
ar
X

iv
:1

70
8.

09
56

1v
1

 [
cs

.N
I]

 3
1

A
ug

 2
01

7
1

Optimal Dynamic Cloud Network Control
Hao Feng∗†, Jaime Llorca†, Antonia M. Tulino†‡, Andreas F. Molisch∗

∗University of Southern California, Email: {haofeng, molisch}@usc.edu
†Nokia Bell Labs, Email: {jaime.llorca, a.tulino}@nokia-bell-labs.com

‡University of Naples Federico II, Italy. Email: {antoniamaria.tulino}@unina.it

Abstract—Distributed cloud networking enables the deploy-
ment of a wide range of services in the form of interconnected
software functions instantiated over general purpose hardware
at multiple cloud locations distributed throughout the network.
We consider the problem of optimal service delivery over a
distributed cloud network, in which nodes are equipped with
both communication and computation resources. We address the
design of distributed online solutions that drive flow processing
and routing decisions, along with the associated allocation of
cloud and network resources. For a given set of services, each de-
scribed by a chain of service functions, we characterize the cloud
network capacity region and design a family of dynamic cloud
network control (DCNC) algorithms that stabilize the underlying
queuing system, while achieving arbitrarily close to minimum
cost with a tradeoff in network delay. The proposed DCNC
algorithms make local decisions based on the online minimization
of linear and quadratic metrics obtained from an upper bound
on the Lyapunov drift-plus-penalty of the cloud network queuing
system. Minimizing a quadratic vs. a linear metric is shown
to improve the cost-delay tradeoff at the expense of increased
computational complexity. Our algorithms are further enhanced
with a shortest transmission-plus-processing distance bias that
improves delay performance without compromising throughput
or overall cloud network cost. We provide throughput and cost
optimality guarantees, convergence time analysis, and extensive
simulations in representative cloud network scenarios.

I. INTRODUCTION

Distributed cloud networking builds on network functions

virtualization (NFV) and software defined networking (SDN)

to enable the deployment of network services in the form

of elastic virtual network functions instantiated over general

purpose servers at multiple cloud locations and interconnected

via a programmable network fabric [3], [4]. In this evolved

virtualized environment, cloud network operators can host a

variety of highly adaptable services over a common physical

infrastructure, reducing both capital and operational expenses,

while providing quality of service guarantees.

Together with the evident opportunities of this attractive

scenario, there come a number of technical challenges. Critical

among them is deciding where to execute each network

function among the various servers in the network. The

ample opportunities for running network functions at multiple

locations opens an interesting and challenging space for opti-

mization. In addition, placement decisions must be coordinated

with routing decisions that steer the network flows to the

appropriate network functions, and with resource allocation

decisions that determine the amount of resources (e.g., virtual

machines) allocated to each function.

Partial results have been presented in conference papers [1], [2]. This work
has been supported by NSF grant # 1619129 and CCF grant # 1423140.

The problem of placing virtual network functions in dis-

tributed cloud networks was first addressed in [5]. The authors

formulate the problem as a generalization of facility location

and generalized assignment, and provide algorithms with bi-

criteria approximation guarantees. However, the model in [5]

does not capture service chaining, where flows are required

to go through a given sequence of service functions, nor flow

routing optimization. Subsequently, the work in [5] introduced

a flow based model that allows optimizing the distribution

(function placement and flow routing) of services with arbi-

trary function relationships (e.g., chaining) over capacitated

cloud networks. Cloud services are described via a directed

acyclic graph and the function placement and flow routing is

determined by solving a minimum cost network flow problem

with service chaining constraints.

These studies, however, focus on the design of centralized

solutions that assume global knowledge of service demands

and network conditions. With the increasing scale, hetero-

geneity, and dynamics inherent to both service demands and

the underlying cloud network system, we argue that proactive

centralized solutions must be complemented with distributed

online algorithms that enable rapid adaptation to changes

in network conditions and service demands, while providing

global system objective guarantees.

In this work, we address the service distribution problem

in a dynamic cloud network setting, where service demands

are unknown and time-varying. We provide the first charac-

terization of a cloud network’s capacity region and design

throughput-optimal dynamic cloud network control (DCNC)

algorithms that drive local transmission, processing, and re-

source allocation decisions with global performance guar-

antees. The proposed algorithms are based on applying the

Lyapunov drift-plus-penalty (LDP) control methodology [7]-

[9] to a cloud network queuing system that captures both

the transmission and processing of service flows, consuming

network and cloud resources. We first propose DCNC-L, a

control algorithm based on the minimization of a linear metric

extracted from an upper bound of a quadratic LDP function

of the underlying queuing system. DCNC-L is a distributed

joint flow scheduling and resource allocation algorithm that

guarantees overall cloud network stability, while achieving

arbitrarily close to the minimum average cost with a tradeoff

in network delay. We then design DCNC-Q, an extension

of DCNC-L that uses a quadratic metric derived from the

same upper bound expression of the LDP function. DCNC-

Q preserves the throughput optimality of DCNC-L, and can

significantly improve the cost-delay tradeoff at the expense

of increased computational complexity. Finally, we show that

http://arxiv.org/abs/1708.09561v1

2

network delay can be further reduced by introducing a shortest

transmission-plus-processing distance (STPD) bias into the

optimization metric. The generalizations of DCNC-L and

DCNC-Q obtained by introducing the shortest STPD bias are

referred to as EDCNC-L and EDCNC-Q, respectively.

Our contributions can be summarized as follows:

• We introduce a queuing system for a general class of

multi-commodity-chain (MCC) flow problems that in-

clude the distribution of network services over cloud

networks. In our MCC queuing model, the queue backlog

of a given commodity builds up, not only from receiving

packets of the same commodity, but also from processing

packets of the preceding commodity in the service chain.

• For a given set of services, we characterize the capacity

region of a cloud network in terms of the set of ex-

ogenous input flow rates that can be processed by the

required service functions and delivered to the required

destinations, while maintaining the overall cloud network

stability. Importantly, the cloud network capacity region

depends on both the cloud network topology and the

service structure.

• We design a family of throughput-optimal DCNC algo-

rithms that jointly schedule computation and communi-

cation resources for flow processing and transmission

without knowledge of service demands. The proposed

algorithms allow pushing total resource cost arbitrarily

close to minimum with a [O(ǫ), O(1/ǫ)] cost-delay trade-

off, and they converge to within O(ǫ) deviation from the

optimal solution in time O(1/ǫ2).
• Our DCNC algorithms make local decisions via the

online minimization of linear and quadratic metrics ex-

tracted from an upper bound of the cloud network LDP

function. Using a quadratic vs. a linear metric is shown

to improve the cost-delay tradeoff at the expense of in-

creased computational complexity. In addition, the use of

a STPD bias yields enhanced algorithms that can further

reduce average delay without compromising throughput

or cost performance.

The rest of the paper is organized as follows. We review

related work in Section II. Section III describes the system

model and problem formulation. Section IV is devoted to

the characterization of the cloud network capacity region. We

present the proposed DCNC algorithms in Section V, and

analyze their performance in Section VI. Numerical exper-

iments are presented in Section VII, and possible extensions

are discussed in Section VIII. Finally, we summarize the main

conclusions in Section IX.

II. RELATED WORK

The problem of dynamically adjusting network resources

in response to unknown changes in traffic demands has been

extensively studied in previous literature in the context of

stochastic network optimization. In particular, Lyapunov drift

control theory is particularly suitable for studying the stability

properties of queuing networks and similar stochastic systems.

The first celebrated application of Lyapunov drift control in

multi-hop networks is the backpressure (BP) routing algorithm

[10]. The BP algorithm achieves throughput-optimality with-

out ever designing an explicit route or having knowledge of

traffic arrival rates, hence being able to adapt time-varying

network conditions. By further adding a penalty term (e.g., re-

lated to network resource allocation cost) to the Lyapunov drift

expression, [7]-[9] developed the Lyapunov drift-plus-penalty

control methodology. LDP control preserves the throughput-

optimality of the BP algorithm while also minimizing average

network cost.

LDP control strategies have shown effective in optimizing

traditional multi-hop communication networks (as opposed

to computation networks). Different versions of LDP-based

algorithms have been developed. Most of them are based on

the minimization of a linear metric obtained from an upper

bound expression of the queueing system LDP function [7]-

[9]. Subsequently, the inclusion of a bias term, indicative

of network distance, into this linear metric was shown to

reduce network delay (especially in low congested scenarios)

[12], [13]. Furthermore, [14] proposed a control algorithm for

single-commodity multi-hop networks based on the minimiza-

tion of a quadratic metric from the LDP upper bound, shown to

improve delay performance in the scenarios explored in [14].

In contrast to these prior works, this paper extends the

LDP methodology for the dynamic control of network service

chains over distributed cloud networks. The proposed family of

LDP-based algorithms are suitable for a general class of MCC

flow problems that exhibit the following key features: (i) Flow

chaining: a commodity, representing the flow of packets at a

given stage of a service chain, can be processed into the next

commodity in the service chain via the corresponding service

function; (ii) Flow scaling: the flow size of a commodity

can differ from the flow size of the next commodity in the

service chain after service function processing; (iii) Joint

computation/communication scheduling: different commodi-

ties share and compete for both processing and transmission

resources, which need to be jointly scheduled. To the best of

our knowledge, this is the first attempt to address the service

chain control problem in a dynamic cloud network setting.

III. MODEL AND PROBLEM FORMULATION

A. Cloud Network Model

We consider a cloud network modeled as a directed graph

G = (V , E) with |V| = N vertices and |E| = E edges rep-

resenting the set of network nodes and links, respectively. In

the context of a cloud network, a node represents a distributed

cloud location, in which virtual network functions (VNFs)

can be instantiated in the the form of, e.g., virtual machines

(VMs) over general purpose servers, while an edge represents

a logical link (e.g., IP link) between two cloud locations. We

denote by δ+(i) ∈ V and δ−(i) ∈ V the set of outgoing and

incoming neighbors of i ∈ V in G, respectively. We remark

that in our model, cloud network nodes may represent large

datacenters at the core network level, smaller edge datacenters

at the metro and/or aggregation networks, or even fog [15] or

cloudlet [16] nodes at the access network.

We consider a time slotted system with slots normalized

to integer units t ∈ {0, 1, 2, · · · }, and characterize the cloud

network resource capacities and costs as follows:

3

• Ki = {0, 1, · · · ,Ki}: the set of processing resource

allocation choices at node i
• Kij = {0, 1, · · · ,Kij}: the set of transmission resource

allocation choices at link (i, j)
• Ci,k: the capacity, in processing flow units (e.g., oper-

ations per timeslot), resulting from the allocation of k
processing resource units (e.g., CPUs) at node i

• Cij,k: the capacity, in transmission flow units (e.g.,

packets per timeslot), resulting from the allocation of k
transmission resource units (e.g., bandwidth blocks) at

link (i, j)
• wi,k: the cost of allocating k processing resource units at

node i
• wij,k: the cost of allocating k transmission resource units

at link (i, j)
• ei: the cost per processing flow unit at node i
• eij : the cost per transmission flow unit at link (i, j)

B. Service Model

A network service φ ∈ Φ is described by a chain of VNFs.

We denote by Mφ = {1, 2, · · · ,Mφ} the ordered set of VNFs

of service φ. Hence, the pair (φ,m), with φ ∈ Φ and m ∈ Mφ,

identifies the m-th function of service φ. We refer to a client

as a source-destination pair (s, d), with s, d ∈ V . A client

requesting service φ ∈ Φ implies the request for the packets

originating at the source node s to go through the sequence

of VNFs specified by Mφ before exiting the network at the

destination node d.

We adopt a multi-commodity-chain (MCC) flow model, in

which a commodity identifies the packets at a given stage

of a service chain for a particular destination. Specifically,

we use the triplet (d, φ,m) to identify the packets that are

output of the m-th function of service φ for destination d. The

source commodity of service φ for destination d is denoted

by (d, φ, 0) and the final commodity that are delivered to

destination d by (d, φ,Mφ), as illustrated in Fig. 1.

Each VNF has (possibly) different processing requirements.

We denote by r(φ,m) the processing-transmission flow ratio of

VNF (φ,m) in processing flow units per transmission flow

unit (e.g., operations per packet). We assume that VNFs are

fully parallelizable, in the sense that if the total processing

capacity allocated at node i, Ci,k, is used for VNF (φ,m),
then Ci,k/r

(φ,m) packets can be processed in one timeslot.

In addition, our service model also captures the possibility

of flow scaling. We denote by ξ(φ,m) > 0 the scaling factor

of VNF (φ,m), in output flow units per input flow unit. That

is, the size of the output flow of VNF (φ,m) is ξ(φ,m) times

as large as its input flow. We refer to a VNF with ξ(φ,m) > 1
as an expansion function, and to a VNF with ξ(φ,m) < 1 as a

compression function.2

We remark that our service model applies to a wide range of

services that go beyond NFV services, and that includes, for

example, Internet of Things (IoT) services, expected to largely

benefit from the proximity and elasticity of distributed cloud

networks [17], [18].

2We assume arbitrarily small packet granularity such that arbitrary positive
scaling factors can be defined.

……

Commodities:

Functions:

Fig. 1. A network service chain φ ∈ Φ. Service φ takes the source commodity
(d, φ, 0) and delivers the final commodity (d, φ,Mφ) after going through the
sequence of functions {(φ, 1), · · · , (φ,Mφ)}. VNF (φ,m) takes commodity
(d, φ,m− 1) and generates commodity (d, φ,m).

C. Queuing Model

We denote by a
(d,φ,m)
i (t) the exogenous arrival rate of

commodity (d, φ,m) at node i during timeslot t, and by

λ
(d,φ,m)
i its expected value. We assume that a

(d,φ,m)
i (t) is in-

dependently and identically distributed (i.i.d.) across timeslots,

and that a
(d,φ,m)
i (t) = 0 for 0 < m ≤ Mφ, i.e., there are no

exogenous arrivals of intermediate commodities in a service

chain.3

At each timeslot t, every node buffers packets according

to their commodities and makes transmission and processing

flow scheduling decisions on its output interfaces. Cloud

network queues build up from the transmission of packets from

incoming neighbors and from the local processing of packets

via network service functions. We define:

• Q
(d,φ,m)
i (t): the number of commodity (d, φ,m) packets

in the queue of node i at the beginning of timeslot t

• µ
(d,φ,m)
ij (t): the assigned flow rate at link (i, j) for

commodity (d, φ,m) at time t

• µ
(d,φ,m)
i,pr (t): the assigned flow rate from node i to its

processing unit for commodity (d, φ,m) at time t

• µ
(d,φ,m)
pr,i (t): the assigned flow rate from node i’s process-

ing unit to node i for commodity (d, φ,m) at time t

The resulting queuing dynamics satisfies:

Q
(d,φ,m)
i (t+1) ≤


Q(d,φ,m)

i (t)−
∑

j∈δ+(i)

µ
(d,φ,m)
ij (t)− µ

(d,φ,m)
i,pr (t)



+

+
∑

j∈δ−(i)

µ
(d,φ,m)
ji (t) + µ

(d,φ,m)
pr,i (t)+ a

(d,φ,m)
i (t), (1)

where [x]+ denotes max{x, 0}, and Q
(d,φ,Mφ)
d (t) = 0, ∀d, φ, t.

The inequality in (1) is due to the fact that the actual number

of packets transmitted/processed is the minimum between the

locally available packets and the assigned flow rate.

We assume that the processing resources of node i are

co-located with node i and hence the packets of commodity

(d, φ,m − 1) processed during timeslot t are available at the

queue of commodity (d, φ,m) at the beginning of timeslot

t+ 1. We can then describe the service chaining dynamics at

node i as follows:

µ
(d,φ,m)
pr,i (t) = ξ(φ,m)µ

(d,φ,m−1)
i,pr (t), ∀d, φ,m>0. (2)

The service chaining constraints in (2) state that, at time

t, the rate of commodity (d, φ,m) arriving at node i from its

processing unit is equal to the rate of commodity (d, φ,m−1)
leaving node i to its processing unit, scaled by the scaling

factor ξ(φ,m). Thus, Eqs. (1) and (2) imply that the packets

3The setting in which a
(d,φ,m)
i (t) 6= 0 for 0 < m ≤ Mφ, while of little

practical relevance, does not affect the mathematical analysis in this paper.

4

1

3

4

Service :

2

Processing

Unit

Fig. 2. Cloud network queuing model for the delivery of a single-function
service for a client with source node 2 and destination node 4. Packets of both
commodity (4, φ, 0) and commodity (4, φ, 1) can be forwarded across the
network, where they are buffered in separate commodity queues. In addition,
cloud network nodes can process packets of commodity (4, φ, 0) into packets
of commodity (4, φ, 1), which can exit the network at node 4.

a commodity (d, φ,m − 1) processed during timeslot t are

available at the queue of commodity (d, φ,m) at the beginning

of timeslot t+ 1.

As an example, the cloud network queuing system of an

illustrative 4-node cloud network is shown in Fig. 2.

In addition to processing/transmission flow scheduling de-

cisions, at each timeslot t, cloud network nodes can also make

transmission and processing resource allocation decisions.

We use the following binary variables to denote the resource

allocation decisions at time t:

• yi,k(t) = 1 if k processing resource units are allocated

at node i at time t; yi,k(t) = 0, otherwise

• yij,k(t) = 1 if k transmission resource units are allocated

at link (i, j) at time t; yij,k(t) = 0, otherwise

D. Problem Formulation

The goal is to design a dynamic control policy, defined

by a flow scheduling and resource allocation action vector

{µ(t),y(t)}, that supports all average input rate matrices

λ , {λ(d,φ,m)
i } that are interior to the cloud network capacity

region (as defined in Section IV), while minimizing the total

average cloud network cost. Specifically, we require the cloud

network to be rate stable (see Ref. [7]), i.e.,

lim
t→∞

Q
(d,φ,m)
i (t)

t
= 0 with prob. 1, ∀i, d, φ,m. (3)

The dynamic cloud network control problem can then be

formulated as follows:

min lim sup
t→∞

1

t

∑t−1

τ=0
E {h(τ)} (4a)

s.t. The cloud network is rate stable, (4b)

µ
(d,φ,m)
pr,i (τ)=ξ(φ,m)µ

(d,φ,m−1)
i,pr (τ), ∀i, d, φ,m, τ, (4c)

∑

(d,φ,m)

µ
(d,φ,m)
i,pr (τ)r(φ,m+1)≤

∑

k∈Ki

Ci,k yi,k(τ), ∀i, τ, (4d)

∑

(d,φ,m)

µ
(d,φ,m)
ij (τ)≤

∑

k∈Kij

Cij,k yij,k(τ), ∀(i, j), τ, (4e)

µ
(d,φ,m)
i,pr (τ), µ

(d,φ,m)
pr,i (τ), µ

(d,φ,m)
ij (τ)∈ R

+,

∀i, (i, j), d, φ,m, τ, (4f)

yi,k(τ), yij,k(τ) ∈ {0, 1}, ∀i, (i, j), d, φ,m, τ, (4g)

where h(τ) ,
∑

i∈V hi(τ), with

hi(τ) =
∑

k∈Ki

wi,kyi,k(τ) + ei
∑

(d,φ,m)

µ
(d,φ,m)
i,pr (τ)r(φ,m+1)

+
∑

j∈δ+(i)


 ∑

k∈Kij

wij,kyij,k(τ) + eij
∑

(d,φ,m)

µ
(d,φ,m)
ij (τ)


, (5)

denotes the cloud network operational cost at time τ .

In (4), Eqs. (4c), (4d), and (4e) describe instantaneous ser-

vice chaining, processing capacity, and transmission capacity

constraints, respectively.

Remark 1. As in Eqs. (4c), (4d), (5), throughout this paper, it

shall be useful to establish relationships between consecutive

commodities and/or functions in a service chain. For ease of

notation, unless specified, we shall assume that any expression

containing a reference to m − 1 will only be applicable for

m > 0 and any expression with a reference to m+1 will only

be applicable for m < Mφ.

In the following section, we characterize the cloud network

capacity region in terms of the average input rates that can be

stabilized by any control algorithm that satisfies constraints

(4b)-(4g), as well as the minimum average cost required for

cloud network stability.

IV. CLOUD NETWORK CAPACITY REGION

The cloud network capacity region Λ(G,Φ) is defined as the

closure of all average input rates λ that can be stabilized by

a cloud network control algorithm, whose decisions conform

to the cloud network and service structure {G,Φ}.

Theorem 1. The cloud network capacity region Λ(G,Φ)
consists of all average input rates λ for which, for all

i, j, k, d, φ,m, there exist MCC flow variables f
(d,φ,m)
ij ,

f
(d,φ,m)
pr,i , f

(d,φ,m)
i,pr , together with probability values αij,k, αi,k,

β
(d,φ,m)
ij,k , β

(d,φ,m)
i,k such that

∑

j∈δ−(i)

f
(d,φ,m)
ji + f

(d,φ,m)
pr,i + λ

(d,φ,m)
i ≤

∑

j∈δ+(i)

f
(d,φ,m)
ij + f

(d,φ,m)
i,pr ,

(6a)

f
(d,φ,m)
pr,i = ξ(φ,m)f

(d,φ,m−1)
i,pr , (6b)

f
(d,φ,m)
i,pr ≤ 1

r(φ,m+1)

∑
k∈Ki

αi,kβ
(d,φ,m)
i,k Ci,k, (6c)

f
(d,φ,m)
ij ≤

∑
k∈Kij

αij,kβ
(d,φ,m)
ij,k Cij,k, (6d)

f
(d,φ,Mφ)
i,pr = 0, f

(d,φ,0)
pr,i = 0, f

(d,φ,Mφ)
dj = 0, (6e)

f
(d,φ,m)
i,pr ≥ 0, f

(d,φ,m)
ij ≥ 0, (6f)

∑
k∈Kij

αij,k ≤ 1,
∑

k∈Ki

αi,k ≤ 1, (6g)

∑
(d,φ,m)

β
(d,φ,m)
ij,k ≤ 1,

∑
(d,φ,m)

β
(d,φ,m)
i,k ≤ 1. (6h)

Furthermore, the minimum average cloud network cost

required for network stability is given by

h
∗
= min

{αij,k,αi,k,β
(d,φ,m)
ij,k

,β
(d,φ,m)
i,k

}

h, (7)

5

where

h =
∑

i

∑

k∈Ki

αi,k


wi,k + eiCi,k

∑

(d,φ,m)

β
(d,φ,m)
i,k




+
∑

(i,j)

∑

k∈Kij

αij,k


wij,k + eijCij,k

∑

(d,φ,m)

β
(d,φ,m)
ij,k


. (8)

Proof. The proof of Theorem 1 is given by Appendix A .

In Theorem 1, (6a) and (6b) describe generalized computa-

tion/communication flow conservation constraints and service

chaining constraints, essential for cloud network stability,

while (6c) and (6d) describe processing and transmission ca-

pacity constraints. The probability values αi,k, αij,k, β
(d,φ,m)
i,k ,

β
(d,φ,m)
ij,k define a stationary randomized policy as follows:

• αi,k: the probability that k processing resource units are

allocated at node i;
• αij,k: the probability that k transmission resource units

are allocated at link (i, j);

• β
(d,φ,m)
i,k : the probability that node i processes commodity

(d, φ,m), conditioned on the allocation of k processing

resource units at node i;
• β

(d,φ,m)
ij,k : the probability that link (i, j) transmits com-

modity (d, φ,m), conditioned on the allocation of k
transmission resource units at link (i, j).

Hence, Theorem 1 demonstrates that, for any input rate

λ ∈ Λ(G,Φ), there exists a stationary randomized policy

that uses fixed probabilities to make transmission and pro-

cessing decisions at each timeslot, which can support the

given λ, while minimizing overall average cloud network cost.

However, the difficulty in directly solving for the parameters

that characterize such a stationary randomized policy and the

requirement on the knowledge of λ, motivates the design of

online dynamic cloud network control solutions with matching

performance guarantees.

V. DYNAMIC CLOUD NETWORK CONTROL ALGORITHMS

In this section, we describe distributed DCNC strategies that

account for both processing and transmission flow scheduling

and resource allocation decisions. We first propose DCNC-L,

an algorithm based on minimizing a linear metric obtained

from an upper bound of the quadratic LDP function, where

only linear complexity is required for making local decisions

at each timeslot. We then propose DCNC-Q, derived from the

minimization of a quadratic metric obtained from the LDP

bound. DCNC-Q allows simultaneously scheduling multiple

commodities on a given transmission or processing interface at

each timeslot, leading to a more balanced system evolution that

can improve the cost-delay tradeoff at the expense of quadratic

computational complexity. Finally, enhanced versions of the

aforementioned algorithms, referred to as EDCNC-L and

EDCNC-Q, are constructed by adding a shortest transmission-

plus-processing distance (STPD) bias extension that is shown

to further reduce network delay in low congested scenarios.

A. Cloud Network Lyapunov drift-plus-penalty

Let Q(t) represent the vector of queue backlog values of

all the commodities at all the cloud network nodes. The cloud

network Lyapunov drift is defined as

∆(Q (t)) ,
1

2
E

{
‖Q (t+ 1)‖2 − ‖Q (t)‖2

∣∣∣Q (t)
}
, (9)

where ‖ · ‖ indicates Euclidean norm, and the expectation

is taken over the ensemble of all the exogenous source

commodity arrival realizations.

The one-step Lyapunov drift-plus-penalty (LPD) is then

defined as

∆(Q (t)) + V E {h(t)|Q (t)} , (10)

where V is a non-negative control parameter that determines

the degree to which resource cost minimization is emphasized.

After squaring both sides of (1) and following standard LDP

manipulations (see Ref. [9]), the LDP can upper bound as

∆(Q (t)) + V E {h(t)|Q (t)} ≤ V E {h(t)|Q (t)}+
E {Γ(t) + Z(t)|Q(t)}+

∑

i

∑

(d,φ,m)

λ
(d,φ,m)
i Qd,φ,m

i (t), (11)

where

Γ(t) ,
1

2

∑

i

∑

(d,φ,m)






 ∑

j∈δ+(i)

µ
(d,φ,m)
ij (t) + µ

(d,φ,m)
i,pr (t)



2

+


 ∑

j∈δ−(i)

µ
(d,φ,m)
ji (t) + µ

(d,φ,m)
pr,i (t) + a

(d,φ,m)
i (t)



2



,

Z(t) ,
∑

i

∑

(d,φ,m)

Q
(d,φ,m)
i (t)


 ∑

j∈δ−(i)

µ
(d,φ,m)
ji (t)

+µ
(d,φ,m)
pr,i (t)−

∑

j∈δ+(i)

µ
(d,φ,m)
ij (t)− µ

(d,φ,m)
i,pr (t)


.

Our DCNC algorithms extract different metrics from the

right hand side of (11), whose minimization leads to a family

of throughput-optimal flow scheduling and resource allocation

policies with different cost-delay tradeoff performance.

B. Linear Dynamic Cloud Network Control (DCNC-L)

DCNC-L is designed to minimize, at each timeslot, the

linear metric Z(t) + V h(t) obtained from the right hand side

of (11), equivalently expressed as

min
∑

i∈V


V hi(t)−

∑

(d,φ,m)


 ∑

j∈δ+(i)

Z
(d,φ,m)
ij,tr (t) + Z

(d,φ,m)
i,pr (t)






(12a)

s.t. (4d) − (4g), (12b)

where,

Z
(d,φ,m)
ij,tr (t),µ

(d,φ,m)
ij (t)

[
Q

(d,φ,m)
i (t)−Q

(d,φ,m)
j (t)

]
,

Z
(d,φ,m)
i,pr (t),µ

(d,φ,m)
i,pr (t)

[
Q

(d,φ,m)
i (t)− ξ(φ,m+1)Q

(d,φ,m+1)
i (t)

]
.

6

The goal of minimizing (12a) at each timeslot is to greedily

push the cloud network queues towards a lightly congested

state, while minimizing cloud network resource usage regu-

lated by the control parameter V . Observe that (12a) is a linear

metric with respect to µ
(d,φ,m)
i,pr (t) and µ

(d,φ,m)
ij (t), and hence

(12) can be decomposed into the implementation of Max-

Weight-Matching [19] at each node, leading to the following

distributed flow scheduling and resource allocation policy:

Local processing decisions: At the beginning of each times-

lot t, each node i observes its local queue backlogs and

performs the following operations:

1) Compute the processing utility weight of each process-

able commodity, (d, φ,m),m < Mφ:

W
(d,φ,m)
i (t)=

[
Q

(d,φ,m)
i

(t)−ξ(φ,m+1)Q
(d,φ,m+1)
i

(t)

r(φ,m+1) −V ei

]+
,

and set W
(d,φ,Mφ)
i (t) = 0, ∀d, φ. W

(d,φ,m)
i (t) is indica-

tive of the potential benefit of processing commodity

(d, φ,m) into commodity (d, φ,m+1) at time t, in terms

of the difference between local congestion reduction and

processing cost per unit flow.

2) Compute the max-weight commodity:

(d, φ,m)∗ = argmax
(d,φ,m)

{
W

(d,φ,m)
i (t)

}
.

3) If W
(d,φ,m)∗

i (t) = 0, set, k∗ = 0. Otherwise,

k∗ = argmax
k

{
Ci,kW

(d,φ,m)∗

i (t)− V wi,k

}
.

4) Make the following resource allocation and flow assign-

ment decisions:

yi,k∗(t) = 1,

yi,k(t) = 0, ∀k 6= k∗,

µ
(d,φ,m)∗

i,pr (t) = Ci,k∗

/
r(φ,m+1)∗ ,

µ
(d,φ,m)
i,pr (t) = 0, ∀(d, φ,m) 6= (d, φ,m)∗.

Local transmission decisions: At the beginning of each

timeslot t, each node i observes its local queue backlogs and

those of its neighbors, and performs the following operations

for each of its outgoing links (i, j), j ∈ δ+(i):

1) Compute the transmission utility weight of each com-

modity (d, φ,m):

W
(d,φ,m)
ij (t) =

[
Q

(d,φ,m)
i (t)−Q

(d,φ,m)
j (t)− V eij

]+
.

2) Compute the max-weight commodity:

(d, φ,m)∗ = argmax
(d,φ,m)

{
W

(d,φ,m)
ij (t)

}
.

3) If W
(d,φ,m)∗

ij (t) = 0, set, k∗ = 0. Otherwise,

k∗ = argmax
k

{
Cij,kW

(d,φ,m)∗

ij (t)− V wij,k

}
.

4) Make the following resource allocation and flow assign-

ment decisions:

yij,k∗(t) = 1,

yij,k(t) = 0, ∀k 6= k∗,

µ
(d,φ,m)∗

ij (t) = Cij,k∗ ,

µ
(d,φ,m)
ij (t) = 0 ∀(d, φ,m) 6= (d, φ,m)∗.

Implementing the above algorithm imposes low complexity

on each node. Let J denote the total number of commodities.

We have J ≤ N
∑

φ (Mφ + 1). Then, the total complexity

associated with the processing and transmission decisions of

node i at each timeslot is O(J +Ki +
∑

j∈δ+(i) Kij), which

is linear with respect to the number of commodities and the

number of resource allocation choices.

Remark 2. Recall that, while assigned flow values can be

larger than the corresponding queue lengths, a practical

algorithm will only send those packets available for trans-

mission/processing. However, as in [7]-[14], in our analysis,

we assume a policy that meets assigned flow values with null

packets (e.g., filled with idle bits) when necessary. Null packets

consume resources, but do not build up in the network.

C. Quadratic Dynamic Cloud Network Control (DCNC-Q)

DCNC-Q is designed to minimize, at each timeslot, the met-

ric formed by the sum of the quadratic terms (µ
(d,φ,m)
ij (t))2,

(µ
(d,φ,m)
i,pr (t))2, and (µ

(d,φ,m)
pr,i (t))2, extracted from Γ(t), and

Z(t) + V h(t), on the right hand side of (11), equivalently

expressed as

min
∑

i∈V





∑

(d,φ,m)

∑

j∈δ+(i)

[(
µ
(d,φ,m)
ij (t)

)2

− Z
(d,φ,m)
ij,tr (t)

]

+
∑

(d,φ,m)

[
1+

(
ξ(φ,m+1)

)2

2

(
µ
(d,φ,m)
i,pr (t)

)2
− Z

(d,φ,m)
i,pr (t)

]

+ V hi(t)
}

(13a)

s.t. (4d) − (4g). (13b)

The purpose of (13) is also to reduce the congestion level

while minimizing resource cost. However, by introducing the

quadratic terms (µ
(d,φ,m)
i,pr (t))2 and (µ

(d,φ,m)
ij (t))2, minimizing

(13a) results in a “smoother” and more “balanced” flow

and resource allocation solution, which has the potential of

improving the cost-delay tradeoff, with respect to the max-

weight solution of DCNC-L that allocates either zero or

full capacity to a single commodity at each timeslot. Note

that (13) can also be decomposed into subproblems at each

cloud network node. Using the KKT conditions [20], the

solution to each subproblem admits a simple waterfilling-

type interpretation. We first describe the resulting local flow

scheduling and resource allocation policy and then provide its

graphical interpretation.

Local processing decisions: At the beginning of each times-

lot t, each node i observes its local queue backlogs and

performs the following operations:

7

1) Compute the processing utility weight of each commod-

ity. Sort the resulting set of weights in non-increasing

order and form the list {W (c)
i (t)}, where c identifies the

c-th commodity in the sorted list.

2) For each resource allocation choice k ∈ Ki:

2.1) Compute the following waterfilling rate threshold:

Gi,k(t) ,




pk∑
s=1

(r(s))2

1+(ξ(s))2
W

(s)
i (t)− Ci,k

pk∑
s=1

(r(s))2

1+(ξ(s))2




+

,

where pk is the smallest commodity index that satisfies

H
(pk)
i (t) > Ci,k, with pk = J if Ci,k ≥ H

(J)
i (t); and

H
(c)
i (t),

∑c

s=1

[
W

(s)
i (t)−W

(c+1)
i (t)

]
(r(s))2

1+(ξ(s))2
,

with r(s) and ξ(s) denoting the processing-transmission

flow ratio and the scaling factor of the function that

processes commodity s, respectively.

2.2) Compute the candidate processing flow rate for

each commodity, 1 ≤ c ≤ J :

⌣
µ
(c)

i,pr(k, t) =
r(c)

1 + (ξ(c))2

[
W

(c)
i (t)−Gi,k(t)

]+
.

2.3) Compute the following optimization metric:

Ψi(k, t) ,
J∑

c=1

[
1 + (ξ(c))2

2

(
⌣
µ
(c)

i,pr(k, t)
)2

−⌣
µ
(c)

i,pr(k, t)r
(c)W

(c)
i,pr(t)

]
+ V wi,k.

3) Compute the processing resource allocation choice:

k∗ = argmink∈Ki
{Ψi (k, t)} .

4) Make the following resource allocation and flow assign-

ment decisions:

yi,k∗(t) = 1,

yi,k∗(t) = 0, for k 6= k∗,

µ
(c)
i,pr(t) =

⌣
µ
(c)

i,pr(k
∗, t).

Local transmission decisions: At the beginning of each

timeslot t, each node i observes its local queue backlogs and

those of its neighbors, and performs the following operations

for each of its outgoing links (i, j), j ∈ δ+(i):

1) Compute the transmission utility weight of each com-

modity. Sort the resulting set of weights in non-

increasing order and form the list {W (c)
ij (t)}, where c

identifies the c-th commodity in the sorted list.

2) For each resource allocation choice k ∈ Ki:

2.1) Compute the following waterfilling rate threshold:

Gij,k(t) ,
1

pk

[∑pk

s=1
W

(s)
ij (t)− 2Cij,k

]+
.

where pk is the smallest commodity index that satisfies

H
(pk)
ij (t) > Cij,k, with pk = J if Cij,k ≥ H

(J)
i (t); and

Hc
ij (t),

1
2

c∑
s=1

[
W

(s)
ij (t)−W

(c+1)
ij (t)

]
.

……

Commodities

Fig. 3. Waterfilling interpretation of the local processing decisions of DCNC-
Q at time t.

2.2) Compute the candidate transmission flow rate for

each commodity, 1 ≤ c ≤ J :

⌣
µ
(c)

ij (k, t) =
1

2

[
W

(c)
ij (t)−Gij,k(t)

]+
.

2.3) Compute the following optimization metric:

Ψij(k, t),V wij,k+

J∑

c=1

[(
⌣
µ
(c)

ij (k, t)
)2
−⌣
µ
(c)

ij (k, t)W
(c)
ij (t)

]
.

3) Compute the processing resource allocation choice:

k∗ = argmink∈Kij
{Ψij (k, t)} .

4) Make the following resource allocation and flow assign-

ment decisions:

yij,k∗(t) = 1,

yij,k(t) = 0, ∀k 6= k∗,

µ
(c)
ij (t) =

⌣
µ
(c)

ij (k∗, t).

The total complexity is O(J [log2 J+Ki+
∑

j∈δ+(i) Kij]),
which is quadratic respective to the number of commodities

and the number of resource allocation choices.

As stated earlier, DCNC-Q admits a waterfilling-type in-

terpretation, illustrated in Fig. 3. We focus on the local

processing decisions. Define a two-dimensional vessel for each

commodity. The height of vessel c is given by the processing

utility weight of commodity c, W
(c)
i (t), and its width by

(r(c))2

1+(ξ(c))2
. For each resource allocation choice k ∈ Ki, pour

mercury on each vessel up to height Gi,k(t) given in step

2.1 (indicated with yellow in the figure). If available, fill the

remaining of each vessel with water (blue in the figure). The

candidate assigned flow rate of each commodity is given by

the amount of water on each vessel (step 2.2), while to total

amount of water is equal to the available capacity Ci,k. Finally,

step 3 is the result of choosing the resource allocation choice

k∗ that minimizes (13a) with the corresponding assigned flow

rate values. The local transmission decisions follow a similar

interpretation that is omitted here for brevity.

D. Dynamic Cloud Network Control with Shortest Transmi-

ssion-plus-Processing Distance Bias

DCNC algorithms determine packet routes and processing

locations according to the evolution of the cloud network

commodity queues. However, queue backlogs have to build up

before yielding efficient processing and routing configurations,

8

which can result in degraded delay performance, especially in

low congested scenarios.

In order to reduce average cloud network delay, we extend

the approach used in [12], [13] for traditional communication

networks, which consists of incorporating a bias term into the

metrics that drive scheduling decisions. In a cloud network

setting, this bias is designed to capture the delay penalty

incurred by each forwarding and processing operation.

Let Q̂
(d,φ,m)
i (t) denote the biased backlog of commodity

(d, φ,m) at node i:

Q̂
(d,φ,m)
i (t) , Q

(d,φ,m)
i (t) + ηY

(d,φ,m)
i , (14)

where Y
(d,φ,m)
i denotes the shortest transmission-plus-

processing distance bias (STPD), and η is a control parameter

used to balance the effect of the bias and the queue backlog.

The bias term in (14) is defined as

Y
(d,φ,m)
i ,

{
1, if m<Mφ,

Hi,d, if m = Mφ,
∀i, d, φ, (15)

where Hi,j denotes the shortest distance (in number of hops)

from node i to node j. We note that Y
(d,φ,m)
i = 1 for all

processable commodities because, throughout this paper, we

have assumed that every function is available at all cloud

network nodes. In Sec. VIII-A, we discuss a straight-forward

generalization of our model, in which each service function

is available at a subset of cloud network nodes, in which

case, Y
(d,φ,m)
i for each processable commodity is defined

as the shortest distance to the closest node that can process

commodity (d, φ,m).
The enhanced EDCNC-L and EDCNC-Q algorithms work

just like their DCNC-L and DCNC-Q counterparts, but using

Q̂
(d,φ,m)
i (t) in place of Q

(d,φ,m)
i (t) to make local processing

and transmission scheduling decisions.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed

DCNC algorithms. To facilitate the analysis, we define the

following parameters:

• Amax: the constant that bounds the aggregate in-

put rate at all the cloud network nodes; specifically,

maxi∈V E{[∑(d,φ,m) a
(d,φ,m)
i (t)]4} ≤ (Amax)

4.

• Cmax
pr : the maximum processing capacity among all cloud

network nodes; i.e., Cmax
pr , maxi∈V{Ci,Ki

}.

• Cmax
tr : the maximum transmission capacity among all

cloud network links; i.e., Cmax
tr , max(i,j)∈E{Cij,Kij

}.

• ξmax: the maximum flow scaling factor among all service

functions; i.e., ξmax , max(φ,m){ξ(φ,m)}.

• rmin: the minimum transmission-processing

flow ratio among all service functions; i.e.,

rmin , min(φ,m){r(φ,m)}.

• δmax: the maximum degree among all cloud network

nodes, i.e., δmax , maxi∈V{δ+(i) + δ−(i)}.

A. Average Cost and Network Stability

Theorem 2. If the average input rate matrix λ = (λ
(d,φ,m)
i)

is interior to the cloud network capacity region Λ(G,Φ),

then the DCNC algorithms stabilize the cloud network, while

achieving arbitrarily close to minimum average cost h
∗
(λ)

with probability 1 (w.p.1), i.e.,

lim sup
t→∞

1

t

∑t−1

τ=0
h(τ) ≤ h

∗
(λ) +

NB

V
, (w.p.1) (16)

lim sup
t→∞

1

t

t−1∑

τ=0

∑

(d,φ,m),i

Q
(d,φ,m)
i (τ)≤NB+V [h

∗
(λ+κ1)−h∗(λ)]
κ

,

(w.p.1) (17)

where

B =

{
B0, under DCNC-L and DCNC-Q,

B1, under EDCNC-L and EDCNC-Q,
(18)

with B0 and B1 being positive constants determined by the

system parameters Cmax
pr , Cmax

tr , Amax, ξmax, and rmin; and

κ is a positive constant satisfying (λ+ κ1) ∈ Λ.

Proof. The proof of Theorem 2 is given in Appendix B.

Theorem 2 shows that the proposed DCNC algorithms

achieve the average cost-delay tradeoff [O(1/V), O(V)] with

probability 1.4 Moreover, (17) holds for any λ interior to Λ,

which demonstrates the throughput-optimality of the DCNC

algorithms.

B. Convergence Time

The convergence time of a DCNC algorithm indicates

how fast its running time average solution approaches the

optimal solution.5 This criterion is particularly important for

online scheduling in settings where the arrival process is non-

homogeneous, i.e., the average input rate λ is time varying.

In this case, it is important to make sure that the time average

solution evolves close enough to the optimal solution much

before the average input rate undergoes significant changes.

We remark that studying the convergence time of a DCNC

algorithm involves studying how fast the average cost ap-

proaches the optimal value, as well as how fast the flow

conservation violation at each node approaches zero.6

Let µ̃
(d,φ,m)
i,pr (t), µ̃

(d,φ,m)
pr,i (t), and µ̃

(d,φ,m)
ij (t) denote the

actual flow rates obtained from removing all null packets that

may have been assigned when queues do not have enough

packets to meet the corresponding assigned flow rates. Define,

for all i, (d, φ,m), t,

∆f
(d,φ,m)
i (t),

∑

j∈δ−(i)

µ̃
(d,φ,m)
ji (t)+µ̃

(d,φ,m)
pr,i (t)−a

(d,φ,m)
i (t)

−
∑

j∈δ+(i)

µ̃
(d,φ,m)
ij (t)− µ̃

(d,φ,m)
i,pr (t). (19)

4By setting ǫ = 1/V , where ǫ denotes the deviation from the optimal
solution (see Theorem 3), the cost-delay tradeoff is written as [O(ǫ), O(1/ǫ)].

5We assume that the local decisions performed by the DCNC algorithms at
each timeslot can be accomplished within a reserved computation time within
each timeslot, and therefore their different computational complexities are not
taking into account for convergence time analysis.

6Note that the convergence of the flow conservation violation at each node
to zero is equivalent to strong stability (see (17)), if λ interior to Λ(G,Φ).

9

Then, the queuing dynamics is then given by

Q
(d,φ,m)
i (t+ 1) = Q

(d,φ,m)
i (t) + ∆f

(d,φ,m)
i (t) . (20)

The convergence time performance of the proposed DCNC

algorithms is summarized by the following theorem.

Theorem 3. If the average input rate matrix λ = (λ
(d,φ,m)
i) is

interior to the cloud network capacity region Λ(G,Φ), then,

for all ǫ > 0, whenever t ≥ 1/ ǫ2, the mean time average

cost and mean time average actual flow rate achieved by the

DCNC algorithms during the first t timeslots satisfy:

1

t

∑t−1

τ=0
E {h (τ)} ≤ h

∗
(λ) +O (ǫ) , (21)

1

t

∑t−1

τ=0
E

{
∆f

(d,φ,m)
i (t)

}
≤ O(ǫ) , ∀i, (d, φ,m). (22)

Proof. The proof is of Theorem 3 given in Appendix C.

Theorem 3 establishes that, under the DCNC algorithms,

both the average cost and the average flow conservation at each

node exhibit O(1/ǫ2) convergence time to O(ǫ) deviations

from the minimum average cost, and zero, respectively.

VII. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

DCNC algorithms via numerical simulations in a number of

illustrative settings. We assume a cloud network based on

the continental US Abilene topology shown in Fig. 4. The

14 cloud network links exhibit homogeneous transmission

capacities and costs, while the 7 cloud network nodes only

differ in their processing resource set-up costs. Specifically,

the following two resource settings are considered:

1) ON/OFF resource levels: each node and link can either

allocate zero capacity, or the maximum available capacity; i.e.,

Ki = Kij = 1, ∀i ∈ V , (i, j) ∈ E . To simplify notation, we

define K , Ki + 1 = Kij + 1, ∀i ∈ V , (i, j) ∈ E . The

processing resource costs and capacities are

• ei = 1, ∀i ∈ V ; wi,0 = 0, ∀i ∈ V ; wi,1 = 440, ∀i ∈
V\{5, 6}; w5,1 = w6,1 = 110.

• Ci,0 = 0, Ci,1 = 440, ∀i ∈ V .7

The transmission resource costs and capacities are

• eij = 1, wij,0 = 0, wij,1 = 440, ∀(i, j) ∈ E .

• Cij,0 = 0, Cij,1 = 440, ∀(i, j) ∈ E .

2) Multiple resource levels: the available capacity at each

node and link is split into 10 resource units; i.e., K = 11, ∀i ∈
V , (i, j) ∈ E . The processing resource costs and capacities are

• ei = 1, ∀i ∈ V ;

[wi,0, wi,1, · · · , wi,10, wi,11] = [0, 11, · · · , 99, 110], for

i = 5, 6;

[wi,0, wi,1, · · · , wi,10, wi,11] = [0, 44, · · · , 396, 440], ∀i ∈
V\{5, 6};

• [Ci,0, Ci,1, · · · , Ci,10, Ci,11]=[0, 44, · · · , 396, 440], ∀i.
The transmission resource costs and capacities are

7The maximum capacity is set to 440 in order to guarantee that there is
no congestion at any part of the network for the service setting considered in
the following.

1

2
3

4

5

6

7

8

9

10

11

Fig. 4. Abilene US Continental Network. Nodes are indexed as: 1) Seattle,
2) Sunnyvale, 3) Denver, 4) Los Angeles, 5) Houston, 6) Kansas City, 7)
Atlanta, 8) Indianapolis, 9) Chicago, 10) Washington, 11) New York.

• eij = 1, ∀(i, j) ∈ E ;

[wij,0, wij,1, · · · , wij,10, wij,11] = [0, 44, · · · , 396, 440],
∀(i, j) ∈ E .

• [Cij,0, Cij,1, · · · , Cij,10, Cij,11] = [0, 44, · · · , 396, 440],
∀(i, j) ∈ E .

Note that, for both ON/OFF and multi-level resource set-

tings, the processing resource set-up costs at node 5 and 6 are

4 times cheaper than at the other cloud network nodes.

We consider 2 service chains, each composed of 2 virtual

network functions: VNF (1,1) (Service 1, Function 1) with

flow scaling factor ξ(1,1) = 1; VNF (1, 2) with ξ(1,2) = 3
(expansion function); VNF (2, 1) with ξ(2,1) = 0.25 (com-

pression function); and VNF (2, 2) with ξ(2,2) = 1. All

functions have processing-transmission flow ratio r(φ,m) = 1,

and can be implemented at all cloud network nodes. Finally,

we assume 110 clients per service, corresponding to all the

source-destination pairs in the Abilene network.

A. Cost-Delay Tradeoff

Figs. 5(a)-5(c) show the tradeoff between the time average

cost and the time average end-to-end delay (represented by

the total time average occupancy or queue backlog), under

the different DCNC algorithms. The input rate of all source

commodities is set to 1 and the the cost/delay values are ob-

tained after simulating each algorithm for 106 timeslots. Each

tradeoff curve is obtained by varying the control parameter

V between 0 and 1000 for each algorithm. Small values of V
favor low delay at the expense of high cost, while large values

of V lead to points in the tradeoff curves with lower cost and

higher delay.

It is important to note that since the two resource settings

considered, i.e., ON/OFF (K = 2) vs. multi-level (K = 11),

are characterized by the same maximum capacity and the same

constant ratios Ci,k/wi,k and Cij,k/wij,k , the performance

of the linear DCNC algorithms (DCNC-L and EDCNC-L)

does not change under the two resource settings. On the

other hand, the quadratic algorithms (DCNC-Q and EDCNC-

Q) can exploit the finer resource granularity of the multi-level

resource setting to improve the cost-delay tradeoff. We also

note that for the enhanced versions of the algorithms that use

the STPD bias (EDCNC-L and EDCNC-Q), we choose the

bias coefficient η among the values of multiples of 10 that

leads to the best performance for each algorithm.8

8Simulation results for different values of η can be found in [2].

10

0 0.5 1 1.5 2
x 10

6

0

0.5

1

1.5

2

2.5

3x 10
4

Time Average Occupancy

T
im

e
A

ve
ra

ge
 C

os
t

DCNC−L, K=2 or 11
EDCNC−L, K=2 or 11, η=50
DCNC−Q, K=2
EDCNC−Q, K=2, η=10
DCNC−Q, K=11

(a)

0 5 10 15
x 10

5

1000

1500

2000

2500

3000

Time Average Occupancy

A
ve

ra
ge

 C
os

t

DCNC−L, K=2 or 11
EDCNC−L, K=2 or 11, η=50
DCNC−Q, K=2
EDCNC−Q, K=2, η=10
DCNC−Q, K=11

1600

1380

(b)

0 5 10 15
x 10

5

1000

1500

2000

2500

3000

Time Average Occupancy

T
im

e
A

ve
ra

ge
 C

os
t

DCNC−L, K=2 or 11
EDCNC−L, K=2 or 11, η=50
DCNC−Q, K=2
EDCNC−Q, K=2, η=10
DCNC−Q, K=11

9× 105

3× 105

(c)

0 1 2 3 4 5
x 10

5

0

10

20

30

40

50

Time (timeslots)

T
ot

al
 F

lo
w

 C
on

se
rv

at
io

n
V

io
la

tio
n

DCNC−L, K=2 or 11, V=400
DCNC−L, K=2 or 11, V=500
DCNC−Q, K=2, V=400
DCNC−Q, K=2, V=500
DCNC−Q, K=11, V=100

(d)

0 1 2 3 4 5
x 10

5

0

200

400

600

800

1000

1200

1400

Time (timeslots)

T
im

e
A

ve
ra

ge
 C

os
t

DCNC−L, K=2 or 11, V=400
DCNC−L, K=2 or 11, V=500
DCNC−Q, K=2, V=400
DCNC−Q, K=2, V=500
DCNC−Q, K=11, V=100

(e)

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5x 10
6

Average Input Rate per Client for Each Service

A
ve

ra
ge

 T
ot

al
 O

cc
up

an
cy

DCNC−L, K=2 or 11, V=400
EDCNC−L, K=2 or 11, η=50, V=400
DCNC−Q, K=2, V=100
EDCNC−Q, K=2, η=10, V=100
DCNC−Q, K=11, V=20

Network Capacity Boundary

(f)

Fig. 5. Performance of DCNC algorithms. a) Time Average Occupancy v.s. Time Average Cost: a general view; b) Time average Occupancy v.s. Time
Average Cost: given a target average cost c) Time average Occupancy v.s. Time Average Cost: given a target average occupancy; d) Total flow conservation
violation evolution over time: effect of the V value; e) Time average cost evolution over time: effect of the V value; f) Time Average Occupancies with
varying service input rate: throughput optimality

Fig. 5(a) shows how the average cost under all DCNC

algorithms reduces at the expense of network delay, and

converges to the same minimum value. While all the tradeoff

curves follow the same [O(1/V), O(V)] relationship estab-

lished in Theorem 2, the specific trade-off ratios can be

significantly different. The general trends observed in Fig.

5(a) are as follows. DCNC-L exhibits the worst cost-delay

tradeoff. Recall that DCNC-L assigns either zero or full

capacity to a single commodity in each timeslot, and hence

the finer resource granularity of K = 11 does not improve

its performance. However, adding the SDTP bias results in

a substantial performance improvement, as shown by the

EDCNC-L curve. Now let’s focus on the quadratic algorithms.

DCNC-Q with K = 2 further improves the cost delay-

tradeoff, at the expense of increased computational complexity.

In this case, adding the SDTP bias provides a much smaller

improvement (see EDCNC-Q curve), showing the advantage

of the more “balanced” scheduling decisions of DCNC-Q.

Finally, DCNC-Q with K = 11 exhibits the best cost-delay

tradeoff, illustrating the ability of DCNC-Q to exploit the finer

resource granularity to make “smoother” resource allocation

decisions. In this setting, adding the SDTP bias does not

provide further improvement and it is not shown in the figure.
While Fig. 5(a) illustrates the general trends in improve-

ments obtained using the quadratic metric and the SDTP bias,

there are regimes in which the lower complexity DCNC-

L and EDCNC-L algorithms can outperform their quadratic

counterparts. We illustrate these regimes In Figs. 5(b) and 5(c),

by zooming into the lower left of Fig. 5(a). As shown in Fig.

5(b), for the case of K = 2, the cost-delay curves of DCNC-

L and EDCNC-L cross with the curves of DCNC-Q and

EDCNC-Q. For example, for a target cost of 1380, DCNC-L

and EDCNC-L result in lower average occupancies (8.52×105

and 6.43 × 105) than DCNC-Q (1.26 × 106) and EDCNC-Q

(1.21× 106). On the other hand, if we increase the target cost

to 1600, DCNC-Q and EDCNC-Q achieve lower occupancy

values (4.58×105 and 4.11×105) than DCNC-L (8.52×105)
and EDCNC-L (6.43 × 105). Hence, depending on the cost

budget, there may be a regime in which the simpler DCNC-L

and EDCNC-L algorithms become a better choice. However,

this regime does not exist for K = 11, where the average

occupancies under DCNC-Q (1342 and 1433 respectively for

the two target costs) are much lower than (E)DCNC-L.

In Fig. 5(c), we compare cost values for given target

occupancies. With K = 2 and a target average occupancy of

9 × 105, the average costs achieved by DCNC-L (1317) and

EDCNC-L (1319) are lower than those achieved by DCNC-

Q (1437) and EDCNC-Q (1432). In contrast, if we reduce

the target occupancy to 3 × 105, DCNC-Q and EDCNC-Q

(achieving average costs 1754 and 1764) outperform DCNC-L

and EDCNC-L (with cost values 2.64× 104 and 6879 beyond

the scope of Fig. 5(c)). With K = 11, DCNC-Q achieves

average costs of 1286 and 1271 for the two target occupancies,

outperforming all other algorithms.

B. Convergence Time

In Figs. 5(d) and 5(e), we show the time evolution of

the total flow conservation violation (obtained by summing

11

to Node 1
to Node 2
to Node 3
to Node 4
to Node 5
to Node 6
to Node 7
to Node 8
to Node 9
to Node 10
to Node 11

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

Node Index

A
ve

ra
ge

 P
ro

ce
ss

in
g

R
at

e

(a)

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

Node Index

A
ve

ra
ge

 P
ro

ce
ss

in
g

R
at

e

(b)

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

Node Index

A
ve

ra
ge

 P
ro

ce
ss

in
g

R
at

e

(c)

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

Node Index

A
ve

ra
ge

 P
ro

ce
ss

in
g

R
at

e

(d)

Fig. 6. Average Processing Flow Rate Distribution. a) Service 1, Function 1; b) Service 1, Function 2; c) Service 2, Function 1; d) Service 2, Function 2.

over all nodes and commodities, the absolute value of the

flow conservation violation) and the total time average cost,

respectively. The average input rate of each source commodity

is again set to 1. As expected, observe how decreasing the

value of V speeds up the convergence of all DCNC algorithms.

However, note from Fig. 5(e) that the converged time average

cost is higher with a smaller value of V , consistent with

the tradeoff established in Theorem 2. Note that the slower

convergence of DCNC-Q with respect to DCNC-L with the

same value of V does not necessarily imply a disadvantage of

DCNC-Q. In fact, due to its more balanced scheduling deci-

sions, DCNC-Q can be designed with a smaller V than DCNC-

L, in order to enhance convergence speed while achieving no

worse cost/delay performance. This effect is obvious in the

case of K = 11. As shown in Fig. 5(d) and Fig. 5(e), with

K = 11, DCNC-Q with V = 100 achieves faster convergence

than DCNC-L with V = 400, while their converged average

cost values are similar.

C. Capacity Region

Fig. 5(f) illustrates the throughput performance of the

DCNC algorithms by showing the time average occupancy

as a function to the input rate (kept the same for all source

commodities). The simulation time is 106 timeslots and the

values of V used for each algorithm are chosen according to

Fig. 5(b) in order to guarantee that the average cost is lower

than the target value 1600. As the average input rate increases

to 13.5, the average occupancy under all the DCNC algorithms

exhibits a sharp raise, illustrating the boundary of the cloud

network capacity region (see (17) and let κ → 0).

Observe, once more, the improved delay performance

achieved via the use of the STPD bias and the quadratic metric

in the proposed control algorithms.

D. Processing Distribution

Fig. 6 shows the optimal average processing rate distribution

across the cloud network nodes for each service function under

the ON/OFF resource setting (K = 2). We obtain this solution,

for example, by running DCNC-L with V = 1000 for 106

timeslots. The processing rate of function (φ,m) refers to the

processing rate of its input commodity (d, φ,m − 1).
Observe how the implementation of VNF (1, 1) mostly

concentrates at node 5 and 6, which are the cheapest pro-

cessing locations However, note that part of VNF (1, 1) for

destinations in the west coast (nodes 1 through 4) takes place at

the west coast nodes, illustrating the fact that while processing

is cheaper at nodes 5 and 6, shorter routes can compensate the

extra processing cost at the more expensive nodes. A similar

effect can be observed for destinations in the east coast, where

part of VNF(1, 1) takes place at east coast nodes.

Fig. 6(b) shows the average processing rate distribution

for VNF (1, 2). Note that VNF (1, 2) is an expansion func-

tion. This results in the processing of commodity (d, 1, 1)
completely concentrating at the destination nodes, in order

to minimize the impact of the extra cost incurred by the

transmission of the larger-size commodity (d, 1, 2) resulted

from the execution of VNF (1, 2).
For Service 2, note that VNF (2, 1) is a compression

function. As expected, the implementation of VNF (2, 1) takes

place at the source nodes, in order to reduce the transmission

cost of Service 2 by compressing commodity (d, 2, 0) into

the smaller-size commodity (d, 2, 1) even before commodity

(d, 2, 0) flows into the network. As a result, as shown in Fig.

6(c), for all 1 ≤ d ≤ 11, commodity (d, 2, 0) is processed at

all the nodes except node d, and the average processing rate

of commodity (d, 2, 0) at each node i 6= d is equal to 1, which

is the average input rate per client.

Fig. 6(d) shows the average processing rate distribution

for VNF (2, 2), which exhibits a similar distribution to VNF

(1, 1), except for having different rate values, due to the

compression effect of VNF (2, 1).

VIII. EXTENSIONS

In this section, we discuss interesting extensions of the

DCNC algorithms presented in this paper that can be easily

captured via simple modifications to our model.

A. Location-Dependent Service Functions

For ease of notation and presentation, throughout this paper,

we have implicitly assumed that every cloud network node

can implement all network functions. In practice, each cloud

network node may only host a subset of functions M̃φ,i ⊆
Mφ, ∀φ ∈ Φ. In this case, the local processing decisions

at each node would be made by considering only those

commodities that can be processed by the locally available

functions. In addition, the STPD bias Y
(d,φ,m)
i would need to

be updated as, for all i, d, φ,

Y
(d,φ,m)
i ,





min
j:j∈V,(m+1)∈M̃φ,j

{Hi,j + 1} , if m<Mφ,

Hi,d, if m = Mφ.

12

B. Propagation Delay

In this work, we have assumed that network delay is

dominated by queueing delay, and ignored propagation delay.

However, in large-scale cloud networks, where communica-

tion links can have large distances, the propagation of data

across two neighbor nodes may incur non-negligible delays. In

addition, while much smaller, the propagation delay incurred

when forwarding packets for processing in a large data center

may also be non-negligible. In order to capture propagation

delays, let Dpg
i and Dpg

ij denote the propagation delay (in

timeslots) for reaching the processing unit at node i and

for reaching neighbor j from node i, respectively. We then

have the following queuing dynamics and service chaining

constraints:

Q
(d,φ,m)
i (t+1)≤


Q(d,φ,m)

i (t)−
∑

j∈δ+(i)

µ
(d,φ,m)
ij (t)−µ

(d,φ,m)
i,pr (t)



+

+
∑

j∈δ−(i)

µ
(d,φ,m)
ji (t−Dpg

ji) + µ
(d,φ,m)
pr,i (t)+ a

(d,φ,m)
i (t), (23)

µ
(d,φ,m)
pr,i (t) = ξ(φ,m)µ

(d,φ,m−1)
i,pr (t−Dpg

i). (24)

Moreover, due to propagation delay, queue backlog obser-

vations become outdated. Specifically, the queue backlog of

commodity (d, φ,m) at node j ∈ δ(i) observed by node i at

time t is Q
(d,φ,m)
j (t−Dpg

ji).
Furthermore, for EDCNC-L and EDCNC-Q, the STPD bias

Y
(d,φ,m)
i , for all i, d, φ, would be updated as

Y
(d,φ,m)
i ,




min
j∈V

{
H̃i,j +Dpg

i

}
, if m<Mφ.

H̃i,d, if m = Mφ,

where H̃i,j is the length of the shortest path from node i to

node j, with link (u, v) ∈ E having length Dpg
uv .

With (23), (24), and the outdated backlog state observations,

the proposed DCNC algorithms can still be applied and be

proven to retain the established throughput, average cost, and

convergence performance guarantees, while suffering from

increased average delay.

C. Service Tree Structure

While most of today’s network services can be described via

a chain of network functions, next generation digital services

may contain functions with multiple inputs. Such services can

be described via a service tree, as shown in Fig. 7.

In order to capture these type of services, we let I(φ,m)
denote the set of commodities that act as input to function

(φ,m), generating commodity (d, φ,m). The service chaining

constraints are then updated as

µ
(d,φ,m)
pr,i (t)=ξ(φ,n)µ

(d,φ,n)
i,pr (t), ∀t, i, d, φ,m, n ∈ I(φ,m).

where ξ(φ,n), ∀n ∈ I(φ,m) denotes the flow size ratio

between the output commodity (d, φ,m) and each of its input

commodities n ∈ I(φ,m). In addition, the processing capacity

constraints are updated as
∑

(d,φ,n)

µ
(d,φ,n)
i,pr (t)r(φ,n)≤

∑

k∈Ki

Ci,kyi,k(t), ∀t, i,

Functions:

Commodities:
……

Fig. 7. A network service tree φ ∈ Φ. VNF (φ,m) takes input commodities
(d, φ, n), n ∈ I(φ,m), and generates commodity (d, φ,m).

where r(φ,n) now denotes the computation requirement of

processing a unit flow of commodity (d, φ, n).
Using the above updated constraints in the LDP bound

minimizations performed by the DCNC algorithms, we can

provide analogous throughput, cost, and convergence time

guarantees for the dynamic control of service trees in cloud

networks.

IX. CONCLUSIONS

We addressed the problem of dynamic control of network

service chains in distributed cloud networks, in which demands

are unknown and time varying. For a given set of services,

we characterized the cloud network capacity region and de-

signed online dynamic control algorithms that jointly schedule

flow processing and transmission decisions, along with the

corresponding allocation of network and cloud resources. The

proposed algorithms stabilize the underling cloud network

queuing system, as long as the average input rates are within

the cloud network capacity region. The achieved average cloud

network costs can be pushed arbitrarily close to minimum with

probability 1, while trading off average network delay. Our

algorithms converge to within O(ǫ) of the optimal solutions

in time O(1/ǫ2). DCNC-L makes local transmission and

processing decisions with linear complexity with respect to

the number of commodities and resource allocation choices.

In comparison, DCNC-Q makes local decisions by minimizing

a quadratic metric obtained from an upper bound expression of

the LDP function, and we show via simulations that the cost-

delay tradeoff can be significantly improved. Furthermore,

both DCNC-L and DCNC-Q are enhanced by introducing

a STPD bias into the scheduling decisions, yielding the

EDCNC-L and EDCNC-Q algorithms, which exhibit further

improved delay performance.

REFERENCES

[1] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Dynamic Network
Service Optimization in Distributed Cloud Networks,” IEEE INFOCOM
SWFAN Workshop, April 2016.

[2] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal Dynamic
Cloud Network Control,” IEEE ICC, 2016.

[3] Bell Labs Strategic White Paper, “The Programmable Cloud Network -
A Primer on SDN and NFV,” June 2013.

[4] Marcus Weldon, “The Future X Network,” CRC Press, October 2015.
[5] L. Lewin-Eytan, J. Naor, R. Cohen, and D. Raz, “Near Optimal Placement

of Virtual Network Functions,” IEEE INFOCOM, 2015.
[6] M. Barcelo, J. Llorca, A. M. Tulino, and N. Raman, “The Cloud Servide

Distribution Problem in Distributed Cloud Networks,” IEEE ICC, 2015.
[7] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and

cross-layer control in wireless networks,” Now Publishers Inc., 2006.
[8] M. J. Neely, “Energy optimal control for time-varying wireless networks,”

IEEE Transactions on Information Theory, vol. 52, pp. 2915–2934, July,
2006.

[9] M. J. Neely, “Stochastic network optimization with application to com-
munication and queueing systems,” Synthesis Lectures on Communication

Networks, Morgan & Claypool, vol. 3, pp. 1–211, 2010.

13

[10] L. Tassiulas, and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control, vol.
37, no. 12, pp. 1936-1948, Dec., 1992.

[11] M. J. Neely, “A simple convergence time analysis of drift-plus-
penalty for stochastic optimization and convex programs,” arXiv preprint

arXiv:1412.0791, 2014.

[12] M. J. Neely, “Optimal Backpressure Routing for Wireless Networks with
Multi-Receiver Diversity”, Ad Hoc Networks, vol. 7, pp. 862–881, 2009.

[13] M. J. Neely, E. Modiano and C. E. Rohrs, ”Dynamic power allocation
and routing for time-varying wireless networks”, Selected Areas in

Communications, IEEE Journal on, vol. 23, pp. 89-103, Jan., 2005.

[14] S. Supittayapornpong and M. J. Neely, “Quality of information max-
imization for wireless networks via a fully separable quadratic policy,”
IEEE Transactions on Information Theory, vol. 52, pp. 2915–2934, July,
2006.

[15] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities”, IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854-
864, Dec. 2016.

[16] M. Satyanarayanan, P. Bahl, R. Caceres and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing”, IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14-23, Oct.-Dec. 2009.

[17] S. Nastic, S. Sehic, D.-H. Le, H.-L. Truong, and S. Dustdar, “Provision-
ing software-defined IoT cloud systems,” Future Internet of Things and
Cloud (FiCloud), pp. 288–295, 2014.

[18] M. Barcelo, A. Correa, J. Llorca, A. M. Tulino, J. L. Vicario and
A. Morell, “IoT-Cloud Service Optimization in Next Generation Smart
Environments,” IEEE Journal on Selected Areas in Communications, vol.
34, no. 12, pp. 4077-4090, 2016.

[19] J. Kleinberg, and E. Tardos, “Algorithm design,” Pearson Education

India, 2006.

[20] S. Boyd, and L. Vandenberghe, “Convex optimization,” Cambridge

university press, 2004.

[21] M. J. Neely, “Queue Stability and Probability 1 Convergence via
Lyapunov Optimization,” arXiv preprint arXiv:1008.3519, 2010.

[22] W. Rudin, “Principles of mathematical analysis,” New York: McGraw-

hill, vol. 3, 1964.

[23] D. P. Bertsekas, “Convex optimization theory,” Belmont: Athena Scien-

tific, 2009.

APPENDIX A

PROOF OF THEOREM 1

We prove Theorem 1 by separately proving necessary and

sufficient conditions.

A. Proof of Necessity

We prove that constraints (6a)-(6h) are required for cloud

network stability and that h
∗

given in (7) is the minimum

achievable cost by any stabilizing policy.

Consider an input rate matrix λ ∈ Λ(G,Φ). Then, there

exists a stabilizing policy that supports λ. We define the

following quantities for this stabilizing policy:

• X
(d,φ,m)
i (t): the number of packets of commodity

(d, φ,m) exogenously arriving at node i, that got deliv-

ered within the first t timeslots

• F
(d,φ,m)
i,pr (t) and F

(d,φ,m)
pr,i (t): the number of packets of

commodity (d, φ,m) input to and output from the pro-

cessing unit of node i, that got delivered within the first

t timeslots, respectively;

• F
(d,φ,m)
ij (t): the number of packets of commodity

(d, φ,m) transmitted through link (i, j), that got delivered

within the first t timeslots

where we say that a packet of commodity (d, φ,m) got

delivered within the first t timeslots, if it got processed by

functions {(φ,m+ 1), . . . , (φ,Mφ)} and the resulting packet

of the final commodity (d, φ,Mφ) exited the network at

destination d within the first t timeslots.

The above quantities satisfy the following conservation law:
∑

j∈δ−(i)
F

(d,φ,m)
ji (t) + F

(d,φ,m)
pr,i (t) +X

(d,φ,m)
i (t) =

∑
j∈δ+(i)

F
(d,φ,m)
ij (t) + F

(d,φ,m)
i,pr (t), (25)

for all nodes and commodities, except for the final commodi-

ties at their respective destinations.

Furthermore, we define:

• αi,k(t): the number of timeslots within the first t timelots,

in which k processing resource units were allocated at

node i
• β

(d,φ,m)
i,k (t): the number of packets of commodity

(d, φ,m) processed by node i during the αi,k(t) timeslots

in which k processing resource units were allocated

• αij,k(t): the number of timeslots within the first t
timeslots, in which k transmission resource units were

allocated at link (i, j)

• β
(d,φ,m)
ij,k (t): the number of packets of commodity

(d, φ,m) transmitted over link (i, j) during the αij,k(t)
timeslots in which k transmission resource units were

allocated

It then follows that

F
(d,φ,m)
i,pr (t)

t
≤ αi,k(t)

t

β
(d,φ,m)
i,k (t)r(φ,m+1)

αi,k(t)Ci,k

Ci,k

r(φ,m+1)
,

∀i, d, φ,m < Mφ, (26)

F
(d,φ,m)
ij (t)

t
≤ αij,k(t)

t

β
(d,φ,m)
ij,k (t)

αij,k(t)Cij,k

Cij,k, ∀(i, j), d, φ,m,

(27)

where we define 0/0 = 1 in case of zero denominator terms.

Note that, for all t, we have

0 ≤ αi,k(t)

t
≤ 1, 0 ≤

β
(d,φ,m)
i,k (t)r(φ,m+1)

αi,k(t)Ci,k

≤ 1, (28)

0 ≤ αij,k(t)

t
≤ 1, 0 ≤

β
(d,φ,m)
ij,k (t)

αij,k(t)Cij,k

≤ 1. (29)

In addition, let h represent the liminf of the average cost

achieved by this policy:

h , lim inf
t→∞

1

t

∑t−1

τ=0
h (τ). (30)

Then, due to Boltzano-Weierstrass theorem [22] on a compact

set, there exists an infinite subsequence {tu}⊆{t} such that

lim
tu→∞

1

tu

∑tu−1

τ=0
h (τ) = h, (31)

the left hand of (26) and (27) converge to f
(d,φ,m)
i,pr and

f
(d,φ,m)
ij :

lim
tu→∞

F
(d,φ,m)
i,pr (tu)

tu
= f

(d,φ,m)
i,pr , lim

tu→∞

F
(d,φ,m)
ij (tu)

tu
= f

(d,φ,m)
ij ,

(32)

http://arxiv.org/abs/1412.0791
http://arxiv.org/abs/1008.3519

1

and the terms in (28) and (29) converge to αi,k , βi,k, αij,k,

and βij,k:

lim
tu→∞

αi,k(tu)

tu
= αi,k, lim

tu→∞

β
(d,φ,m)
i,k (tu)r

(φ,m+1)

αi,k(tu)Ci,k

= βi,k,

(33)

lim
tu→∞

αij,k(tu)

tu
= αij,k, lim

tu→∞

β
(d,φ,m)
ij,k (tu)

αij,k(t)Cij,k

= βij,k. (34)

from which (6g) and (6h) follow.

Plugging (32), (33), and (34) respectively back into (26) and

(27), letting tu → ∞ yields

f
(d,φ,m)
i,pr ≤ 1

r(φ,m+1)
αi,kβ

(d,φ,m)
i,k Ci,k, (35)

f
(d,φ,m)
ij ≤ αij,kβ

(d,φ,m)
ij,k Cij,k, (36)

from which (6c) and (6d) follow.

Furthermore, due to cloud network stability, we have

lim
t→∞

∑t

τ=0 a
(d,φ,m)
i (t)

t
= lim

t→∞

X
(d,φ,m)
i (t)

t
= λ

(d,φ,m)
i ,

w.p.1, ∀i, d, φ,m, (37)

and

lim
tu→∞

F
(d,φ,m)
pr,i (tu)

tu
= lim

tu→∞

ξ(φ,m)F
(d,φ,m−1)
i,pr (tu)

tu

= ξ(φ,m)f
(d,φ,m−1)
i,pr

, f
(d,φ,m)
pr,i , w.p.1, ∀i, d, φ,m, (38)

from which (6b) follows.

Evaluating (25) in {tu}, dividing by tu, sending tu to ∞,

and using (32), (37), and (38), Eq. (6a) follows.

Finally, from (5), and using the quantities defined at the

beginning of this section, we have

1

tu

∑tu−1

τ=0
h (τ)

=
∑

i

∑

k∈Ki


αi,k(tu)wi,k

tu
+

∑

(d,φ,m)

r(φ,m+1)β
(d,φ,m)
i,k (tu)ei

tu




+
∑

(i,j)

∑

k∈Kij


αij,k(tu)wij,k

tu
+

∑

(d,φ,m)

β
(d,φ,m)
ij,k (tu)eij

tu




=
∑

i

∑

k∈Ki


αi,k(tu)wi,k

tu
+

αi,k(tu)
tu

∑

(d,φ,m)

r(φ,m+1)β
(d,φ,m)
i,k

(tu)Ci,kei

αi,k(tu)Ci,k




+
∑

(i,j)

∑

k∈Kij


αij,k(tu)wij,k

tu
+

αij,k(tu)
tu

∑

(d,φ,m)

β
(d,φ,m)
ij,k

(tu)Cij,keij

αij,k(tu)Cij,k


.

(39)

Letting tu → ∞, we obtain (8). Finally, (7) follows from

taking the minimum over all stabilizing policies.

B. Proof of Sufficiency

Given an input rate matrix λ , {λ(d,φ,m)
i }, if there exits a

constant κ > 0 such that input rate {λ(d,φ,m)
i + κ}, together

with probability values αij,k, αi,k, β
(d,φ,m)
ij,k , β

(d,φ,m)
i,k , and flow

variables f
(d,φ,m)
ij , f

(d,φ,m)
i,pr , satisfy (6a)-(6h), we can construct

a stationary randomized policy that uses these probabilities to

make scheduling decisions, which yields the mean rates:

E

{
µ
(d,φ,m)
i,pr (t)

}
=f

(d,φ,m)
i,pr , E

{
µ
(d,φ,m)
ij (t)

}
=f

(d,φ,m)
ij . (40)

Plugging (40) and {λ(d,φ,m)
i + κ} in (6a), we have

E

{∑
j∈δ+(i)µ

(d,φ,m)
ij (t)+µ

(d,φ,m)
i,pr (t)−

∑
j∈δ−(i)µ

(d,φ,m)
ji (t)

−ξ(d,φ,m+1)µ
(d,φ,m)
i,pr (t)− a

(d,φ,m)(t)
i

}
≥κ. (41)

By applying standard Lyapunov drift manipulations [7], we

upper bound the Lyapunov drift ∆(Q (t)) (see Sec. V-A) as

∆(Q(t))≤NB0+
∑

(d,φ,m),iQ
(d,φ,m)
i (t)E

{∑
j∈δ−(i)µ

(d,φ,m)
ji (t)

+µ
(d,φ,m)
pr,i (t)−∑

j∈δ+(i) µ
(d,φ,m)
ij (t)+µ

(d,φ,m)
pr,i (t)+a

(d,φ,m)
i (t)

}

≤ NB0 − κ
∑

(d,φ,m),iQ
(d,φ,m)
i (t), (42)

where B0 is a constant that depends on the system parameters.

With some additional manipulations, it follows from (42)

that the cloud network is strongly stable, i.e., the total mean

average backlog is upper bounded. Therefore, {λ(d,φ,m)
i } is

interior to Λ(G,Φ) (due to the existence of κ).

APPENDIX B

PROOF OF THEOREM 2

We prove Theorem 2 for each DCNC algorithm by manip-

ulating the linear term Z(t) and the quadratic term Γ(t) in the

LDP upper bound expression given in (11).

A. DCNC-L

We upper bound Γ(t) in (11) as follows:

Γ(t) ≤ 1

2
N

[(
δmaxC

max
tr + Cmax

pr

/
rmin

)2
+

(
δmaxC

max
tr + ξmaxC

max
pr

/
rmin +Amax

)2]
, NB0. (43)

Plugging (43) into (11) yields

∆(Q (t)) + V E {h(t)|Q (t)} ≤NB0

+E {V h(t)+Z(t)|Q (t)}+∑(d,φ,m),iλ
(d,φ,m)
i Q

(d,φ,m)
i (t).(44)

Since λ , {λ(d,φ,m)
i } is interior to Λ(G,Φ), there exists a

positive number κ such that λ + κ1 ∈ Λ. According to (12),

DCNC-L minimizes V h(t) +Z(t) among all policies subject

to (4d)-(4g). We use ∗ to identify the stationary randomized

policy that supports λ+κ1 and achieves average cost h
∗
(λ+

κ1), characterized by Theorem 1. The LDP function under

DCNC-L can be further upper bounded as

∆(Q (t)) + V E {h(t)|Q (t)} ≤NB0

+E {V h∗+Z∗(t)|Q(t)}+
∑

(d,φ,m),iλ
(d,φ,m)
i Q

(d,φ,m)
i (t)

2

= NB0 + V h
∗
(λ+ κ1)

+
∑

(d,φ,m),iQ
(d,φ,m)
i (t)

[∑
j∈δ−(i) f

∗(d,φ,m)
ji +f

∗(d,φ,m)
pr,i

− ∑
j∈δ+(i) f

∗(d,φ,m)
ij + f

∗(d,φ,m)
pr,i + λ

(d,φ,m)
i

]

≤ NB0 + V h
∗
(λ+ κ1)− κ

∑
(d,φ,m),iQ

(d,φ,m)
i (t). (45)

where the last inequality holds true due to (4b).

B. DCNC-Q

We extract the quadratic terms (µ
(d,φ,m)
ij (t))2 and

(µ
(d,φ,m)
i,pr (t))2 by decomposing Γ(t) as follows:

Γ(t) = Γtr (t) + Γpr (t) + Γ′(t), (46)

where
Γtr (t) ,

∑
(i,j)

∑
(d,φ,m)

(
µ
(d,φ,m)
ij (t)

)2

Γpr (t) ,
1

2

∑
(d,φ,m),i

[(
µ
(d,φ,m)
i,pr (t)

)2

+
(
µ
(d,φ,m)
pr,i (t)

)2
]
;

Γ′(t) ,
∑

(d,φ,m),i

{
µ
(d,φ,m)
i,pr (t)

∑
j∈δ(i)

µ
(d,φ,m)
ij (t)+

∑

j,v:j,v∈δ(i),v 6=j

µ
(d,φ,m)
ij (t)µ

(d,φ,m)
iv (t)+µ

(d,φ,m)
pr,i (t)

∑

j∈δ(i)

µ
(d,φ,m)
ji (t)

+
∑

j,v:j,v∈δ(i),v 6=j
µ
(d,φ,m)
ji (t)µ

(d,φ,m)
vi (t) +

1

2

(
a
(d,φ,m)
i

)2

+ a
(d,φ,m)
i (t)

[∑
j∈δ(i)

µ
(d,φ,m)
ji (t) +µ

(d,φ,m)
pr,i (t)

]}
.

According to (13), DCNC-Q minimizes the metric Γtr (t)+
Γpr (t)+Z(t)+V h(t) among all policies subject to (4d)-(4g).

Hence, the LDP function under DCNC-Q can be further upper

bounded as

∆(Q (t)) + V E {h(t)|Q (t)}
≤ E

{
Γ′(t)+Γ∗

tr + Γ∗
pr

∣∣Q(t)
}
+V h

∗
(λ+ κ1)

+E {Z∗(t)|Q(t)}+∑
(d,φ,m),iλ

(d,φ,m)
i Q

(d,φ,m)
i (t). (47)

On the other hand, note that

Γ′(t) + Γ∗
tr + Γ∗

pr

≤ N
[
(1 + ξmax)C

max
pr δmaxC

max
tr

/
rmin + (δmax − 1) δmax(C

max
tr)

2

+ Amax

(
δmaxC

max
tr + ξmaxC

max
pr

/
rmin

)
+ 1

2 (Amax)
2
]

+Nδmax(C
max
tr)

2
+ 1

2(rmin)2
N
(
Cmax

pr

)2 [
1 + (ξmax)

2
]

= 1
2N

[(
δmaxC

max
tr + Cmax

pr

/
rmin

)2

+
(
δmaxC

max
tr + ξmaxC

max
pr

/
rmin+Amax

)2]
=NB0. (48)

Plugging (48) into (47) yield

∆(Q (t)) + V E {h(t)|Q (t)}
≤ NB0 + h

∗
(λ+ κ1)− κ

∑
(d,φ,m),iQ

(d,φ,m)
i (t). (49)

C. EDCNC-L and EDCNC-Q

Using (14) in (1), and following standard LDP manipula-

tions (see Ref. [9]), the LDP function can be upper bounded

as follows:

∆(Q (t)) + V E {h(t)|Q (t)} ≤ −ηΥ(t)

+NB0 + h
∗
(λ + κ1)− κ

∑
(d,φ,m),i

Q̂
(d,φ,m)
i (t), (50)

where

Υ(t),
∑

(d,φ,m),iY
(d,φ,m)
i E

{∑
j∈δ−(i)µ

(d,φ,m)
ji (t)+a

(d,φ,m)
i (t)

+µ
(d,φ,m)
pr,i (t)−

∑
j∈δ+(i)µ

(d,φ,m)
ij (t)−µ

(d,φ,m)
i,pr (t)

∣∣∣Q (t)
}
.

(51)

Denote Ymax , maxi,(d,φ,m) Y
(d,φ,m)
i , which satisfies

Ymax ≤ maxi,j {Hi,j} ≤ N − 1. Then, following (51), we

lower bound Υ(t) as

Υ(t) ≥ −N
[
δmaxC

max
tr + Cmax

pr

/
rmin

]
, −NBΥ. (52)

Plugging (52) into (50) and using Q̂
(d,φ,m)
i (t) ≥ Q

(d,φ,m)
i (t)

yields

∆(Q (t)) + V E {h(t)|Q (t)}
≤ NB1 + h

∗
(λ+ κ1)− κ

∑
(d,φ,m),i

Q
(d,φ,m)
i (t), (53)

where B1 , B0 + ηBΥ.

D. Network Stability and Average Cost Convergence with

Probability 1

We can use the theoretical result in [21] for the proof of

network stability and average cost convergence with probabil-

ity 1. Note that the following bounding conditions are satisfied

in the cloud network system:

• The second moment E{(h(t))2} is upper bounded by

(
∑

ij wij,Kij
+
∑

iwi,Ki
)2 and therefore satisfies

∑∞

τ=0
E

{
(h (τ))

2
}/

τ < ∞. (54)

• E{h(t)|Q(t)} is lower bounded as

E{h(t)|Q(t)} ≥ 0. (55)

• For all i, (d, φ,m), and t, the conditional fourth moment

of backlog dynamics satisfies

E

{[
Q

(d,φ,m)
i (t+ 1)−Q

(d,φ,m)
i (t)

]4∣∣∣∣Q(t)

}

≤
(
δmaxC

max
tr + ξmaxC

max
pr

/
rmin +Amax

)4
<∞. (56)

With (54)-(56), based on the derivations in [21], Eq. (45),

(49), and (53) lead to network stability (17) and average cost

(16) convergence with probability 1 under DCNC-L, DCNC-

Q, EDCNC-L(Q), respectively.

APPENDIX C

PROOF OF THEOREM 3

Let’s first prove Eq. (21). To this end denote h(t) ,
1
t

∑t−1
τ=0 E{h(τ)}. Then, under the DCNC policy and after

some algebraic manipulations similar to the ones used for (45),

we upper bound the LDP function as follows:

∆(Q(t)) + V E{h(t)|Q(t)} ≤ NB + V h
∗
(λ), (57)

where h
∗
(λ) is the minimum average cost given λ. Taking

the expectation over Q(t) on both sides of (57) and summing

over τ = 0, · · · , t− 1 further yields

1

2t

[
E

{
‖Q (t)‖2

}
−E

{
‖Q (0)‖2

}]
≤NB+V

[
h
∗
(λ)−h(t)

]
.

(58)

3

Then it follows that, by setting V = 1/ǫ and for all t ≥ 1,

h(t)− h
∗
(λ) ≤ NB

V
+

1

2V t
E

{
‖Q (0)‖2

}

≤
[
NB +

1

2
E

{
‖Q(0)‖2

}]
ǫ, (59)

which proves (21).

In order to prove (22), we first introduce the following

quantities for an arbitrary policy:

• y(t): the vector of elements yi(t) and yij(t);

• µ̃(t): the vector of actual flow rate elements µ̃
(d,φ,m)
i,pr (t),

µ̃
(d,φ,m)
pr,i (t), and µ̃

(d,φ,m)
ij (t);

• x̃(t): the vector [y(t); µ̃(t)];

• ∆f(t): the vector of elements ∆f
(d,φ,m)
i (t) as in (20).

Summing both sides of (20) over τ = 0, 1, · · · , t− 1 and then

dividing them by t, for all i, d, φ,m, t ≥ 1, yield,

∆f(t) ,
1

t

∑t−1

τ=0
E{∆f(τ)}= 1

t
E {Q(t)−Q (0)} . (60)

Lemma C.1. If λ is interior to Λ(G,Φ), there exits a constant

vector ρ such that

h
∗
(λ)−h(t)≤ρ†∆f(t). (61)

Proof. The proof is given in Appendix D

Plugging (60) into (61) yields

h
∗
(λ)− h(t) ≤ 1

t
ρ†

E {Q(t)−Q(0)}

≤ 1

t
‖ρ‖ · (‖E{Q (t)}‖+ ‖E{Q (0)}‖) , (62)

Under the DCNC policy, by further plugging (62) into the

right hand side of (58), we have

1

2t

(
E

{
‖Q (t)‖2

}
−E

{
‖Q (0)‖2

})

≤ NB + V
‖ρ‖
t

(‖E {Q (t)}‖+ ‖E {Q (0)}‖). (63)

By using the fact E{‖Q (t)‖2} ≥ ‖E{Q (t)}‖2 in (63), it

follows that

‖E{Q (t)}‖2 − 2V ‖ρ‖ · ‖E{Q (t)}‖ − 2NBt

− E{‖Q (0)‖2} − 2V ‖ρ‖ · ‖E{Q (0)}‖ ≤ 0. (64)

The largest value of ‖E{Q(t)}‖ that satisfies (64) is given by

‖E{Q (t)}‖ ≤ V ‖ρ‖+√
V 2‖ρ‖2 + 2NBt+ E{‖Q (0)‖2}+ 2V ‖ρ‖ · ‖E{Q (0)}‖

≤V ‖ρ‖+
√
(V ‖ρ‖+E{‖Q(0)‖})2+2NBt+var{‖Q(0)‖}.

(65)

Finally, by setting V = 1/ǫ and t = 1/ǫ2, we plug (65)

back into the right hand side of (60) and obtain

1

t

∑t−1

τ=0
E

{
∆f

(d,φ,m)
i (τ)

}
≤ 1

t
(‖E{Q(t)}‖+ ‖E{Q(0)}‖)

≤ V ‖ρ‖
t

+
‖E{Q(0)}‖

t

+
1

t

√
(V ‖ρ‖+E{‖Q(0)‖})2+2NBt+var{‖Q(0)‖}

≤
(
2E{‖Q(0)‖}+

√
var{‖Q(0)‖}

)
ǫ2+

(√
2NB+2 ‖ρ‖

)
ǫ,

(66)

which proves (22).

APPENDIX D

PROOF OF LEMMA C.1

Given an arbitrary policy, define

• µ(t): the vector of assigned flow rate elements

µ
(d,φ,m)
i,pr (t), µ

(d,φ,m)
pr,i (t), and µ

(d,φ,m)
ij (t);

• x(t): the vector [y(t);x(t)].

With a little bit abuse of notation, denote h(x(t)) , h(t);
∆f(x̃(t)) , ∆f(t). In addition, let X represent the set of

all possible vectors x(t) that satisfy the constraints (4c)-(4g).

Note that x̃(t) also belongs to X . Furthermore, let X represent

the convex hull of X . Then, for all vectors x ∈ X , the

following conditions are satisfied:

1) h(x)− h
∗
(λ) and ∆f(x) are convex for all x ∈ X ;

2) h(x)− h
∗
(λ) ≥ 0 for all x ∈ X with ∆f(x) � 0;

3) ∃x̂ ∈ X with ∆f(x̂) ≺ 0, given λ interior to Λ(G,Φ).
Item 2) above results immediately from Theorem 1, where any

x ∈ X with ∆f(x) � 0 can be treated as the E{x(t)} under

a stabilizing stationary randomized policy. Hence, according

to Farkas’ Lemma [23], there exists a constant vector ρ � 0
such that

h(x)− h
∗
(λ) + ρ†∆f(x) ≥ 0, ∀x ∈ X . (67)

Evaluating (67) in x̃(τ) with τ = 0, . . . , t− 1, we have

1

t

∑t−1

τ=0
h(x̃(τ))−h

∗
(λ)+

1

t
ρ†

∑t−1

τ=0
∆f(x̃(τ))≥0, (68)

from which it follows that

ρ†∆f (t)=
1

t
ρ†

t−1∑

τ=0

E{∆f(x̃(t))}≥h
∗
(λ)− 1

t

t−1∑

τ=0

E{h(x̃(τ))}

(a)

≥ h
∗
(λ)− 1

t

t−1∑

τ=0

E{h(x(τ))}=h
∗
(λ)−h(t), (69)

where the inequality (a) is due to h(x̃(t)) ≤ h(x(t)) that

results from the fact µ̃(t) � µ(t).

	I Introduction
	II Related Work
	III Model and Problem Formulation
	III-A Cloud Network Model
	III-B Service Model
	III-C Queuing Model
	III-D Problem Formulation

	IV Cloud Network Capacity Region
	V Dynamic Cloud Network Control Algorithms
	V-A Cloud Network Lyapunov drift-plus-penalty
	V-B Linear Dynamic Cloud Network Control (DCNC-L)
	V-C Quadratic Dynamic Cloud Network Control (DCNC-Q)
	V-D Dynamic Cloud Network Control with Shortest Transmission-plus-Processing Distance Bias

	VI Performance Analysis
	VI-A Average Cost and Network Stability
	VI-B Convergence Time

	VII Numerical Results
	VII-A Cost-Delay Tradeoff
	VII-B Convergence Time
	VII-C Capacity Region
	VII-D Processing Distribution

	VIII Extensions
	VIII-A Location-Dependent Service Functions
	VIII-B Propagation Delay
	VIII-C Service Tree Structure

	IX Conclusions
	References
	Appendix A: Proof of Theorem ??
	A-A Proof of Necessity
	A-B Proof of Sufficiency

	Appendix B: Proof of Theorem ??
	B-A DCNC-L
	B-B DCNC-Q
	B-C EDCNC-L and EDCNC-Q
	B-D Network Stability and Average Cost Convergence with Probability 1

	Appendix C: Proof of Theorem ??
	Appendix D: Proof of Lemma ??

