Loading [a11y]/accessibility-menu.js
Optimization of cache-enabled opportunistic interference alignment wireless networks: A big data deep reinforcement learning approach | IEEE Conference Publication | IEEE Xplore

Optimization of cache-enabled opportunistic interference alignment wireless networks: A big data deep reinforcement learning approach


Abstract:

Both caching and interference alignment (IA) are promising techniques for future wireless networks. Nevertheless, most of existing works on cache-enabled IA wireless netw...Show More

Abstract:

Both caching and interference alignment (IA) are promising techniques for future wireless networks. Nevertheless, most of existing works on cache-enabled IA wireless networks assume that the channel is invariant, which is unrealistic considering the time-varying nature of practical wireless environments. In this paper, we consider realistic time-varying channels. Specifically, the channel is formulated as a finite-state Markov channel (FSMC). The complexity of the system is very high when we consider realistic FSMC models. Therefore, we propose a novel big data reinforcement learning approach in this paper. Deep reinforcement learning is an advanced reinforcement learning algorithm that uses deep Q network to approximate the Q value-action function. Deep reinforcement learning is used in this paper to obtain the optimal lA user selection policy in cache-enabled opportunistic lA wireless networks. Simulation results are presented to show the effectiveness of the proposed scheme.
Date of Conference: 21-25 May 2017
Date Added to IEEE Xplore: 31 July 2017
ISBN Information:
Electronic ISSN: 1938-1883
Conference Location: Paris, France

Contact IEEE to Subscribe

References

References is not available for this document.