optimal height
of the mmWave transmitter in crowded outdoor environments
is derived and shown to be proportional to the transmitter-
receiver separation.

II. PROPOSED ANALYTICAL FRAMEWORK

A. Spatial model

Consider the scenario illustrated in Fig. 1(a, b). There is a
Tx located at a certain height hT above the ground and a Rx
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Fig. 1. The considered scenario for analytical modeling.

located at the height hR. The base of the Rx is at the distance
r from the base of the Tx. The potential blockers, humans,
are distributed over the landscape. We model the blockers as
cylinders [8] with a certain height, H , and the base diameter of
D. Both D and H are random variables (RVs). It is known that
the distribution of the height for men and women is Normal
with the mean and the standard deviation provided in [9].
Following [9], the mixture of users is closely approximated
by the Normal distribution H ∼ N(µH , σH). Generally, any
distribution could be used to provide a result based on the
current methodology. The RV D is assumed to be uniformly-
distributed between dmin and dmax. The centers of cylinder
bases follow a Matern hard-core point process on the plane
with the intensity λI . The length of the Rx is assumed to be
lm. In summary, the main parameters and the description of
the employed notation are given in Table I. In what follows,
our main metric of interest is the probability of blockage for
both the non-infinitesimal and infinitesimal receiver.

B. Blockage probability

To represent the centers of blockers on the landscape,
we employ the Matern hard-core process ensuring that the
locations of blockers do not overlap. Using the results of [10],
the Matern process can be replaced by the equivalent Poisson
process for a wide range of intensities λI . Further, observe
that for different values of hT , hR, and the distribution of the
blocker heights H , not all the blockers affect the LoS between
the Tx and Rx. The number of blockers should increase as the
x-coordinate grows from O to r, as in Fig. 1(c). The spatially-
varying intensity of centers of blockers along the radial lines
that may potentially affect the LoS between the Tx and Rx is
given by

λ(x) = λIg(x), g(x) = Pr{H > hm(x)}x ∈ (0, r), (1)

where hm(x) is a function describing the distance between the
line AB and OX at x.

Note that hm(x) is linear, hm(x) = ax+ b, where a is the
tangent of hm(x) with respect to the positive direction of OX ,
while b is the height of a function at x = 0. We thus have

hm(x) = −hT − hR
r

x+ hT , x ∈ (0, r). (2)

The probability g(x) = Pr{H > hm(x)} for each x is
a complementary cumulative distribution function (CCDF) of
H . Since H ∼ N(µH , σH), we have

g(x) = 1− 1

2

[
1 + erf

(
hm(x)− µH
σH
√
2

)]
, (3)

where erf(·) is the error function.
To determine the effective density of blockers at any sepa-

ration distance x, the original homogeneous Poisson process
is thinned with the probability g(x). The resulting process
is non-homogeneous, but still Poisson, with spatially-varying
intensity along the radial lines, λ(x) [11]. The intensity λ(x)
is minimal at x = 0 and increases non-linearly as x grows.
Consider now the projection of the blocker centers along the
radial lines, represented by points on the circumference of the
circle with radius r and center at Tx, see Fig. 2. It is easy
to prove that the process of projections on the circumference
is homogeneous Poisson, as it has a Poisson distribution of
projections in any bounded arc that depends only on the length
of an arc and satisfies the independence property of the Poisson
process.

To establish the intensity of blocker centers at the circumfer-
ence, consider the arc with length larc as illustrated in Fig. 2.

Fig. 2. Projections of blocker widths on the circumference.



Fig. 3. The top view of the scenario of interest.

The mean number of points, E[NB ], in the sector ATxB is

E[NB ] =

∫ r

0

λ(x)x
larc
r
dx, (4)

leading to the intensity of blockers at the circumference as

µ =
1

larc

∫ r

0

λ(x)x
larc
r
dx =

λI
r

∫ r

0

xg(x)dx, (5)

where g(x) is given in (3). Although this integral cannot be
expressed in elementary functions due to the error function in
g(x), it can be easily computed numerically with any required
accuracy.

To this end, we have characterized the point process of the
centers of blockers. Further, the distribution of a ”shadow”
created by an individual blocker at circumference is given.
Consider Fig. 3, which shows the top view of our scenario.
Observe that for r >> D, where r is the distance from the
base of Tx to Rx, we could replace the arc ARxB by a chord
AFB. From the geometric properties, we arrive at W , that is,
a RV denoting the length of a shadow as

W =
rD

L
, (6)

where L and D are the RVs denoting the distance from the
Tx to a blocker and the width of a blocker, respectively.
Recalling the principles of linear transformation of RVs [12],
the numerator of (6) reads as

frD(x) =
1

r(dmax − dmin)
, x ∈ (rdmin, rdmax). (7)

Consider now the denominator of (6). Recall that the
intensity of blockers increases along the radial lines according
to (1). Therefore, the probability to have a blocker increases as
we move from x = 0 to x = r. The density to have a blocker
at x conditioned on the event that there is a blocker shall
increase proportionally to g(x), as obtained in (3), and the
only aspect we have to determine calculating the probability
density function (pdf) of L is the normalization constant, such
that the area under fL(x) over x ∈ (0, r) is exactly 1. It can
be found as

N =

∫ r

0

(
1− 1

2

[
1 + erf

(
hm(x)− µH
σH
√
2

)])
dx, (8)

and normalized to obtain

fL(x) =
g(x)

N
, x ∈ (0, r). (9)

Now, to determine the pdf of the shadow, we have to find
the ratio between the RV rD and L, whose densities are given
by (7) and (9). Since these RVs are independent, the ratio is
formally offered by [12]

fW (y) =



∫ r

rdmin
y

xfrD(yx)fL(x)dx, for

dmin < y < dmax∫ rdmax
y

rdmin
y

xfrD(yx)fL(x)dx, for

y > dmax.

(10)

The integral (10) cannot be solved in elementary functions
due to the density of L in (9). However, one can compute the
distribution of W numerically.

C. Non-infinitesimal receiver
Consider now the Rx of length l. In practice, it corresponds

to when more than a single antenna is used at the user
equipment and/or the distance between the bases of the Tx
and Rx, r, is relatively small. In this case, we have to take
into account the length of the Rx explicitly and the task at
hand reduces to expressing the probability that an arc of a
constant non-zero width l is fully covered by arcs of random
length, whose center points follow a Poisson process with the
intensity µ as found in (4) and with the length pdf fW (x)
provided by (10).

Consider the projections of blockers on the circumference
as illustrated in Fig. 2. The widths of those projections
are independent and identically distributed (i.i.d) RVs with
the CDF FW (x) =

∫ x
−∞ fW (x)dx and the expected value

E[W ] =
∫∞
−∞ xfW (x)dx, where fW (x) is obtained from (10).

It is easy to show that not only the projections of the centers
of blockers, but also their left- and right-hand side projections,
form a stationary Poisson process on the line with the intensity
µ. The superposed process of all projections forms a renewal
process with the alternating blocked and unblocked parts. An
arbitrary point on the line is considered blocked, if it belongs
to one of the blocked intervals. The question of blocking is
then formulated as the probability of blocking this interval by
the renewal process. An arc of length l is said to be blocked,
if all the points of this arc are blocked.

Let ωj ηj , j = 1, 2, . . . , denote the length of the unblocked
and blocked intervals respectively, and define ξj = ωj + ηj .
Points 0, ξ1, ξ1+ξ2, and ξ1+ξ2+ξ3 are the renewal moments
that form the renewal process. The density of this process is
[13], [14]

f(x) = µFW (x) exp

(
−µ
∫ l

0

[1− FW (y)]dy

)
. (11)

Let fξ(t) be the density function of ξj , j = 1, 2, . . .
Functions fξ(x) and f(x) are related to each other via the
renewal equation as [13], [14]

f(x) = fξ(x) +

∫ l

0

fξ(x− y)f(y)dy. (12)



The length of the unblocked part ωj follows the exponential
distribution with the parameter µ, Fω(x) = 1 − e−µx, with
the mean E[ω] = 1/µ [14]. This can be verified by observing
that the left-hand sides of the individual shadows follow a
Poisson process with the intensity µ. Hence, the distance
from the end of the blocked part, considered as an arbitrary
point, to the starting point of the next blocked interval is
distributed exponentially. Let Fη(x) and Fξ(x) be the CDFs
of the length of the blocked intervals ηj , j = 1, 2, . . . , and
the joint blocked/unblocked intervals, ξj , respectively, with
the means E[η] and E[ξ]. Further, let F ∗η (s) and F ∗ξ (s) be
the corresponding Laplace-Stieltjes transforms (LSTs). For the
joint interval ξj , we have

F ∗ξ (s) = F ∗η (s)F
∗
ω(s) = µ

F ∗η (s)

µ+ s
, (13)

which can be solved for Fη(x) in the RV domain as

Fη(x) = Fξ(x) +
fξ(x)

µ
. (14)

Observe that the renewal density f(x) is f(x) = 1/E[ξ],
when l → ∞. From (11), we see that it is also equal to
f(x) = µ exp (−µE[W ]), where E[W ] is the mean length
of the blocked intervals. Consequently,

E[ξ] =
1

µ
exp(µE[W ]). (15)

Then, E[η] can be established as

E[η] =

∫ ∞
0

[1− Fη(x)]dx =

=

∫ ∞
0

(
1− Fξ(x)−

fξ(x)

µ

)
dx = E[ξ]− 1

µ
. (16)

Substituting (15) into (16), we arrive at

E[η] =
1

µ
[exp(µE[W ])− 1]. (17)

TABLE I
DESCRIPTION OF NOTATION AND PARAMETERS

Notation Description
hT Height of Tx
hR Height of Rx
r Distance between the bases of Tx and Rx
l Length of Rx
H ∼ N(µH , σH) Normally-distributed height of blockers
D ∼ U(dmin, dmax) Uniformly-distributed width of blockers
λI Initial intensity of blockers
λ(x) Spatially-varying intensity of centers of

blockers along the radial line
g(x), FH(y) CCDF, CDF of height of blockers
µ Intensity of blockers at the circumference
W Length of a blocker’s shadow
fL(x) pdf of a distance between Tx and a blocker
fW (y), FW (y), E[W ] pdf, CDF, and mean of a blocker’s shadow
ωj , Fω(x), E[ω] Length, CDF, and mean of unblocked inter-

vals
ηj , Fη(x), E[η] Length, CDF, and mean of blocked intervals
ξj , Fξ(x), E[ξ] Length, CDF, and mean of ωj + ηj
f(x) pdf of renewal process
fξ(x) pdf of ξj , j = 1, 2 . . .
fR(y), FR(y) pdf, CDF of blocker’s radius

The probabilities that a random point on the line will be on the
unblocked and blocked intervals, respectively, are the ratios of
the corresponding parts, E[ω]/E[ξ] and E[η]/E[ξ].

If a point is on the blocked part, then the distribution
function of the length of the interval from this point to the
right end of the blocked interval is

F̃η(x) =
1

E[η]

∫ l

0

[1− Fη(y)]dy. (18)

Knowing the probability of blockage for a point, we can
now obtain the probability of total blockage of the Rx of length
l. Let P (l) be the conditional probability that the interval (0, l)
is not blocked completely, meaning that the blocked interval
containing the left-hand side of the Rx will end before l. The
probability of the total blockage of the interval of length l,
given that the left-hand side of this interval is blocked, can be
found by using (14), (17), and (18) as

1− F̃η(x) =
1

E[η]

∫ ∞
l

[1− Fη(y)]dy =

=
µ

exp(µE[W ])− 1

∫ ∞
l

(
1− Fξ(y)−

1

µ
fξ(y)

)
dy, (19)

and the probability that the left-hand side is blocked is
E[η]/E[ξ].

Finally, the probability of the total blockage follows from
(19) as

PB = 1− P (l) = µ exp(−µE[W ])×

×
∫ ∞
l

(
1− Fξ(y)−

1

µ
fξ(y)

)
dy. (20)

In the special case when the length of the receiver is less
than the minimum diameter of the blocker, the probability of
the total blockage is given by

PB = 1− µ exp(−µE[W ])[1 + µl]. (21)

D. Infinitesimal receiver

In many important cases, the size of the Rx can be as-
sumed to be infinitesimally-small compared to other linear
dimensions of objects. Equipped with this assumption, we
provide a simpler method for calculating the LoS and blockage
probabilities for a point receiver, when the width of the Rx is
not considered. To this end, consider a rectangularly-shaped
area as illustrated in Fig. 4. Since this area is supposed to fit
all the potential LoS blockers, its width is bounded by dmax,
that is, the maximum width of blockers. The length of the area
is r. Due to the Poisson nature of blocker centers distribution,
the number of blocker centers in the area of interest follows a
Poisson distribution with the intensity λIrdmax. Note that the
coordinates of each particular center are uniformly-distributed
over (0, dmax) and (0, r). To determine the probability of LoS
blockage, we have to estimate the probability that at least one
blocker, which is falling into the area of interest, blocks the
LoS path.

Let the events Ai define the probability of having i block-
ers in the area of interest. Since each blocker has its own



Fig. 4. Top view of the blocking area.

dimensions, for each of those we define the following events:
(i) event B0 that the radius of a blocker’s base is not large
enough to cross the LoS between the Tx and Rx and (ii) event
B1, which is complementary to event B0. To calculate the
probabilities of these events, we integrate over the blocker’s y
coordinate as

Pr{B0} =
∫ rmax

−rmax

fR(y)FR (|y|) dy, (22)

and Pr{B1} = 1−Pr{B0}, where fR(y) and FR(y) are the
pdf and CDF of the blocker’s radius, respectively. The radius
of a blocker is uniformly-distributed in (dmin/2, dmax/2).

Recall that the radius and height of a blocker are indepen-
dent. Define the following events: (i) event C0 that the blocker
is not high enough to block the LoS and (ii) event C1, which is
complementary to event C0. The probabilities of these events
are

Pr{C0} =
∫ r

0

fR(x)FH

(
hT r − (hT − hR)x

r

)
dx, (23)

and Pr{C1} = 1 − Pr{C0}, where fR(x) is the pdf of a
uniform distribution from 0 to r, and FH(y) is the CDF of
the blocker’s height.

Having defined all the events of interest, we can proceed
with obtaining the probability of LoS. It includes the proba-
bility of the event A0, when there are no blockers in the area.
Using the law of total probability, we establish

PLoS = Pr{A0}+

+

∞∑
i=1

Pr{Ai}
∞∏
j=1

(Pr{B0}+ Pr{B1|C0}) . (24)

Since the height of a blocker is assumed to be independent
from its width, we have Pr{B1|C0} = Pr{B1}Pr{C0}.
Substituting these parameters into (24), we arrive at

PLoS = p0 +

∞∑
i=1

pi

∞∏
j=1

(∫ rmax

−rmax

fR(y)FR(|y|)dy+

+

∫ rmax

−rmax

∫ r

0

fR(y)(1− FR(|y|))fR(x)×

× FH
(
hT − (hT − hR)x

r

))
dydx. (25)

where pi, i = 0, 1, . . . are the Poisson probabilities.

III. NUMERICAL RESULTS AND DISCUSSION

A. Calibration with simulations

For the verification of our analytical model, we employed
our own mmWave ray-launching simulator, which approxi-
mates the propagation of electromagnetic waves with geomet-
ric lines. In addition, the tool accounts for detailed reflection
effects, which accurately mimic mmWave diffraction, refrac-
tion, and scattering. More specifically, the rays intersecting
the Rx antenna are considered to be successfully received
multi-path components. Based on the information about the
ray delays, phase, and received power, any relevant statistical
data could be obtained. As a result, our industry-grade ray-
launching tool makes it possible to recreate the needed urban
environment and obtain results, which are reasonably close to
real measurements. A simplified example of a ray-launching
based simulation run without scattering and diffraction effects
(for simplicity of exposition) is shown in Fig. 5(a).

We continue by calibrating the model with the ray-launching
tool based on the path loss comparison. In Fig. 5(b), the
results of the simulated LoS and non-LoS path loss are given
by red and blue dots, respectively, while the average ray-
launching path loss is plotted in green. Finally, the results of
our analytical modeling are presented in a form of the average
path loss calculated as

Le = PLoSLLoS + (1− PLoS)LnLoS , (26)

where PLoS is the LoS probability computed according to
(25), LLoS and LnLoS are the path loss for LoS and non-
LoS components, which have been parameterized according
to the real measurements in [6]. The comparison between
the average ray-launching and the average analytical path loss
indicates a marginal difference. However, it should be noted
that the results have only been simulated at shorter distances
due to excessive computational complexity. In the plot, it is
also visible that the LoS path loss values differ from the
corresponding non-LoS figures by at least 20 dB. Based on
this observation, we conclude that if the LoS component is
not present, there is a high probability of poor mmWave link,
similar to complete receiver blockage due to very low SNR.

To facilitate a more detailed comparison, and in addition to
ray-launching, we developed a simplified system-level sim-
ulator providing the blockage probability as a function of
the model parameters, which are given in Table II. First, in
a square area of interest with the dimensions of ten times

TABLE II
MAIN SIMULATION PARAMETERS

Parameter Value
Height of Tx 4m
Height of Rx 1.3m
Distance between the bases of Tx and Rx 30m
Height of a blocker, N(µH , σH) N(1.7m, 0.1m)
Diameter of a blocker, U(dmin, dmax) U(0.2m, 0.8m)
Length of Rx 0.1m
Initial intensity of blockers 0.3 blockers/m2

Frequency 28GHz



(a) Scenario modeled with ray-launching (b) Path loss calibration with ray-launching
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Fig. 5. Summary of calibration results.

greater than the distance between the Tx and Rx, we generated
the blockers according to the modified Matern hard-core
process with the parameters λI and U(0, dmax/2) following
the algorithm described in [11]. Here, the Tx is assumed to be
a point and is placed in the center, while the Rx is a segment
with the length of l positioned at the distance r from Tx,
such that the line connecting the center of Rx and Tx is a
normal. Both Tx and Rx are associated with heights hT and
hR, respectively. We further divide the segment l into N parts.
In these settings, (i) the event when the Rx is fully blocked
occurs when all of the lines are blocked; (ii) the event that at
least half of the Rx is blocked corresponds to having at least
half of the lines blocked; and (iii) the event that at least part
of the Rx is blocked occurs when at least one line is blocked.

The comparison of the results obtained with simulations and
the proposed mathematical model for point and interval Rx of
size 10cm is shown in Fig. 5(c). First, notice that the maximum
absolute difference is attained at the average distances of
around 40 − 100 meters. For short and long distances, the
deviation is marginal. Nevertheless, the maximum difference
is always less than 0.1 for a reasonably large Rx of 10cm. The
slight deviations of the analytical results from simulations are
explained by the fact that we replaced the actual Matern hard-
core process by a Poisson process with the same intensity.

B. Understanding analytical results

First, Fig. 6 shows the results for the average path loss (Le)
as a function of the Tx height calculated according to (26).
As one may observe, for each separation distance between the
bases of Tx and Rx, there always exists an optimal height of
the Tx, where the average path loss takes the minimum value.

To characterize the effect of non-infinitesimal Rx, Fig. 7
demonstrates the blockage probability for the interval Rx
across different ratios of the Rx size and the mean blocker
diameter l/dmean, as well as the distance between the bases
of Tx and Rx r. We notice that for any value of r and l/dmean,
the blockage probability for the point Rx is slightly higher than
that for the interval Rx. The increase in l/dmean, however,
decreases the blockage probability.

The height of the Tx, hT , is one of the most important
parameters available for system designers. Intuitively, the
higher the height is, the smaller the probability of the LoS
blockage should be. However, the final effect is expected to

Fig. 6. Average path loss and optimal hT for different r.

heavily depend on the Tx-Rx separation distance.

Fig. 7. Blockage probability as a function of r and l/dmean.

The impact of the Tx height and distance between the Tx
and Rx for a point Rx is demonstrated in Fig. 8. As we
expected, the probability of blockage reduces exponentially
as hT increases. The effect of the Tx-Rx distance is however
inverse – longer separation distances lead to higher blockage
probability. For large hT , the increase is linear, whereas for
smaller hT it is exponential. Also, notice that starting from
a certain Tx-Rx separation distance, the blockage probability
remains nearly the same. It is explained by the fact that at
such distances, and for a given human user density λI = 0.3,
the probability to ”meet” a blocker along the LoS path is high.



Fig. 8. Blockage probability for different hT and r.

IV. CONCLUSION

The presence of the LoS signal path is crucial in determining
the ultimate performance of the 5G-grade mmWave wireless
communications, especially in highly-crowded outdoor envi-
ronments. Using the ray-launching simulator, we first demon-
strated that the difference between the LoS and non-LoS path
loss values is at least 20 dB. Moreover, due to shorter ranges
of mmWave cellular technology, smaller obstacles will affect
the corresponding quality of signal propagation. All of the
above leads to the need of having a comprehensive analytical
methodology for determining the presence of the LoS link.
However, existing approaches, such as 3GPP urban outdoor
micro-cellular model, do not deliver the desired detalization.
This substantiates the importance of our conducted LoS-
centric analysis.

To this end, we developed a novel framework for capturing
the effects of the most important mmWave system parameters
on the probability of blockage for both the infinitesimal
receiver and the receiver of a fixed non-zero length. As a
result, it was shown that an increase in the ratio between the
length of the Rx and the blocker sizes leads to a closer match
between the two. Moreover, we demonstrated the existence
of the optimal Tx height, which is an important learning for
system designers. The studied parameters of interest included
the distance between the bases of the Tx and Rx and their
heights, as well as the density of blockers on the landscape
and their random dimensions.

Finally, also with the help of an advanced ray-launching
tool, it was confirmed that our analysis offers accurate results
to model human-body blockage in urban mmWave deploy-
ments.
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