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Abstract—Millimeter-wave (mmWave) massive MIMO used for
access and backhaul in ultra-dense network (UDN) has been
considered as the promising 5G technique. We consider such
an heterogeneous network (HetNet) that ultra-dense small base
stations (BSs) exploit mmWave massive MIMO for access and
backhaul, while macrocell BS provides the control service with
low frequency band. However, the channel estimation for mmWave
massive MIMO can be challenging, since the pilot overhead to
acquire the channels associated with a large number of antennas
in mmWave massive MIMO can be prohibitively high. This paper
proposes a structured compressive sensing (SCS)-based channel
estimation scheme, where the angular sparsity of mmWave chan-
nels is exploited to reduce the required pilot overhead. Specifically,
since the path loss for non-line-of-sight paths is much larger than
that for line-of-sight paths, the mmWave massive channels in the
angular domain appear the obvious sparsity. By exploiting such
sparsity, the required pilot overhead only depends on the small
number of dominated multipath. Moreover, the sparsity within the
system bandwidth is almost unchanged, which can be exploited for
the further improved performance. Simulation results demonstrate
that the proposed scheme outperforms its counterpart, and it can
approach the performance bound.

Index Terms—Millimeter-wave (mmWave), mmWave massive
MIMO, compressive sensing (CS), hybrid precoding, channel
estimation, access, backhaul, ultra-dense network (UDN),hetero-
geneous network (HetNet).

I. I NTRODUCTION

It has been the consensus that future 5G networks should
achieve the 1000-fold increase in system capacity [1]–[3].
To realize such an aggressive 5G version, millimeter-wave
(mmWave) massive MIMO used for the access and backhaul in
ultra-dense network (UDN) has been considered as a promising
technique to enable gigabit-per-second user experience, seam-
less coverage, and green communication [2]. In this paper,
we consider the heterogeneous network (HetNet) with the
separation of control plane and data plane, as shown in Fig. 1.
For such an HetNet, the macrocell base station (BS) provides
the control signaling service for the large coverage area using
conventional low frequency band, while the ultra-dense small
BSs are specialized in data resources with limited coverage
area for high-rate transmission, where the emerging mmWave
massive MIMO technique is exploited for the access and back-
haul [2], [4]. Moreover, the centralized radio access network
(C-RAN) architecture can be integrated into the HetNet for
the improved physical layer transmission, handover, scheduling,
and etc., where the ultra-dense small cells are regarded as the
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Fig. 1. MmWave Massive MIMO based access and backhaul in UDN.
transmission.

remote ratio head (RRH) and macrocell BS is considered as the
baseband unit (BBU).

Due to the ultra-dense deployment, each user may receive
the signal from multiple RRHs. To exploit the advantages of C-
RAN architecture, the accurate channel state information (CSI)
associated with multiple RRHs known at BBU is essential for
the joint beamforming, scheduling, and cooperation among the
ultra-dense small-cell BSs. However, how to require the reliable
channel estimation with low overhead can be challenging, since
the pilot overhead to estimate the channels associated with
a large number of antennas in mmWave massive MIMO can
be prohibitively high [5]. [6], [7] have proposed a multilevel
codebook based joint channel estimation and beamforming for
mmWave access and backhaul. However, this scheme only
considers the mmWave multi-antenna systems with analog
beamforming, which is limited to the point-to-point based
single-stream transmission. To solve this problem, the mmWave
massive MIMO has been emerging [2], [8]–[10], where the
hybrid analog-digital beamforming scheme is proposed to sup-
port the multi-stream transmission with low hardware cost and
energy consumption. In [9], an adaptive channel estimationhas
been proposed for mmWave massive MIMO. However, this
scheme is limited to the single-cell scenario. Besides, [10] has
proposed the reference signal design for the channel estimation
in mmWave massive MIMO. However, the scheme fails to
exploit the sparsity of mmWave channels, which may lead to a
certain performance loss.

Recent study and experiments have shown that the mmWave
massive MIMO channels appear the obviously sparsity in the
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angular domain [2], [9], since the path loss for non-line-of-
sight (NLOS) paths is much larger than that for line-of-sight
(LOS) paths in mmWave [11], [12]. Moreover, since the spatial
propagation characteristics of the mmWave channels withinthe
system bandwidth are nearly unchanged, such sparsity is shared
by subchannels of different subcarriers when the widely used
orthogonal frequency-division multiplexing (OFDM) is consid-
ered. This phenomenon is referred to as thespatially common
sparsity within the system bandwidth [13]. In this paper, we
first propose the non-orthogonal pilot design at the small-cell
BSs used for channel estimation. Furthermore, we propose
a structured compressive sensing (SCS)-based sparse channel
estimation scheme at the receiver to estimate the channels for
the mmWave massive MIMO in UDN. Simulation results verify
that the proposed scheme is superior to its counterpart, and
it is capable of approaching the performance bound with low
overhead.

Throughout our discussions, the boldface lower and upper-
case symbols denote column vectors and matrices, respectively.
The Moore-Penrose inversion, transpose, and conjugate trans-
pose operators are given by(·)†, (·)T and (·)∗, respectively,
while ⌈·⌉ is the integer ceiling operator.(·)−1 is the inverse
operator. Theℓ0-norm andℓ2-norm are given by‖·‖0 and‖·‖2,
respectively, and|Γ| is the cardinality of the setΓ. The support
set of the vectora is denoted bysupp{a}. The rank ofA is
denoted byrank{A}, while E{·} is the expectation operator.
(a)Γ denotes the entries ofa whose indices are defined byΓ,
while (A)Γ denotes a sub-matrix ofA with column indices
defined byΓ. ⊗ is the Kronecker product andvect (·) is the
vectorization operation according to the columns of the matrix.
[a]i denotes theith entry of the vectora, and [A]i,j denotes
the ith-row andjth-column element of the matrixA.

II. SYSTEM MODEL

Conventionally, mmWave is considered to be not suitable for
access due to its high path loss, Moreover, the signal-to-noise-
ratio (SNR) before beamforming is conventionally considered to
be low due to the high path loss, which leads to the challenging
channel estimation in mmWave communications. However, for
the UDN scenarios, we will clarify this misunderstanding by
comparing the path loss in UDN working at 30 GHz and that in
conventional cellular networks working at 3 GHz. Specifically,
considering the multipath fading, signal dispersion, and other
loss factors, the path loss component of Friis equation in decibel
(dB) can be provided as [6],

η = 32.5 + 20log10 (fc) + 10αlog10 (d) + (αo + αr) d, (1)

where fc (MHz) is the carrier frequency,α (dB/km) is the
path loss exponent,d (km) is the link distance,αo (dB/km)
is the atmospheric attenuation coefficient, andαr (dB/km) is
the rain attenuation coefficient. For the conventional cellular
systems withfc = 3 GHz andd = 1 km for example, we
haveη = 192.62 dB, whereα = 2.2 dB/km is considered in
urban scenarios [6], and the atmospheric attenuation and rain
attenuation are ignored. By contrast, for UDN withfc = 30
GHz, we haveη = 188.27 dB with d = 100 m for backhaul
link and η = 161.78 dB with d = 30 m for access link, where
α = 2.2 dB/km, αo = 0.1 dB/km, andαr = 5 dB/km when
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Fig. 2. Transceiver structure of the mmWave massive MIMO with analog
phase shifter network.

the heavy rain with 25 mm/h is considered [1]. Due to the
short link distance, the path loss in mmWave is even smaller
than that in conventional cellular networks, which indicates the
appropriate SNR for channel estimation in the mmWave access
and backhaul even before beamforming.

On the other hand, mmWave massive MIMO has been
emerging as the promising technique for access and backhaul
[2], [8]–[10]. For the mmWave massive MIMO, as shown in
Fig. 2, the number of baseband chains is larger than one
but far smaller than that of the employed antennas, and the
hybrid analog and digital beamforming can be exploited for
the improved spatial multiplexing with low hardware cost and
energy consumption. However, the large number of antennas
lead to the challenging issue of channel estimation. Particularly,
the delay-domain mmWave massive MIMO channel can be
modeled as [6]

Hd (τ) =
∑L−1

l=0
Hd

l δ (τ − τl), (2)

whereL is the number of multipath,τl is the delay of thelth
path,NT , NR are the numbers of antennas at the transmitter
and receiver, respectively, andHd

l ∈ C
NR×NT is given by

Hd
l=αlaR (θl)a

∗
T (ϕl) , (3)

with that αl is the complex gain of thelth path,
θl ∈ [0, 2π] and ϕl ∈ [0, 2π] are azimuth an-
gles of arrival or departure (AoA/AoD) if we consider
the uniform linear array (ULA). In addition,aR (θl) =[
1, ej2πd sin(θl)/λ, · · · , ej2π(NT−1)d sin(θl)/λ

]T
and aT (ϕl) =[

1, ej2πd sin(ϕl)/λ, · · · , ej2π(NR−1)d sin(ϕl)/λ
]T

are steering vec-
tors at the receiver and transmitter, respectively, whereλ andd
are wavelength and antenna spacing, respectively.

Since the path loss for NLOS paths is much larger than that
for LOS paths in mmWave, the mmWave channels appear the
obviously sparsity in the angular domain. Here we consider
frequency-domain subchannelHf

n (1 ≤ n ≤ N ) at thenth
subcarrier, whereN is the size of the OFDM symbol, and the
relationship between the frequency-domain channelHf

n and the
delay-domain channelHd(τ) has been illustrated in our recent
paper [13]. Moreover, we can obtain the sparse channel matrix
in the angular domainHa

n as [9]

Hf
n = ARH

a
nA

∗
T , (4)

whereAT ∈ CNT×NT and AR ∈ CNR×NR are the discrete
Fourier transformation (DFT) matrices by quantizing the virtual
angular domain with the resolutions of2π/NT at the transmitter



and2π/NR at the receiver, respectively. By vectorizingHf
n, we

can further obtain

hf
n = vect

(
Hf

n

)
=

(
(A∗

T )
T
⊗AR

)
vect (Ha

n) = Aha
n, (5)

whereA =
(
(A∗

T )
T
⊗AR

)
andha

n = vect (Ha
n). Due to the

sparsity ofha
n, we can obtain that

|Θn| = |supp {ha
n}| = Sa ≪ NTNR, (6)

whereΘn is the support set, andSa is the sparsity level in
the angular domain. Note that if we consider the quantized
AoA/AoD with the same resolutions asAT andAR, we have
Sa = L [9]. Since the spatial propagation characteristics of the
channels within the system bandwidth are almost unchanged,
{ha

n}
N
n=1 have the common sparsity, namely,

supp {ha
1} = supp {ha

2} = · · · = supp {ha
N} = Θ, (7)

which is referred to as the spatially common sparsity withinthe
system bandwidth.

III. SCS-BASED CHANNEL ESTIMATION SCHEME

In this section, we propose the SCS-based channel esti-
mation scheme for access in UDN, which can be also used
to estimate the channels for backhaul. The procedure of the
proposed channel estimation and the associated processingis
first summarized.Step 1: Under the control of the macrocell
BS, several continuous time slots are specialized for channel
estimation, where ultra-dense small-cell BSs (RRH) transmit
non-orthogonal pilots.Step 2: The user uses the proposed SCS-
based channel estimator to acquire the channels associatedwith
multiple small cells nearby.Step 3: The estimated channels are
first quantized and then fed back to the macrocell (BBU) for the
centralized processing including the beamforming, scheduling,
cooperation, and etc.

Due to the hybrid transceiver structure as shown in Fig. 2, we
consider each user employsNUS

a antennas andNUS
BB baseband

chains withNUS
a ≫ NUS

BB, while each small-cell hasNBS
a

antennas andNBS
BB baseband chains withNBS

a ≫ NBS
BB. Each

user can receive the signal fromM small-cell BSs nearby. In
downlink channel estimation for one user, the received pilot
signal at theξpth (1 ≤ p ≤ P ) subcarrier in thetth time slot
can be expressed as

r
(t)
p = (Z

(t)
p )∗

∑M
m=1 H̃

f
p,mf

(t)
p,m + v

(t)
p

= (Z
(t)
p )∗

∑M
m=1 ARH̃

a
p,mA∗

T f
(t)
p,m + v

(t)
p ,

(8)

wherer(t)p ∈ CNUS

BB
×1 is the received signal dedicated to the

pth pilot subcarrier in thetth time slot,Z(t)
p = Z

(t)
RF,pZ

(t)
BB,p ∈

C
NUS

a ×NUS

BB is the combining matrix at the receiver with
Z
(t)
BB,p ∈ CNUS

BB
×NUS

BB and Z
(t)
RF,p ∈ CNUS

a ×NUS

BB the base-

band and RF combining, respectively,̃Hf
p,m = H

f
ξp,m

and

H̃a
p,m = Ha

ξp,m
are frequency-domain and angular-domain

channel matrices associated with thepth pilot subcarrier from
the mth small-cell BS, respectively,Ωξ = {ξ1, ξ2, · · · , ξP } is
the index set of the pilot subcarriers,ξp for 1 ≤ p ≤ P denotes
the subcarrier index dedicated to thepth pilot subcarrier,
f
(t)
p,m = F

(t)
RF,pF

(t)
BB,ps

(t)
p ∈ C

NBS

a ×1 is the pilot signal trans-

mitted by themth small-cell BS, withF(t)
RF,p ∈ CNBS

a ×NBS

BB ,

F
(t)
BB,p ∈ CNBS

BB
×NBS

BB , s
(t)
p ∈ CNBS

BB
×1 the RF precoding,

baseband precoding, and training sequence, respectively,and
v
(t)
p is the additive white Gaussian noise (AWGN) at the user.

Moreover, (8) can be simplified as

r
(t)
p = (Z

(t)
p )∗ARH̄

a
pĀ

∗
T f̄

(t)
p + v

(t)
p

=

((
Ā∗

T f̄
(t)
p

)T

⊗ (Z
(t)
p )

∗
AR

)
vect

(
H̄a

p

)
= Φ(t)h̄a

p,
(9)

where H̄a
p =

[
H̃a

p,1, H̃
a
p,2, · · · , H̃

a
p,M

]
∈ CNUS

a ×MNBS

a ,

Ā∗
T = diag {A∗

T ,A
∗
T , · · · ,A

∗
T } ∈ CMNBS

a ×MNBS

a , f̄
(t)
p =[(

f
(t)
p,1

)T

,
(
f
(t)
p,2

)T

, · · · ,
(
f
(t)
p,M

)T
]T

∈ CMNBS

a ×1, h̄a
p =

vect
(
H̄a

p

)
∈ CMNBS

a NUS

a ×1, and Φ(t) =
(
Ã∗

T f̃
(t)
p

)T

⊗

(Z
(t)
p )∗AR ∈ C

NUS

BB
×MNBS

a NUS

a . Due to the quasi-static prop-
erty of the channel within the coherence time, the received
signals inG successive time slots can be jointly exploited to
acquire the downlink channel estimation at the user, which can
be expressed as

r[G]
p = Φ[G]

p h
a

p + v[G]
p , (10)

where r
[G]
p =

[(
r
(1)
p

)T

,
(
r
(2)
p

)T

, · · · ,
(
r
(G)
p

)T
]T

∈

CGNUS

BB
×1 is the aggregate received signal,Φ[G] =[(

Φ(1)
)T

,
(
Φ(2)

)T
, · · · ,

(
Φ(G)

)T]T
∈ CGNUS

BB
×MNBS

a NUS

a

is the aggregate measurement matrix, andv[G]
p =[(

v
(1)
p

)T

,
(
v
(2)
p

)T

, · · · ,
(
v
(G)
p

)T
]T

is aggregate

AWGN. The system’s SNR is defined as SNR=

E
{∥∥∥Φ[G]

p h̄a
p

∥∥∥
2

2

}/
E
{∥∥∥v[G]

p

∥∥∥
2

2

}
, according to (10).

To accurately estimate the channel from (10), the value
of G used in conventional algorithms, such as the minimum
mean square error (MMSE) algorithm, is heavily dependent
on the dimension ofh

a

p, i.e., MNUS
a NBS

a . Usually,GNUS
BB ≥

MNUS
a NBS

a is required, which leadsG to be much larger than
the coherence time and results in the poor channel estimation
performance [5]. Moreover, to minimize the mean square error
(MSE) of the channel estimate,Φ[G]

p should be a unitary
matrix scaled by a transmit power factor [5]. Usually,Φ

[G]
p

is a diagonal matrix with equal-power diagonal elements. Such
a pilot design is illustrated in Fig. 3 (a), which is called the
time-domain orthogonal pilot. It should be pointed out thatin
MIMO-OFDM systems, to estimate the channel associated with
one transmit antenna,P pilot subcarriers should be used, and
usually P = Ng is considered sinceNc = N/Ng adjacent
subcarriers are correlated [5]. Hence the total pilot overhead
to estimate the complete MIMO channel can be as large as
Ptotal = PG = NgMNUS

a NBS
a /NUS

BB. In this paper, we will
propose an efficient non-orthogonal pilot scheme.

A. Non-Orthogonal Pilot for Downlink Channel Estimation

The proposed non-orthogonal pilot scheme is illustrated in
Fig. 3 (b). Similar to the time-domain orthogonal pilot scheme,
P subcarriers are dedicated to pilots in each OFDM symbol.
However, the proposed scheme allows the non-orthogonal pilot
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Fig. 3. (a) Orthogonal pilot [5], (b) Non-orthogonal pilot (NBS
a = 8).

signals associated with different BS antennas to occupy the
completely identical frequency-domain subcarriers.

The orthogonal pilot based conventional designs usually
requireGNUS

BB ≥ MNUS
a NBS

a . By contrast, the proposed non-
orthogonal pilot for SCS-based channel estimator is capable
of providing the efficient compression and reliable recovery
of sparse signals. Therefore,GNUS

BB is mainly determined by
Sa ≪ MNUS

a NBS
a /NUS

BB. The non-orthogonal pilot of the
first stage is designed in advance, which will be discussed in
Section IV-A. For the placement of pilot subcarriers, the widely
used equi-spaced pilot is considered. It is worth pointing out
that thepth pilot subcarrier is shared by the pilot signals of the
NBS

a transmit antennas ofM small-cell BSs as illustrated in
Fig. 3 (b).

B. SCS-Based Channel Estimation Scheme

Given the measurements (10), the CSI can be acquired by
solving the following optimization

min
h̄a

p,1≤p≤P

(∑P
p=1

∥∥h̄a
p

∥∥2

0

)1/2

s.t. r
[G]
p = Φ

[G]
p h̄a

p, ∀p and
{
h̄a
p

}P

p=1

share the common sparse support set.

(11)

To solve the optimization problem (11), we adopt the struc-
tured sparsity adaptive matching pursuit (SSAMP) algorithm to
reconstruct the sparse angular domain channels of multiplepilot
subcarriers [16]. The SSAMP algorithm, listed in Algorithm1,
is used to solve the optimization (11) to simultaneously acquire
multiple sparse channel vectors at different pilot subcarriers.
This algorithm is developed from the SAMP algorithm [14].
Compared to the classical SAMP algorithm [14] which re-
covers one high-dimensional sparse signal from single low-
dimensional received signal, the SSAMP algorithm can simulta-
neously recover multiple high-dimensional sparse signalswith
the common support set by jointly processing multiple low-
dimensional received signals.

By using the SSAMP algorithm at the user, we can acquirê̄h
a

p

for 1 ≤ p ≤ P . Consequently, the actualpth pilot subchannel

associated with themth small-cell BS
{
H̃f

p,m

}M,P

m=1,p=1
can be

acquired.
IV. PERFORMANCEANALYSIS

The performance analysis includes the non-orthogonal pilot
design and the theoretical limit of the required time slot
overhead for the SCS-based channel estimation scheme.

A. Non-Orthogonal Pilot Design for Multi-Cell mmWave Mas-
sive MIMO Systems

The measurement matricesΦ[G]
p ∀p in (10) are very im-

portant for guaranteeing the reliable channel estimation at

Algorithm 1 SSAMP Algorithm

Input: Noisy received signalsr[G]
p and sensing matricesΦ[G]

p in (11),
1 ≤ p ≤ P ; termination thresholdpth.

Output: Estimated channel vectors in the virtual angular domain at
multiple pilot subcarrierŝ̄h

a

p, ∀p.
1: T = 1; i = 1; j = 1. % T , i, j are the sparsity level of the current stage,

iteration index, and stage index, respectively.

2: cp=tp= c
last
p =0 ∈ C

M×1, ∀p. % cp andtp are intermediate variables,

andclastp is the channel estimation of the last stage.

3: Ω0=Γ=Γ̃=Ω=Ω̃=∅; lmin= l̃=0. % Ωi is the estimated support set in

the ith iteration,Γ, Γ̃, Ω, andΩ̃ are sets,lmin and l̃ denote the support indexes.

4: b
0
p=r

[G]
p ∈CG×1, ∀p. % b

i
p is the residual of theith iteration.

5:
∑P

p=1

∥∥blast
p

∥∥2

2
= +∞. % b

last

p is the residual of the last stage.

6: repeat
7: ap =

(
Φ

[G]
p

)∗

b
i−1
p , ∀p. % Signal proxy is saved inap.

8: Γ=argmax
Γ̃

{∑P

p=1

∥∥(ap)Γ̃
∥∥2

2
,
∣∣∣Γ̃
∣∣∣=T

}
. % Identify support.

9: (tp)Ωi−1∪Γ=
((

Φ
[G]
p

)

Ωi−1∪Γ

)†

r
[G]
p , ∀p. % LS estimation.

10: Ω=argmax
Ω̃

{∑P

p=1

∥∥(tp)Ω̃
∥∥2

2
,
∣∣∣Ω̃

∣∣∣=T
}

. % Prune support.

11: (cp)Ω =
((

Φ
[G]
p

)

Ω

)†

r
[G]
p , ∀p. % LS estimation.

12: bp = r
[G]
p −Φ

[G]
p cp, ∀p. % Compute the residual.

13: lmin=argmin
l̃

{∑P

p=1

∥∥[cp]l̃
∥∥2

2
, l̃ ∈ Ω

}
.

14: if
∑P

p=1

∥∥∥[cp]lmin

∥∥∥
2

2
/P < pth then

15: Quit iteration.
16: else if

∑P

p=1

∥∥blast
p

∥∥2

2
<

∑P

p=1 ‖bp‖
2
2 then

17: Quit iteration.
18: else if

∑P

p=1

∥∥bi−1
p

∥∥2

2
≤

∑P

p=1 ‖bp‖
2
2 then

19: j=j+1; T=j; clastp =cp, blast
p =bp, ∀p.

20: else
21: Ωi = Ω; bi

p = bp, ∀p; i = i+ 1.
22: end if
23: until

∑P

p=1

∥∥∥[cp]lmin

∥∥∥
2

2
/P < pth

24: ̂̄
h
a

p = c
last
p , ∀p. % Obtain the final channel estimation.

the user. Usually,GNUS
BB ≪ MNUS

a NBS
a . Since Φ[G] =[(

Φ(1)
)T

,
(
Φ(2)

)T
, · · · ,

(
Φ(G)

)T]T
, Φ(t) =

(
Ã∗

T f̃
(t)
p

)T

⊗

(Z
(t)
p )∗AR, Ā∗

T = diag {A∗
T ,A

∗
T , · · · ,A

∗
T }, andAT , AR are

determined by the geometrical structure of the antenna arrays,

both
{
f
(t)
p,m

}P,M,G

p=1,m=1,t=1
transmitted by theM small-cell BSs

and
{
Z
(t)
p

}P,G

p=1,t=1
at the user should be elaborated to guarantee

the desired robust channel estimation.

In CS theory, restricted isometry property (RIP) is used to
evaluate the quality of the measurement matrix, in terms of the
reliable compression and reconstruction of sparse signals. It is
proven in [15] that the measurement matrix with its elements
following the independent and identically distributed (i.i.d.)
complex Gaussian distributions satisfies the RIP and enjoysa
satisfying performance in compressing and recovering sparse
signals, which provides the viable pilot design guideline.

On the other hand, the optimization problem (11) is es-
sentially different from the single-measurement-vector (SMV)



and multiple-measurement-vector (MMV) problems in CS1.
Typically, the MMV has the better recovery performance than
the SMV, due to the potential diversity from multiple sparse
signals [15]. Intuitively, the recovery performance of multiple
sparse signals with different measurement matrices, as defined
in the generalized MMV (GMMV), should be better than that
with the common measurement matrix as given in the MMV.
This is because the further potential diversity can benefit from
different measurement matrices for the GMMV. To prove this,
we investigate the uniqueness of the solution to the GMMV
problem. First, we introduce the concept of ‘spark’ and theℓ0-
minimization based GMMV problem.

Definition 1. [15] The smallest number of columns of Φ which
are linearly dependent is the spark of the given matrix Φ,
denoted by spark(Φ).

Problem 1. min
xp,∀p

P∑
p=1

‖xp‖
2
0 , s.t. yp = Φpxp, supp {xp} =

Ξ, ∀p.

For the aboveℓ0-minimization based GMMV problem,xp,
yp, Φp are the high-dimensional sparse signal, low-dimensional
measurement signal, and measurement matrix, respectively.
Furthermore, the following result can be obtained.

Theorem 1. [16] For Φp, 1 ≤ p ≤ P , whose elements obey
an i.i.d. continuous distribution, there exist full rank matrices
Ψp for 2 ≤ p ≤ P satisfying (Φp)Ξ = Ψp (Φ1)Ξ if we
select (Φ1)Ξ as the bridge, where Ξ is the common support set.
Consequently, xp for 1 ≤ p ≤ P will be the unique solution to
Problem 1 if

2S < spark (Φ1)− 1 + rank
{
Ỹ
}
, (12)

where Ỹ =
[
y1 Ψ−1

2 y2 · · ·Ψ
−1
P yP

]
.

From Theorem 1, it is clear that the achievable diversity gain
introduced by diversifying measurement matrices and sparse
vectors is determined byrank

{
Ỹ
}

. The largerrank
{
Ỹ
}

is,
the more reliable recovery of sparse signals can be achieved.
Hence, compared to the SMV and MMV, more reliable recovery
performance can be achieved by the proposed GMMV. For
the special case that multiple sparse signals are identical, the
MMV reduces to the SMV sincerank (Y) = 1, and there is no
diversity gain by introducing multiple identical sparse signals.
However, the GMMV in this case can still achieve diversity
gain which comes from diversifying measurement matrices.

According to the discussions above, a measurement matrix
whose elements follow an i.i.d. Gaussian distribution satisfies
the RIP. Furthermore, diversifying measurement matrices can
further improve the recovery performance of sparse signals.
This enlightens us to appropriately design pilot signals.

Specifically, as discussed above, we haveZ(t)
p =

Z
(t)
RF,pZ

(t)
BB,p, f (t)p,m = F

(t)
RF,p,mF

(t)
BB,p,ms

(t)
p,m = F

(t)
RF,p,ms̃

(t)
p,m by

defining s̃(t)p,m = F
(t)
BB,p,ms

(t)
p,m for 1 ≤ m ≤ M and1 ≤ t ≤ G,

1In CS, SMV recovers single high-dimensional sparse signal from its
low-dimensional measurement signal, while MMV recovers multiple high-
dimensional sparse signals with the common support set frommultiple low-
dimensional measurement signals with the identical measurement matrix.

and1 ≤ p ≤ P , each element of pilot signals is given by
[
Z
(t)
RF,p

]
i1,j1

=ejφ
1

i1,j1,t , 1 ≤ i1 ≤ NUS
a , 1 ≤ j1 ≤ NUS

BB, (13)
[
F

(t)
RF,p

]
i2,j2

=ejφ
2

i2,j2,t,m , 1 ≤ i2 ≤ NBS
a , ≤ j2 ≤ NBS

BB, (14)
[
s(t)p

]
i3
= ejφ

3

i3,p,t,m , 1 ≤ i3 ≤ NBS
BB, (15)

[
Z
(t)
BB,p

]
i4,j4

=ejφ
4

i4,j4,p,t , 1 ≤ i4 ≤ NBS
a , 1 ≤ j ≤ NBS

BB, (16)

whereφ1
i1,j1,t

, φ2
i2,j2,t,m

, φ3
i3,p,t,m

, andφ4
i4,j4,p,t

follow the i.i.d.

uniform distributionU [0, 2π). Note thatF(t)
RF,1 = F

(t)
RF,p and

Z
(t)
RF,1 = Z

(t)
RF,p, since different subcarriers share the same

RF precoding/combining. It is readily seen that the designed
pilot signals guarantee that the elements ofΦ

[G]
p , obey the i.i.d.

complex Gaussian distribution with zero mean. Moreover,Φ
[G]
p

with differentp are diversified. Hence, the proposed pilot signal
design is ‘optimal’, in terms of the reliable compression and
recovery of sparse angular domain channels.

B. Required Time Slot Overhead for SCS-Based Channel Esti-
mation

According to Theorem 1, for the optimization problem (11),
Ỹ = Φ

[G]
1 X with Ỹ =

[
r
[G]
1 Ψ−1

2 r
[G]
2 · · ·Ψ−1

P r
[G]
P

]
and X=[

h̄a
1 h̄a

2 · · · h̄
a
P

]
. Since

∣∣supp
{
h̄a
p

}∣∣ = Sa, it is clear that

rank
{
Ỹ
}
≤ rank {X} ≤ Sa. (17)

Moreover, asΦ[G]
1 ∈ CGNUS

BB
×MNBS

a NUS

a ,

spark
(
Φ

[G]
1

)
∈
{
2, 3, · · · , GNUS

BB + 1
}
. (18)

Substituting (17) and (18) into (12) yieldsGNUS
BB ≥ Sa + 1.

Therefore, the smallest required time slot overhead isG =⌈
Sa+1
NUS

BB

⌉
. By increasing the number of measurement vectorsP ,

the required time slot overhead for reliable channel estimation
can be reduced, since more measurement matrices and sparse
signals can increaserank

{
Ỹ
}

.
V. SIMULATION RESULTS

We consider the ULA-based mmWave massive MIMO sys-
tem withd = λ/2. In the simulations,fc = 30GHz, bandwidth
Bs = 0.25GHz, NUS

a = 32, NUS
BB = 2, NBS

a = 512,
NBS

BB = 8, τmax = 100 ns, N = P = 64 > τmaxBs, the user
simultaneously estimates the channels associated withM = 4
small-cell BSs nearby,L = 4 for each link between the user
and small-cell BS. For mmWave massive MIMO channels,
we consider Rican fading consisting of one LOS path and
L − 1 equal-power NLOS paths withKfactor = 10 dB, where
path gains follow the mutually independent complex Gaussian
distribution with zero means, andKfactor denotes the ratio
between the power of LOS path and the power of NLOS path.
We setpth to 0.06, 0.02, 0.01, 0.008, and 0.005, respectively, at
the SNR of 10 dB, 15 dB, 20 dB, 25 dB and≥ 30dB. The oracle
LS estimator was used as the benchmarks for the SCS-based
channel estimation scheme. The adaptive orthogonal matching
pursuit (OMP)-based channel estimation scheme [9] was also
adopted for comparison.

Fig. 4 compares the MSE performance of the adaptive OMP
scheme and the SSAMP algorithm, whereSa = LM = 16 was
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Fig. 4. MSE performance of different channel estimation schemes as functions
of the time overheadG and SNR.

considered. The oracle LS estimator with the known support set
of the sparse channel vectors was adopted as the performance
bound. From Fig. 4, it can be seen that the adaptive OMP
scheme performs poorly. By contrast, the SSAMP algorithm
is capable of approaching the oracle LS performance bound
when G > 2Sa/N

US
BB. This is because the proposed SCS-

based scheme fully exploits the spatially common sparsity of
mmWave channels within the system bandwidth.

Fig. 5 compares the downlink bit error rate (BER) perfor-
mance by using the hybrid analog-digital beamforming pro-
posed in our previous work [2], where 16 QAM is used, and the
precoding and combining are based on the estimated channels2.
In the simulations, we consider two best LOS paths are used to
serve the user due toNUS

BB = 2, which indicates two out of four
small-cell BSs with the optimal channel quality jointly serve the
user. It can be observed that the proposed channel estimation
scheme outperforms its counterpart, and its BER performance
is capable of approaching that of the performance bound.

VI. CONCLUSIONS

In this paper, we have proposed the SCS-based channel
estimation scheme for the mmWave massive MIMO based
access and backhaul in UDN. We first demonstrate that the
SNR before beamforming in mmWave is appreciate for channel
estimation due to the short link distance in UDN, although
the path loss in mmWave is high. Moreover, by exploiting the
sparsity of mmWave channels in the angular domain due to the
high path loss for NLOS paths in mmWave, we propose the non-
orthogonal pilot at the transmitter and the SCS-based channel
estimator at the receiver. The proposed scheme can simulta-
neously estimate the channels associated with multiple small-
cell BSs, and the required pilot overhead is only dependent
on the small number of the dominated multipath. Simulation
results have confirmed that our scheme can reliably acquire the
mmWave massive MIMO channels with much reduced pilot
overhead.
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