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Abstract—Covert communication is to achieve a reliable trans-
mission from a transmitter to a receiver while guaranteeingan
arbitrarily small probability of this transmission being d etected
by a warden. In this work, we study the covert communication
in AWGN channels with finite blocklength, in which the number
of channel uses is finite. Specifically, we analytically prove that
the entire block (all available channel uses) should be utilized to
maximize the effective throughput of the transmission subject
to a predetermined covert requirement. This is a nontrivial
result because more channel uses results in more observations
at the warden for detecting the transmission. We also determine
the maximum allowable transmit power per channel use, which
is shown to decrease as the blocklength increases. Despite the
decrease in the maximum allowable transmit power per channel
use, the maximum allowable total power over the entire blockis
proved to increase with the blocklength, which leads to the fact
that the effective throughput increases with the blocklength.

I. I NTRODUCTION

In future wireless networks, the demand for wireless data is
growing at such a rate that requires 1000x today’s capacity in
the next five to ten years. Against this background, crucial con-
cerns on the security and privacy of wireless communications
are emerging since a large amount of confidential information
(e.g., email/bank account information and password, credit
card details) is transferred over wireless networks. In addition
to the secrecy and integrity of the transmitted information,
in some scenarios a user may wish to transmit messages
over wireless networks without being detected. This is due to
the fact that (for example) the exposure of this transmission
may disclose the user’s location information, which probably
violates the privacy of the user. Therefore, covert communi-
cation is attracting an increasing amount of research interests
recently (e.g., [1–3]). In covert communication, a transmitter
(Alice) intends to communicate with a legitimate receiver
(Bob) without being detected by a warden (Willie), who is
observing this communication.

In fact, covert communication was addressed by spread
spectrum techniques in the early 20th century and a review
on spread spectrum techniques can be found in [4]. However,
the performance limit of covert communication has not been
fully examined in the literature and recently attracts much
research attention. Considering additive white Gaussian noise
(AWGN) channels, a square root law has been derived in [5],
which states that Alice can transmit no more thanO(

√
n)

bits in n channel uses covertly and reliably to Bob. Following
[5], the scaling constant of the amount of information with

respect to the square root ofn was characterized for a broad
class of discrete memoryless channels (DMCs) and AWGN
channels in [6]. We note that this square root law requires
a pre-shared secret to be established between Alice and Bob
prior to Alice’s transmission. This pre-shared secret is proved
to be unnecessary for the square root law when the channel
quality from Alice to Bob is higher than that from Alice to
Willie, for binary symmetric channel (BSC) [7], DMC [8], and
AWGN channel [8].

In the square root law we haveO(
√
n)/n → 0 asn → ∞,

which states that the rate is asymptotically zero (i.e., the
average number of bits that can be covertly and reliably
transmitted per channel use asymptotically approaches zero).
However, in some scenarios a positive rate has been proved to
be achievable (e.g., [7, 9–13]). For example, it is proved that
a positive rate can be obtained when Willie has uncertainty
about the receiver noise variance in AWGN channels [11, 13],
when Willie does not exactly know the receiver noise model
in BSC channels [7], or when Willie lacks knowledge of his
channel characteristics in AWGN and block fading channels
[12, 13]. In addition to the noise or channel uncertainty, as
proved in [10] a positive rate can also be achieved when Willie
has uncertainty on the time instant of the communication.

In the literature as seen in the aforementioned works, only
[11] mentioned the impact of finite samples (i.e., finiten) on
the detection performance at Willie. It is numerically shown
that with noise uncertainty at Willie there may exist an optimal
number of samples that maximizes the communication rate
subject toξ ≥ 1− ǫ, whereξ is the sum of false positive and
miss detection rates at Willie and0 < ǫ ≤ 1 is an arbitrarily
small number. Besides the detection performance at Willie,
finite n also has significant impact on the maximal achievable
rate R of the channel from Alice to Bob (i.e., the maximal
achievable rate decreases asn decreases for a fixed decoding
error probability δ) [14], which has not been considered
in the literature of covert communication (including [11]).
Therefore, the impact of finiten on covert communication
has not been well examined. This leaves a significant gap in
our understanding of the performance limit of practical covert
communication, since in practice the length of a codeword is
always finite. For example, to achieve transmission efficiency
(e.g., short delay) we may require the codeword to be short
(e.g., in the order of100 channel uses) for vehicle-to-vehicle
communication or real-time video processing [15].
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Fig. 1. Illustration of the system model of interest for covert communication.

A. Our Contributions

Considering AWGN channels, we study the impact of finite
n on both the maximal achievable rate at Bob and detection
performance at Willie in covert communication. To this end,
noting that the decoding error probabilityδ is not negligible
when n is finite, we first propose to adopt the effective
throughputη (i.e., η = nR(1 − δ)) subject toξ ≥ 1 − ǫ,
as the performance metric to evaluate covert communication.
As can be seen from the definition ofη, it explicitly captures
the tradeoff amongn, R, andδ for a given covert requirement.

We consider a maximum blocklength ofN channel uses,
in which the covert information needs to be transmitted.
Hence, the actual number of channel usesn is constrained
by n ≤ N . Although a largern offers more observations to
Willie for detecting the transmission, we analytically prove
that the optimal value ofn that maximizesη subject to the
given covert requirement isN (i.e., the entire block with
all available channel uses). We also determine the maximum
allowable transmit power per channel use (denoted byP ∗)
that achieves the maximumη. Our examination shows that
P ∗ decreases asN increases, which is due to the fact that
increasingN forces Alice to allocate less power for each
channel use to meet the covert requirement. Nevertheless, we
show that the maximum allowable total transmit power (i.e.,
NP ∗) increases asN increases, which leads to the fact that
the effective throughput of the communication from Alice to
Bob increases asN increases. The results in this paper, for the
first time, provide important insights on the design of covert
communication with a finite blocklength.

Notations: Scalar variables are denoted by italic symbols.
Vectors and matrices are denoted by lower-case and upper-case
boldface symbols, respectively. Given a vectorx, x[i] denotes
the i-th element ofx. The expectation is denoted byE{·} and
CN (0, σ2) denotes the circularly-symmetric complex normal
distribution with zero mean and varianceσ2.

II. SYSTEM MODEL

A. Channel Model

The system model of interest for covert communication is
illustrated in Fig. 1, where each of Alice, Bob, and Willie

is equipped with a single antenna. We assume the channel
from Alice to Bob and the channel from Alice to Willie are
only subject to AWGN. In the covert communication, Alice
transmitsn complex-valued symbolsx[i] (i = 1, 2, . . . , n) in
each codeword to Bob, while Willie is passively collecting
n observations on Alice’s transmission to detect her presence
(i.e., whether Alice is transmitting). In this work, we consider
that the length of a codeword is constrained by a maximum
blocklength denoted byN . Thus, we haven ≤ N as a
constraint onn. We denote the AWGN at Bob and Willie
as rb[i] and rw[i], respectively, whererb[i] ∼ CN (0, σ2

b ),
rw[i] ∼ CN (0, σ2

w), σ2
b and σ2

w are the noise variances at
Bob and Willie, respectively. In addition, we assume that
x[i], rb[i], and rw[i] are mutually independent. We denote
the transmit power of Alice asP (i.e., E{|x[i]|2} = P ).
Furthermore, we assume that Alice adopts Gaussian signaling,
i.e., x[i] ∼ CN (0, P ).

B. Channel Coding Rate for Finite Blocklength

The received signal at Bob for each signal symbol is given
by

yb[i] = x[i] + rb[i]. (1)

As pointed out by [14], the decoding error probability at Bob
is not negligible whenn is finite. As such, for a given decoding
error probabilityδ the channel coding rate of the channel from
Alice to Bob can be approximated by [14, 16]

R ≈ log2(1 + γb)−
√

γb(γb + 2)

n(γb + 1)2
Q−1(δ)

ln(2)
+

log2(n)

2n
, (2)

whereγb = P/σ2
b is the signal-to-noise ratio (SNR) at Bob,

andQ−1(·) is the inverse Q-function. Equivalently, for a given
channel coding rateR, the decoding error probability at Bob
is given by

δ = Q

(√
n(1 + γb)

(

ln(1 + γb) +
1

2
ln(n)−R ln 2

)

√

γb(γb + 2)

)

.

(3)

C. Binary Hypothesis Testing at Willie

In order to detect Alice’s presence, Willie is to distinguish
the following two hypotheses

{

H0 : yw[i] = rw[i]

H1 : yw[i] = x[i] + rw[i],
(4)

where H0 denotes the null hypothesis where Alice is not
transmitting, H1 denotes the alternative hypothesis where
Alice is transmitting, andyw[i] is the received signal at
Willie. Following the assumptions detailed in Section II-A,
we have the likelihood functions ofyw[i] underH0 andH1

asf(yw[i]|H0) = CN (0, σ2
w) andf(yw[i]|H1) = CN (0, P +

σ2
w), respectively. In the cover communication, the ultimate

goal of Willie is to minimize the total error rate, which is
given by

ξ = PF + PM , (5)



where PF , Pr(D1|H0) is the false positive rate,PM ,

Pr(D0|H1) is the miss detection rate,D1 and D0 are the
binary decisions that infer whether Alice is present or not,
respectively. We assume that Willie knows bothP and σ2

w

exactly, and thus the optimal test that minimizesξ is the
likelihood ratio test withλ = 1 as the threshold1, which is
given by

P1 ,
∏n

i=1
f (yw[i]|H1)

P0 ,
∏n

i=1
f (yw[i]|H0)

D1≥
<
D0

1. (6)

After performing some algebraic manipulations, (6) can be
reformulated as

T ,
1

n

n
∑

i=1

|yw[i]|2
D1≥
<
D0

Γ, (7)

where T is the average power of each received symbol at
Willie and Γ is the threshold forT , which is given by

Γ =
(P + σ2

w)σ
2
w

P
ln

(

P + σ2
w

σ2
w

)

. (8)

As per (6) and (7), we note that the radiometer is indeed the
optimal detector when Willie knows the likelihood functions
exactly (i.e., there are no nuisance parameters embedded in
the likelihood functions). Following (7) and noting thatT is a
chi-squared random variable with2n degrees of freedom, the
false positive rate and miss detection rate are given by [9, 11]

PF = Pr(T > Γ|H0) = 1−
γ
(

n, nΓ
σ2
w

)

Γ(n)
, (9)

PM = Pr(T < Γ|H1) =
γ
(

n, nΓ
P+σ2

w

)

Γ(n)
, (10)

whereΓ(n) = (n − 1)! is the gamma function andγ(·, ·) is
the incomplete gamma function given by

γ(n, x) =

∫ x

0

e−ttn−1dt. (11)

With the radiometer as the optimal detector, following
Pinsker’s inequality, we have a lower bound onξ, which is
given by [5, 17, 18]

ξ ≥ 1−
√

1

2
D(P0‖P1), (12)

where D(P0‖P1) is the Kullback-Leibler (KL) divergence
from P0 to P1, which can be expressed as

D(P0‖P1) = n

[

ln

(

P + σ2
w

σ2
w

)

− P

P + σ2
w

]

. (13)

1We note thatλ = 1 is due to the unknown or equala priori probabilities,
i.e.,P0 andP1 are unknown or equal, whereP0 is thea priori probability that
H0 is true,P1 is thea priori probability thatH1 is true, andP0 +P1 = 1.
If both P0 and P1 are known, the total error rate is reformulated asξ =
P0PF + P1PM and the optimal test that minimizes this reformulatedξ is
the likelihood ratio test withλ = P1/P0. We also note that the assumption
of equala priori probabilities is commonly adopted in the literature of covert
communication (e.g., [5, 10, 11]).

D. Covert Requirement

Covert communication requiresξ ≥ 1− ǫ for some arbitrar-
ily small ǫ. As per (12), we can ensureD(P0‖P1) ≤ 2ǫ2 in
order to guaranteeξ ≥ 1 − ǫ. We note thatD(P0‖P1) ≤ 2ǫ2

is a more strict constraint relative toξ ≥ 1 − ǫ as per
(12). From a conservative point of view and to avoid the
complex expressions forPF andPM , in this work we adopt
D(P0‖P1) ≤ 2ǫ2 as the requirement for covert communica-
tion. Also, the value ofǫ is especially very small in order to
provide good covertness. Thus, in this work we only consider
ǫ ∈ (0, 0.5] becauseǫ > 0.5 means that Willie is allowed to
achieve more than 50% success detection rate.

III. C OVERT COMMUNICATION WITH A FINITE NUMBER

OF CHANNEL USES

In this section, we first adopt the effective throughput to
evaluate the performance of covert communication in AWGN
channels with finite blocklength. Then, we determine the
optimal n and P that maximize this effective throughput
subject to the covert requirement.

A. Effective Throughput

The square root law states that Alice can transmit no more
thanO(

√
n) bits in n channel uses covertly and reliably to

Bob. Such scaling-law results are obtained whenn → ∞.
As such, these square-law results cannot be applied in the
covert communication with finiten. In this work, we focus
on the amount of information that can be transmitted reliably
from Alice to Bob for a given positiveǫ. Noting that the
decoding error probability of a channel with finite blocklength
is not negligible, we adopt the effective throughput from
Alice to Bob as the main performance metric for the covert
communication with finite blocklength, while utilizing the
covert requirement as the constraint. The effective throughput
from Alice to Bob is defined as [19, 20]

η = nR(1− δ). (14)

We note thatη gives the average number of information bits
that can be transmitted from Alice to Bob reliably (excluding
information bits suffering from decoding errors) by utilizing
a codeword with finite lengthn.

B. Optimal Number of Channel Uses and Transmit Power

The ultimate goal of our design in covert communication
is to achieve the maximum effective throughput while guar-
anteeing the covert requirement. To this end, we first consider
a fixed channel coding rateR and focus on the design of
the number of channel uses and the transmit powerP , since
the design ofn andP affects both the effective throughput
from Alice to Bob and the detection performance at Willie.
As such, for a givenR the optimization problem in the covert
communication of interest can be written as

argmax
n,P

η, (15)

s.t. D(P0‖P1) ≤ 2ǫ2, (16)

n ≤ N. (17)



Theorem 1: The optimal values ofn andP that maximize
the effective throughputη subject toD(P0‖P1) ≤ 2ǫ2 and
n ≤ N are derived as

n∗ = N, (18)

P ∗ = (σ2
w + P ∗)

[

ln

(

P ∗

σ2
w

+ 1

)

− 2ǫ2N

]

, (19)

whereP ∗ is the solution to the fixed-point equation (19).
Proof: The detailed proof is provided in Appendix.

Based on Theorem 1, we see that it is best for Alice to
transmit over all available channel uses for covert communica-
tion, provided that the transmit power is optimized to maintain
the same level of covertness despite that Willie has more
observations whenn is larger. The same level of covertness
is achieved by reducing the transmit power whenn becomes
larger, which can be seen from (19) thatP ∗ decreases with
N . It is interesting to observe that bothn∗ and P ∗ are not
functions ofR. This demonstrates that the obtainedn∗ and
P ∗ are globally optimal, regardless the value of the channel
coding rateR. As such, the optimal value ofR that maximizes
the effective throughput subject to the covert requirementcan
be obtained through

R∗ = argmin
0≤R

NR [1− δ(P ∗, N,R)] , (20)

whereδ(P ∗, N,R) is obtained by substitutingP = P ∗ and
n∗ = N into (3). We note thatR∗ can be also obtained through
searching the optimal value ofδ that maximizesη for n∗ = N
andP = P ∗. We defineδ∗ = δ(P ∗, N,R∗) and denote the
maximum effective throughput asη∗, which is achieved by
substitutingP ∗, n∗, R∗, andδ∗ into (14).

IV. N UMERICAL RESULTS

In this section, we provide numerical results on the effective
throughput subject toξ ≥ 1 − ǫ to verify our analysis on the
covert communication withD(P0‖P1) ≤ 2ǫ2 as the constraint.

In Fig. 2 we plot the maximum allowable total transmit
powerNP ∗ over the entire block versusǫ. In this figure and
the following figures, the curves forξ ≥ 1− ǫ are achieved by
numerically evaluating the false positive and detection rates
as per (9) and (10), respectively. In this figure, we observe
that theNP ∗ with ξ ≥ 1 − ǫ as the constraint is higher
than that withD(P0‖P1) ≤ 2ǫ2 as the constraint. This is
due to the fact that the equality in (12) cannot be achieved
in the considered system model, and henceD(P0‖P1) ≤ 2ǫ2

is a more strict constraint thanξ ≥ 1 − ǫ. We also observe
thatNP ∗ increases (hence the effective throughput increases)
as N increases, which can be explained by our Theorem 1.
Finally, we observe thatNP ∗ decreases (hence the effective
throughput decreases) asǫ decreases, which demonstrates the
tradeoff between the covert requirement and the achievable
effective throughput (e.g., a more strict covert requirement
leads to a smaller effective throughput).

In Fig. 3, we plotNP ∗, η, P ∗, and η/N versusN in
different sub-figures, respectively. As expected, we first ob-
serve thatNP ∗ andη monotonically increase asN increases
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in Fig. 3 (a) and Fig. 3 (b), respectively. AlthoughNP ∗

increases as shown in Fig. 3 (a), it is interesting to observe
that the maximum allowable transmit powerP ∗ monotonically
decreases asN increases in Fig. 3 (c). This can be explained
by (19) in our Theorem 1. Intuitively, this is due to the fact that
as the number of observations at Willie increases, Alice hasto
reduce her transmit power in order to meet the same detection
performance at Willie. In Fig. 3 (d), we observe that the
effective throughput per channel use (i.e.,η/N ) monotonically
increases asN increases. This is due to the fact that the
decrease inδ (i.e., the decoding error probability given in
(3)) caused by increasingN is more than the increase inδ
caused by the reduction ofP ∗ as shown in Fig. 3 (c). These
aforementioned observations based on Fig. 3 demonstrate that
increasingN not only helps Alice to allocate less transmit
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power to each channel use in order to maintain the same level
of covertness, but also reduces the decoding error probability
in the communication from Alice to Bob, which turns out to
improve the effective throughput of the covert communication.

In Fig. 4, we plot the effective throughputη subject to
ξ ≥ 1 − ǫ versus the decoding error probabilityδ. We first
observe that the optimal value ofδ that maximizesη indeed
exists, based on which we can determine the optimalR. We
also observe that the optimal value ofδ decreases asN
increases. As shown in Fig. 3 (c), the maximum allowable
transmit powerP ∗ decreases asN increases. As per (2), the
observation, that bothδ∗ and P ∗ decreases asN increases,
indicates that the optimal channel coding rateR∗ decreases as
N increases. We also plot the maximum effective throughput
per channel use (i.e.,η∗/N ) versusN in Fig. 5. In this figure,
we first observe that asN increasesη∗/N increases, which
is consistent with our observation found in Fig. 3 (d). We
also observe that asǫ increases slightly (e.g., from0.02 to
0.08) η∗/N significantly increases. This demonstrates that the
achievable effective throughput is very sensitive to the the
covert requirement.

V. CONCLUSION

This work investigated the covert communication with finite
blocklength (i.e., a finite number of channel usesn ≤ N )
over AWGN channels. We proved that the effective throughput
of covert communication is maximized when all available
channel uses are utilized, i.e.,n∗ = N . To guarantee the
same level of covertness, the maximum allowable transmit
power per channel use decreases asN increases, while the
maximum allowable total transmit power over all channel uses
increases asN increases. In contrast, we found that both the
effective throughput and the effective throughput per channel
use increase asN increases. This is due to the fact that
increasingN not only reduces the transmit power allocated
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to each channel use, but also decreases the decoding error
probability of the communication from Alice to Bob.
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APPENDIX

We present our proof of Theorem 1 in the following 6 steps.
Step 1: We note thatη and D(P0‖P1) are both mono-

tonically increasing functions ofP and n. As such, we can
conclude that the equality in the constraint (16) is always met
in order to maximizeη. Thus, we haveD(P0‖P1) = 2ǫ2 and
following (13) we have

n =
2ǫ2

f(γw)
, (21)

where

f(γw) ,
D(P0‖P1)

n
= ln (γw + 1)− γw

γw + 1
, (22)

andγw = P/σ2
w is the SNR at Willie.

Step 2:We notef(0) = 0 and we derive the first derivative
of f(γw) with respect toγw as

∂f(γw)

∂γw
=

γw
(γw + 1)2

≥ 0, (23)

which leads to the fact thatf(γw) is a monotonically increas-
ing function of γw. With the constraintD(P0‖P1) = 2ǫ2, n
is a monotonically decreasing function off(γw) as per (21),
which results in thatn is a monotonically decreasing function
of γw (thus ofP ).

Step 3: Instead of directly provingn∗ = N for maximizing
the effective throughput, we next prove thatn∗ = N maxi-
mizesnγw (i.e., maximizesnP ) under the constraint (21) in
the remaining steps. This is due to the fact thatnP is the



total transmit power for then channel uses and the effective
throughput increases as the total transmit power increases[14].

Step 4: We next prove that eithern = 1 or n = N max-
imizesnγw. To this end, in the following we first show that
nγw initially decreases and then increases withn. Following
(21) and (22), we have

nγw =
2ǫ2

g(γw)
, (24)

whereg(γw) is given by

g(γw) =
ln(1 + γw)

γw
− 1

1 + γw
. (25)

We then derive the first derivative ofg(γw) with respect toγw
as

∂g(γw)

∂γw
=

h(γw)

γ2
w(1 + γw)2

, (26)

where

h(γw) = 2γ2
w + γw − (1 + γw)

2 ln(1 + γw). (27)

We note that there areonly two solutions toh(γw) = 0 for
γw ≥ 0, including γw = 0 andγw = γ†

w.2 We also note that
asγw → ∞ we haveh(γw) → −∞. Then, we can conclude
that h(γw) ≥ 0 for γw < γ†

w andh(γw) ≤ 0 for γw ≥ γ†
w.

As such, notingγ2
w(1 + γw)

2 ≥ 0 and following (26), we
have∂g(γw)/∂γw ≥ 0 for γw < γ†

w and ∂g(γw)/∂γw ≤ 0
for γw ≥ γ†

w. This indicates thatg(γw) initially increases
and then decreases withγw. As per (24), we know thatnγw
monotonically decreases withg(γw), which leads to the fact
that nγw first decreases and then increases asγw increases
(i.e., nγw has one minimum value but no maximum value).
We recall thatn is a monotonically decreasing function of
γw under the constraint (21), which is proved following (23).
Therefore, we conclude thatnγw first decreases and then
increases asn increases, and thus the maximum value ofnγw
is achieved either atn = 1 or n = N .

Step 5: We next prove thatn = N (not n = 1) maximizes
nγw. Substitutingγ†

w into (21), we haven† = 2ǫ2/f(γ†
w). For

0 < ǫ < 0.4835, we haven† < 1 due to f(γ†
w) > 0.4675.

Whenn† < 1, nγw increases withn due ton ≥ 1. As such,
for 0 < ǫ < 0.4835 the optimal value ofn that maximizes
nγw is N (i.e., n∗ = N ). For 0.4835 ≤ ǫ ≤ 0.5, we have
n† < 2 again due tof(γ†

w) > 0.4675. We next confirm that
even forn† < 2 we still haven∗ = N . To this end, we only
have to confirmnγw for n = 2 is larger than that forn = 1.
When n = 1, following (21) we havef(γw) = 2ǫ2. The
maximum value ofγw that guaranteesf(γw) = 2ǫ2 (i.e.,n =
1) is obtained whenǫ = 0.5 sincef(γw) is a monotonically
increasing function ofγw as proved by (23). We obtain this
maximum value by solvingf(γw) = 0.5 as γn=1

w < 2.3145,
which leads tonγw < 2.3145 when n = 1. When n = 2,
following (21) we havef(γw) = ǫ2. The minimum value ofγw
that guaranteesf(γw) = ǫ2 (i.e.,n = 2) is obtained whenǫ =
0.4835. We obtain this minimum value by solvingf(γw) =

2We obtainγ†
w ≈ 2.1626 by numerically solvingh(γw) = 0.

(0.4835)2 asγn=2
w > 1.16, which leads tonγw > 2.32 when

n = 2. As such, we havenγw < 2.3145 when n = 1 and
nγw > 2.32 whenn = 2, which results innγw for n = 2 is
larger thannγw for n = 1. We recall thatnγw monotonically
increases withn whenn ≥ n†. Therefore, for0.4835 ≤ ǫ ≤
0.5 the optimal value ofn that maximizesnγw is N .

Step 6:So far, we have provedn∗ = N . Then, substituting
n∗ = N into (21), we obtain the fixed-point equation in (19).
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