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- . Small-cell BS (9 ©acrocell BS
Abstract—Millimeter-wave (mmWave) massive MIMO used for / ﬁ’:-». acroce
access and backhaul in ultra-dense network (UDN) has been Access X

considered as the promising 5G technique. We consider such
an heterogeneous network (HetNet) that ultra-dense small dse
stations (BSs) exploit mmWave massive MIMO for access and
backhaul, while macrocell BS provides the control service Vth
low frequency band. However, the channel estimation for mmVilve
massive MIMO can be challenging, since the pilot overhead to
acquire the channels associated with a large number of anteras
in mmWave massive MIMO can be prohibitively high. This paper
proposes a structured compressive sensing (SCS)-based chal
estimation scheme, where the angular sparsity of mmWave cina
nels is exploited to reduce the required pilot overhead. Spfically,
since the path loss for non-line-of-sight paths is much larer than
that for line-of-sight paths, the mmWave massive channelsiithe Fig. 1. MmWave Massive MIMO based access and backhaul in UDN.
angular domain appear the obvious sparsity. By exploiting sch  transmission.

sparsity, the required pilot overhead only depends on the sall

number of dominated multipath. Moreover, the sparsity within the . . .
system bandwidth is almost unchanged, which can be exploidor ~ "€Mote ratio head (RRH) and macrocell BS is considered as the

the further improved performance. Simulation results demastrate  baseband unit (BBU).
that the proposed scheme outperforms its counterpart, andtican Due to the ultra-dense deployment, each user may receive
approach the performance bound. _ the signal from multiple RRHSs. To exploit the advantages of C
Index Terms—Millimeter-wave (mmWave), mmWave massive RAN architecture, the accurate channel state informai@si)
MIMO, compressive sensing (CS), hybrid precoding, channel . ) R . i
estimation, access, backhaul, ultra-dense network (UDNpetero- a@ssociated with multiple RRHs known at BBU is essential for
geneous network (HetNet). the joint beamforming, scheduling, and cooperation ambeg t
ultra-dense small-cell BSs. However, how to require thialoéd
channel estimation with low overhead can be challengimgesi
the pilot overhead to estimate the channels associated with
It has been the consensus that future 5G networks sho@ldarge number of antennas in mmWave massive MIMO can
achieve the 1000-fold increase in system capadity [1]-[3)e prohibitively high [[5]. [6], [7] have proposed a multilv
To realize such an aggressive 5G version, millimeter-wag@debook based joint channel estimation and beamforming fo
(mmWave) massive MIMO used for the access and backhauliinWave access and backhaul. However, this scheme only
ultra-dense network (UDN) has been considered as a pragnisionsiders the mmWave multi-antenna systems with analog
technigue to enable gigabit-per-second user experieees)-s beamforming, which is limited to the point-to-point based
less coverage, and green communicatioh [2]. In this papgmgle-stream transmission. To solve this problem, the rar@/N
we consider the heterogeneous network (HetNet) with tieassive MIMO has been emergingl [2].] [8]-10], where the
separation of control plane and data plane, as shown if Fighybrid analog-digital beamforming scheme is proposed & su
For such an HetNet, the macrocell base station (BS) provid@@t the multi-stream transmission with low hardware cost a
the control signaling service for the large coverage arégus €nergy consumption. In [9], an adaptive channel estimatas
conventional low frequency band, while the ultra-densellsm&een proposed for mmWave massive MIMO. However, this
BSs are specialized in data resources with limited coveraggheme is limited to the single-cell scenario. Besides] it
area for high-rate transmission, where the emerging mmwa@posed the reference signal design for the channel e&tima
massive MIMO technique is exploited for the access and badR- mMmWave massive MIMO. However, the scheme fails to
haul [2], [4]. Moreover, the centralized radio access nekwoexploit the sparsity of mmWave channels, which may lead to a
(C-RAN) architecture can be integrated into the HetNet f@ertain performance loss.
the improved physical layer transmission, handover, saliveg] Recent study and experiments have shown that the mmWave
and etc., where the ultra-dense small cells are regardeldeasmassive MIMO channels appear the obviously sparsity in the

I. INTRODUCTION
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angular domainl]2],[19], since the path loss for non-line-of ) ]
sight (NLOS) paths is much larger than that for line-of-sigh 5 PDFFTT/ DeleéelfAddHclfgn i
(LOS) paths in mmWave [11], [12]. Moreover, since the spatia E

propagation characteristics of the mmWave channels wittén = g . RF

system bandwidth are nearly unchanged, such sparsity iecsha = ¢ precoding

by subchannels of different subcarriers when the widelyduse aiis

orthogonal frequency-division multiplexing (OFDM) is id- 2 DET/ [ Delete/Add) [ RF

ered. This phenomenon is referred to as spatially common /A [ IDFT CP chain y

sparsity within the system bandwidth [13]. In this paper, we
first propose the non-orthogongl pilot design at the snill-c Fig. 2. Transceiver structure of the mmWave massive MIMChwéhalog

BSs used for channel estimation. Furthermore, we propQsgse shifter network.

a structured compressive sensing (SCS)-based sparseethann

estimation scheme at the receiver to estimate the chanmelsthe heavy rain with 25 mm/h is considered [1]. Due to the
the mmWave massive MIMO in UDN. Simulation results verifghort link distance, the path loss in mmWave is even smaller
that the proposed scheme is Superior to its Counterpart, dhan that in conventional cellular netWOka, which indéesathe

it is capable of approaching the performance bound with lodPPropriate SNR for channel estimation in the mmWave access
overhead. and backhaul even before beamforming.

Throughout our discussions, the boldface lower and upperOn the other hand, mmWave massive MIMO has been
case symbols denote column vectors and matrices, respigctiemerging as the promising technique for access and backhaul
The Moore-Penrose inversion, transpose, and conjugats-trd2l, [8]-{10]. For the mmWave massive MIMO, as shown in
pose operators are given ky)t, ()T and (-)*, respectively, Fig. [, the number of baseband chains is larger than one
while [-] is the integer ceiling operatof:)~! is the inverse but far smaller than that of the employed antennas, and the
operator. Théy-norm and/,-norm are given by -||o and||-||,, hybrid analog and digital beamforming can be exploited for
respectively, andl| is the cardinality of the seff. The support the improved spatial multiplexing with low hardware costian
set of the vector is denoted bysupp{a}. The rank ofA is €nergy consumption. However, the large number of antennas
denoted byrank{A}, while E{-} is the expectation operator.lead to the challe_nging issue of cha_nnel estimation. Rdatily,

(a); denotes the entries af whose indices are defined hiy, the delay-domain mmWave massive MIMO channel can be
while (A),. denotes a sub-matrix oA with column indices Modeled asl[6]

defineq byF. ® is the Kronec_ker product andkct (-) is t_he HY (1) = ZL:l HIS (1 —7), 2)
vectorization operation according to the columns of therimat =0

[a]; denotes theth entry of the vectom, and [A], ; denotes whereL is the number of multipathy, is the delay of thdth

the ith-row and;jth-column element of the matriA. path, N7, N are the numbers of antennas at the transmitter
and receiver, respectively, aldl! € CV=*NT js given by

II. SYSTEM MODEL

Conventionally, mmWave is considered to be not suitable for H{'=a,ar (6)) a} (¢1), 3)
access due to its high path Igss,_ Moreover, the S|gnall—meno with that a; is the complex gain of thelth path,
ratio (SNR) before beamforming is conventionally consédisio 0 . i

. : G € [0,2nr] and ¢; € [0,2n] are azimuth an
be low due to the high path loss, which leads to the challegpgmIes of arrival or departure (AOA/AOD) if we consider
channel estimation in mmWave communications. However, fﬁ{ it i ULA). In additi 0) —
the UDN scenarios, we will clarify this misunderstanding b € uniform Anear array ( ) " aT itionar (6) =

i . X ; j2mdsin(6;) /XN | .. j2m(Np—1)dsin(6;) /A d _
comparing the path loss in UDN working at 30 GHz and that ?El’ ¢ 37T € ] - and ar (1)
conventional cellular networks working at 3 GHz. Specifigal [1,e/2™sin(@)/A ... ei2m(Nr=1)dsin(21)/A] " are steering vec-
considering the multipath fading, signal dispersion, attieo tors at the receiver and transmitter, respectively, wheaad d
loss factors, the path loss component of Friis equation @ibéé¢ are wavelength and antenna spacing, respectively.
(dB) can be provided a$s][6], Since the path loss for NLOS paths is much larger than that
for LOS paths in mmWave, the mmWave channels appear the

1 = 32.5 + 20log; (fe) + 10alogy, (d) + (2w + ) d, (1) obviously sparsity in the angular domain. Here we consider
frequency-domain subchannH/ (1 < n < N) at thenth
subcarrier, whereV is the size of the OFDM symbol, and the
relationship between the frequency-domain chaiifigland the
delay-domain channdil?(7) has been illustrated in our recent
paper [13]. Moreover, we can obtain the sparse channelxmatri
in the angular domaiti¢ as [9]

where f. (MHz) is the carrier frequencyy (dB/km) is the
path loss exponeny (km) is the link distanceq, (dB/km)

is the atmospheric attenuation coefficient, and (dB/km) is

the rain attenuation coefficient. For the conventionalutefl
systems withf, = 3 GHz andd = 1 km for example, we
haven = 192.62 dB, wherea = 2.2 dB/km is considered in
urban scenarios [6], and the atmospheric attenuation and ra f_ a A *

attenuation are ignored. By contrast, for UDN with = 30 Hr = ArHa AT, )

GHz, we haven = 188.27 dB with d = 100 m for backhaul where A; € CN7*Nt and Ar € CNrXNr gre the discrete
link andn = 161.78 dB with d = 30 m for access link, where Fourier transformation (DFT) matrices by quantizing theual

a = 2.2 dB/km, a, = 0.1 dB/km, and«,. = 5 dB/km when angular domain with the resolutions &f /N at the transmitter



and2w /Ny at the receiver, respectively. By vectorizikf,, we Fgg_’p € CNBExNEg, sl(f) € CMEix! the RF precoding,
can further obtain b?§eband precoding, and training sequence, respectaedly,
t) - . . . .
o N «1\T ay _ Ara vy’ is the additive white Gaussian noise (AWGN) at the user.
hy, = vect (H") B ((AT) © AR) vect (H;,) = Ay, (5) Moreover, [B) can be simplified as

whereA = ((A})" @ Ar) andhy = vect (Hg). Due to the (/) — (Z{")* A g A2 ALE" + v

. \ . fa !

sparsity ofh¢, we can obtain that _ ((A*Tf,?)) © (Zz(f)) AR) vect (ﬁg) _ é(t)ﬁg, 9)
O] = [supp {h3}| = So < NNk, (6)

where ©,, is the su [ i in where H? = {ﬁ“ He,, - He } € CNSXMNP

n pport set, and, is the sparsity level in p EREEE TR = Y ;

the angular domain. Note that if we consider the quantizegth: — diag {A%, A%, - A%} € CMNZZxMNPE FO _

T T 77T s _
S, = L [9]. Since the spatial propagation characteristics of the(flg,?) ) (ff%) yTT (f,(,tj)w) } e CMNSxL, hy =
channels within the system bandwidth are almost unchanged, _ MNESNUS 1 . < =on\T
{he}Y_| have the common sparsity, namely, vect (H2) € CMNoNawx1 - and ) = (A*Tfp ) ®

) (Z)* AR € CNERXMNINT® Dye to the quasi-static prop-

AoA/AoD with the same resolutions a&+ and A g, we have l

supp {hi} = supp {hz} =--- = supp {hiy} = ©, erty of the channel within the coherence time, the received
which is referred to as the spatially common sparsity withim signals inG successive time slots can be jointly exploited to
system bandwidth. acquire the downlink channel estimation at the user, whah ¢
I1l. SCS-BASED CHANNEL ESTIMATION SCHEME be expressed as
In this section, we propose the SCS-based channel esti- rl6 = " 1 vIC], (10)
mation scheme for access in UDN, which can be also used b porer
to estimate the channels for backhaul. The procedure of the (G] 7T 7 @\T @en*1"
fo ot ; <cinyhere r = r r ey €
proposed channel estimation and the associated processing p [( p ) 7( p ) ’ 7( P ) }

first summarizedStep 1: Under the control of the macrocellcGNESx1 s the aggregate received signa®!Gl —
BS, several continuous time slots are specialized for ablan T o T onT1T GNUS s M NBS NUS
estimation, where ultra-dense small-cell BSs (RRH) traihsr:[(i’( ) (@) (219) } S
non-orthogonal pilotstep 2: The user uses the proposed SCSs the aggregate measurement matrix, andyG} =
based channel estimator to acquire the channels assowilked T T 7T ]

: : viY vi2) o (v is aggregate
multiple small cells nearby&ep 3: The estimated channels are| \ V7 \VP o \YP ggreg
first quantized and then fed back to the macrocell (BBU) fer tAWGN. The system’s SNR™ is defined as SNR=

centralized processing including the beamforming, scheglu E{H‘I’LG]BS z}/E{‘ V’[’G]Hz}’ according to[{10).

cooperation, and etc. |
Due to the hybrid transceiver structure as shown in[Big. 2, w To accurately estimate the channel fromJ(10), the value

consider each user employ§”® antennas andvy5 baseband (rfeinuiegalrr:e Ce??grer(lltl/lohrlllglE?I%(I)n;?i?wsrﬁ s;ci;;vﬁhe d?'g'r:glér:t
chains with N5 > N5, while each small-cell hagvPs 4 9 , y dep

: on oR® i US A7BS US
antennas andvS3 baseband chains with?S > NBS. Each on the dimension oh,, i.e., MN, “N,™. Usually, GNgg >

US A7BS ; i i
user can receive the signal frodd small-cell BSs nearby. In MN, N, is required, which leads' to be much larger than

. Cs : .the coherence time and results in the poor channel estimatio
downlink channel estimation for one user, the receivedtpilo

: . : performance([5]. Moreover, to minimize the mean squarererro
if:ilea;;g?ggt;élai p < P) subcarrier in theth time slot (MSE) of the channel est?matei[)LG] should be a uni[té':}ry
matrix scaled by a transmit power factor [5]. Usualfly,
r§f> = (Zg))* fo:l ﬁg)mfﬁn + v,E,“ is a diagonal matrix with equal-power diagonal elementghSu
= (@ZPy oM ARI"{ZMA;}fg}n +viP, a pilot design is illustrated in Fid.] 3 (a), which is calleceth

time-domain orthogonal pilot. It should be pointed out thmat
wherer,(f) € CNs5x1 js the received signal dedicated to thé1IMO-OFDM systems, to estimate the channel associated with
pth pilot subcarrier in theth time sIot,ZI(f) = zggngg_p € one transmit antenna pilot subcarriers should be used, and
CNXNES is the combining matrix at the receiver withusually P = Ny is considered sinceV, = N/N, adjacent
zO o CcNEsxNes and ZY). e CNJ°XNBs the base- Subcarriers are correlated| [5]. Hence the total pilot osach
bBBap d RF bini REp tivelt/ = H/ d to estimate the complete MIMO channel can be as large as
and and RF combining, respectiveld;,, = H ., and p "5 pn N MNUSNES/NGS. In this paper, we wil
Hp., = H¢ , are frequency-domain and angular-domaig,q,se an efficient non-orthogonal pilot scheme.
channel matrices associated with thtl pilot subcarrier from
the mth small-cell BS, respectivelf)e = {&1,&2,--- ,&p} is A Non-Orthogonal Pilot for Downlink Channel Estimation

the index set of the pilot subcarriets, for 1 < p < P denotes  the proposed non-orthogonal pilot scheme s illustrated in
thte subc?tr)ner (g'de;g)ded'cggggltfj theh pilot subcarrier, rig 3 (b). Similar to the time-domain orthogonal pilot sote
fpm = Frp,Fpp,sp’ € C'« " is the pilot signal trans- p gypcarriers are dedicated to pilots in each OFDM symbol.

mitted by themth small-cell BS, Witth%_’p € CN"XNEs, However, the proposed scheme allows the non-orthogorul pil

(8)



< Training Time — — G *— 'Il')ianllz —

[0]1] 6] 7] [0] Pilot of 0" BS antenna Algonthm 1 SSAMP Algo”thm
>| [0]T] prs o . Noi ; ; [G] ; icaplC i
2\ [0 67 2 . Pilot of 1" BS antenna Input: Noisy received signals,”™ and sensing matrice®; ™ in (1),
El ; 2 m- 1 < p < P; termination thresholgb,y,.
2| [o]T] 67| = : Output: Estimated channeIAXectors in the virtual angular domain at
+ . . . -
% E Pilot of 7" BS antenna multiple pilot subcarrierd,,, Vp.

1. T =1,i=1;j=1.%T,4, j are the sparsity level of the current stage,

Time . L . .
iteration index, and stage index, respectively.
(b) 2 cp=t,=cy*"=0 € CM*', V¥p. % c, andt, are intermediate variables,
Fig. 3. (a) Orthogonal pilof]5], (b) Non-orthogonal pilaVgS = 8). andc** s the channel estimation of the last stage.

. . . . 3: QO:F:f:QZQZQ; lminZTZO. % Q° is the estimated support set in
S|gnals aSS_OCIat_ed with different BS_ antenna_s to occupy the the ith iteration,T’, T, , and) are setS/min andl denote the support indexes.
Completely identical frequency'domam subcarriers. 4: bg II‘LG]E(CG“, Vp. % b; is the residual of theth iteration.

The orthogonal pilot based conventional designs usually. s~ Hblas‘|]2 — 400, % bl s the residual of the last stage.
: Us US A7BS = LI 2 v
requireGNg5 > M N,>N_>. By contrast, the proposed non- 6: repeat i
orthogonal pilot for SCS-based channel estimator is ca&pabl: a, = @LG]) bl !, Vp. % Signal proxy is saved in,.
of providing the efficient compression and reliable recgver P 2 ~’ ,

) " - g 8: I'=argmax _M(ap)=l|l-, |T'|=T+¢. % Identify support.
of sparse signals. Therefor&NSS is mainly determined by e {ZP*1H( Dl } b dently supp
Sa < MNJSNP®/NgE. The non-orthogonal pilot of the o (tp)m,lurz((éﬁ)
first stage is designed in advance, which will be discussed D
Sectior IV-A. For the placement of pilot subcarriers, theely '
used equi-spaced pilot is considered. It is worth pointing 011
that thepth pilot subcarrier is shared by the pilot signals of th
NBS transmit antennas of/ small-cell BSs as illustrated in 13

+
v ) rLG], Vp. % LS estimation.
Qi—1lur

=argmax {57 (6)a

SN)’ IT}. % Prune support.

i

(Cp)Q = ‘IZ'LG] ) I‘LG], Vp. % LS estimation.

b, = rLG] — <I>LG] Cp, Vp. % Compute the residual.
. p 2 7

e =segmin {5 e 2.7 9}

Fig.[3 (b). ]
B. SCSBased Channel Estimation Scheme 14 if YF H["P]lmm’ /P < pu then
Civen the measurements 110), the CSI can be acquired }@ els(gui;tg%ratl?giaﬂf <20y by |3 then
. ) S . 3 b,
solving the following optimization 17 Quit ité)raltion? Z p=1 2
min (ZP Hl—laH2)1/2 18 elseif Y Hb;*lug < Zf:; b2 then
hg,1<p<P p=1 [[*'pllg a1) 19: Ij:j.|_1; T=j; c;aatch’ b;,a“:bp, p.
G Gli o P 11) 20: else _
st.ri = &9k Wp and {hg} 2 R bl by i i
share the common sparse support set. 22 endif

- until S°P ?

To solve the optimization probleni (111), we adopt the strué EC“' 21 H[Cp]l /P <P

tured sparsity adaptive matching pursuit (SSAMP) algatitb 24 h, = c;*", V. % Obtain the final channel estimation.

reconstruct the sparse angular domain channels of mutifae

subcarriers[[16]. The SSAMP algorithm, listed in Algoritfin

is used to solve the optimization {11) to simultaneouslyuireq

multiple sparse channel vectors at different pilot subeesr

This algorithm is developed from the SAMP algorithin [14]the user. Usually,GNg§ < MNUSNES. Since ®[¢ =
Compared to the classical SAMP algorithm [[14] which re\L(i)(l))T7 (‘I>(2))T7.” 7(¢(G))T}T’ b — (A*Tﬁgt))T o
covers one high-dimensional sparse signal from single lo O -, ) . s .

dimensional received signal, the SSAMP algorithm can gmaul (Zp )" Ar, A7 = diag {A7, A7, .-, A7}, andAr, Ag are

neously recover multiple high-dimensional sparse sigmatls determined llg)]/wtge geometrical structure of the antenngsirra

the common support set by jointly processing multiple lowsoth {f,ﬂ%} transmitted by thel/ small-cell BSs

dimensional received signals. ® pf’c?l’mzl’tzl
=a
By using the SSAMP algorithm at the user, we can acdujre and{Zp }p at the user should be elaborated to guarantee

=1,t=1 ) )
for 1 < p < P. Consequently, the actuath pilot subchannel the desired robust channel estimation.

- M,P
associated with the:th small-cell BS{szxm}m:l_p:l canbe |n cs theory, restricted isometry property (RIP) is used to
acquired. ' evaluate the quality of the measurement matrix, in term$ef t
IV. PERFORMANCEANALYSIS reliable compression and reconstruction of sparse sighas
The performance analysis includes the non-orthogonat pileroven in [15] that the measurement matrix with its elements
design and the theoretical limit of the required time sldbllowing the independent and identically distributedi.di)
overhead for the SCS-based channel estimation scheme. complex Gaussian distributions satisfies the RIP and ergoys

A. Non-Orthogonal Pilot Design for Multi-Cell mmWave Mas- satisfying performance in compressing and recoveringsspar
sive MIMO Systems signals, which provides the viable pilot design guideline.

The measurement matric@LG] Vp in (I0) are very im-  On the other hand, the optimization problem](11) is es-
portant for guaranteeing the reliable channel estimation sentially different from the single-measurement-vec®iy)

min




and multiple-measurement-vector (MMV) problems inficsand1 < p < P, each element of pilot signals is given by
Typically, the MMV has the better recovery performance than - ® ] ol _ Us . Us
the SMV, due to the potential diversity from multiple sparse _ZRF,p_l.lyjl:e w1 <y < N7, 1<y < Ngg, (13)
signals [15]. Intuitively, the recovery performance of tiple

sparse signals with different measurement matrices, agedkefi |
in the generalized MMV (GMMV), should be better than that
with the common measurement matrix as given in the MMV. Sp }
This is because the further potential diversity can benefinf [ (1) T . BS . BS
different measurement matrices for the GMMV. To prove this, |Z55.») L o 1<ia <N,7,1<j < Ngg, (16)
we investigate the uniqueness of the solution to the GMMMhere@ 2 3 andg?

4 . i 5 y &5 , ;. o, followthei.i.d.
problem. First, we introduce the concept of ‘spark’ andthe .~ ‘J0t’ Ti2.d2,bm? Fis.ptm it )
minimization based GMMV problem uniform distributiont/ [0, 27). Note thatFyp ; = Fgp , and

_ . Zg)Fl = ZS)F ,» since different subcarriers share the same

Definition 1. [15] The smallest number of columns of ® which  RE" hrecoding/combining. It is readily seen that the designe

are linearly dependent is the spark of the given matrix @, ot signals guarantee that the element@f, obey the i.i.d.

denoted by spark(®). complex Gaussian distribution with zero mean. Moreo@ef’
&2 9 with differentp are diversified. Hence, the proposed pilot signal

Problem 1. nin 2_:1 [%plly s st yp = Ppxp, supp{x,} = design is ‘optimal’, in terms of the reliable compressiord an

, Vp. " recovery of sparse angular domain channels.

r 7 -2
Fi) | =c%hamen 1<iy < NBS, <j, < NES, (14)
RPN Y

.3
— i 1 <ig < NB§, (15)

3

[1]

For the above/,-minimization based GMMV problemy,, B- Required Time Sot Overhead for SCS-Based Channel Esti-

v, ®, are the high-dimensional sparse signal, low-dimensiorBftion
measurement signal, and measurement matrix, respectivelAccording to Theoreriil1, for the optimization problemi(11),
Furthermore, the following result can be obtained. Y = 39X with Y = [} wo'rl? . w5l and X =

Theorem 1. [[16] For ®,, 1 < p < P, whose elements obey [bf g - hg]. Since[supp{bi}| = Sa, itis clear that

an i.i.d. continuous distribution, there exist full rank matrices rank{?} < rank {X} < S,. (17)
¥, for 2 < p < P satisfying (®,)- = ¥, (P1) if we ] )

select (®1)_ asthe bridge, where Z is the common support set.  Moreover, aer>[1G] € CONBEXMNZENT®

Consequently, x,, for 1 < p < P will be the unique solution to (G] Us

Problem[T] if Spark(@l ) € {2, 3,--- ,GNgp + 1} . (18)

Substituting [(1I7) and(18) intd_(12) yieldSNYS > S, + 1.

25 < spark (1) — 1 +rank{Y}’ (12) Therefore, the smallest required time slot overheadris=
where Y = [yl \Il;lyg . ‘I'jglyp]. [%ﬁ; . By increasing the number of measurement vectars

t_heBrBequired time slot overhead for reliable channel esiona

~ From Theoreril]1, it is clear that the achievable diversitngaj,, pe reduced, since more measurement matrices and sparse
introduced by diversifying measurement matrices and epa‘s?gnals can increaaemk{\?}.

vectors is determined byank{Y}. The largerrank{Y} is, V. SIMULATION RESULTS
the more reliable recovery of sparse signals can be achieved '
Hence, compared to the SMV and MMV, more reliable recovery We consider the ULA-based mmWave massive MIMO sys-
performance can be achieved by the proposed GMMV. F&mM withd = A/2. In the simulations/. = 30 GHz, bandwidth
the special case that multiple sparse signals are identmal Bs = 0.25GHz, NJ° = 32, N§§ = 2, NJ® = 512,
MMV reduces to the SMV sinceank (Y) = 1, and there is no Vg5 = 8, Tmax = 100 NS, N = P = 64 > 7y Bs, the user
diversity gain by introducing multiple identical sparsgrsls. simultaneously estimates the channels associated Mith 4
However, the GMMV in this case can still achieve diversitgpmall-cell BSs nearbyl. = 4 for each link between the user
gain which comes from diversifying measurement matrices. and small-cell BS. For mmWave massive MIMO channels,
According to the discussions above, a measurement mai§® consider Rican fading consisting of one LOS path and
whose elements follow an i.i.d. Gaussian distributionsgas L — 1 equal-power NLOS paths withr,cior = 10 dB, where
the RIP. Furthermore, diversifying measurement matrices cPath gains follow the mutually independent complex Gaussia
further improve the recovery performance of sparse signafstribution with zero means, an&r.c..: denotes the ratio

This enlightens us to appropriately design pilot signals. between the power of LOS path and the power of NLO_S path.
) _  We setp, to 0.06, 0.02, 0.01, 0.008, and 0.005, respectively, at

Specifically, as discussed above, we ha\’é;
ANy AN SRS T NN (O R ORI (NN O Y the SNR of 10dB, 15dB, 20dB, 25 dB aixd30 dB. The oracle
T S /i RE,p,m=P1 LS estimator was used as the benchmarks for the SCS-based
definings,m = Fpp ;, ,,Spm for1 <m < M andl <t <G, channel estimation scheme. The adaptive orthogonal nmagchi

pursuit (OMP)-based channel estimation schenie [9] was also
lin CS, SMV recovers single high-dimensional sparse sigmainf its adopted for comparison.
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