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Abstract—Covert communication is to achieve a reliable trans-
mission from a transmitter to a receiver while guaranteeingan
arbitrarily small probability of this transmission being d etected
by a warden. In this work, we study the covert communication
in AWGN channels with finite blocklength, in which the number
of channel uses is finite. Specifically, we analytically pray that
the entire block (all available channel uses) should be utited to
maximize the effective throughput of the transmission subgct
to a predetermined covert requirement. This is a nontrivial
result because more channel uses results in more observat®
at the warden for detecting the transmission. We also deterime
the maximum allowable transmit power per channel use, which
is shown to decrease as the blocklength increases. Despiteet
decrease in the maximum allowable transmit power per chanrie
use, the maximum allowable total power over the entire blocks
proved to increase with the blocklength, which leads to thedct
that the effective throughput increases with the blocklenth.

I. INTRODUCTION

respect to the square root afwas characterized for a broad
class of discrete memoryless channels (DMCs) and AWGN
channels in [6]. We note that this square root law requires
a pre-shared secret to be established between Alice and Bob
prior to Alice’s transmission. This pre-shared secret svpd

to be unnecessary for the square root law when the channel
quality from Alice to Bob is higher than that from Alice to
Willie, for binary symmetric channel (BSC) [7], DMC [8], and
AWGN channel [8].

In the square root law we hav®(y/n)/n — 0 asn — oo,
which states that the rate is asymptotically zero (i.e., the
average number of bits that can be covertly and reliably
transmitted per channel use asymptotically approaches.zer
However, in some scenarios a positive rate has been proved to
be achievable (e.g., [7,9-13]). For example, it is proveat th
a positive rate can be obtained when Willie has uncertainty

In future wireless networks, the demand for wireless dataadout the receiver noise variance in AWGN channels [11, 13],

growing at such a rate that requires 1000x today’s capaeitywhen Willie does not exactly know the receiver noise model
the next five to ten years. Against this background, crua@atc in BSC channels [7], or when Willie lacks knowledge of his
cerns on the security and privacy of wireless communicatioohannel characteristics in AWGN and block fading channels
are emerging since a large amount of confidential informati¢12, 13]. In addition to the noise or channel uncertainty, as
(e.g., email/lbank account information and password, tregroved in [10] a positive rate can also be achieved when &Villi
card details) is transferred over wireless networks. Intadd has uncertainty on the time instant of the communication.
to the secrecy and integrity of the transmitted information In the literature as seen in the aforementioned works, only
in some scenarios a user may wish to transmit messafes] mentioned the impact of finite samples (i.e., finifeon
over wireless networks without being detected. This is due the detection performance at Willie. It is numerically stmow
the fact that (for example) the exposure of this transmissithat with noise uncertainty at Willie there may exist an oyai
may disclose the user’s location information, which prdbabnumber of samples that maximizes the communication rate
violates the privacy of the user. Therefore, covert commursubject to > 1 — ¢, where¢ is the sum of false positive and
cation is attracting an increasing amount of researchastsr miss detection rates at Willie arfd< ¢ < 1 is an arbitrarily
recently (e.g., [1-3]). In covert communication, a trartseni small number. Besides the detection performance at Willie,
(Alice) intends to communicate with a legitimate receivefinite n also has significant impact on the maximal achievable
(Bob) without being detected by a warden (Willie), who isate R of the channel from Alice to Bob (i.e., the maximal
observing this communication. achievable rate decreasesraglecreases for a fixed decoding
In fact, covert communication was addressed by spreador probability §) [14], which has not been considered
spectrum techniques in the early 20th century and a reviéw the literature of covert communication (including [11])
on spread spectrum techniques can be found in [4]. HowevEherefore, the impact of finitex on covert communication
the performance limit of covert communication has not bedras not been well examined. This leaves a significant gap in
fully examined in the literature and recently attracts muabur understanding of the performance limit of practicalav
research attention. Considering additive white Gauss@sen communication, since in practice the length of a codeword is
(AWGN) channels, a square root law has been derived in [Zlways finite. For example, to achieve transmission effijien
which states that Alice can transmit no more th@n/n) (e.g., short delay) we may require the codeword to be short
bits in n channel uses covertly and reliably to Bob. Followinde.g., in the order of100 channel uses) for vehicle-to-vehicle
[5], the scaling constant of the amount of information witltommunication or real-time video processing [15].
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(( )) is equipped with a single antenna. We assume the channel
from Alice to Bob and the channel from Alice to Willie are
only subject to AWGN. In the covert communication, Alice
transmitsn complex-valued symbols[i] (: = 1,2,...,n) in

O each codeword to Bob, while Willie is passively collecting

(o) Alice n observations on Alice’s transmission to detect her presenc

(i.e., whether Alice is transmitting). In this work, we caater

that the length of a codeword is constrained by a maximum

blocklength denoted byV. Thus, we haven < N as a

constraint onn. We denote the AWGN at Bob and Willie

as rp[i] and r,[i], respectively, where[i] ~ CN(0,07),
rwli] ~ CN(0,02), of and o2 are the noise variances at

Fig. 1. lllustration of the system model of interest for cav@mmunication. Bob and Willie, respectively_ In addition, we assume that

x[i], rp[é], and r,[i] are mutually independent. We denote
the transmit power of Alice as® (i.e., E{|z[i]|*} = P).
A. Our Contributions Furthermore, we assume that Alice adopts Gaussian signalin

Considering AWGN channels, we study the impact of finite” 2l ~ CN(0, P).
n on both the maximal achievable rate at Bob and detecti®n Channel Coding Rate for Finite Blocklength
performance at Willie in covert communication. To this end, The received signal at Bob for each signal symbol is given
noting that the decoding error probabilifyis not negligible py
when n is finite, we first propose to adopt the effective _ _ _
throughputn (i.e., n = nR(1 — §)) subject to > 1 — e, yo[t] = w[i] + ryd]. 1)
as the performance metric to evaluate covert communicatioy pointed out by [14], the decoding error probability at Bob
As can be seen from the definition 9f it explicitly captures s not negligible whem: is finite. As such, for a given decoding

the tradeoff among, R, andd for a given covert requirement. error probabilitys the channel coding rate of the channel from
We consider a maximum blocklength of channel uses, alice to Bob can be approximated by [14, 16]

in which the covert information needs to be transmitted.
Hence, the actual number of channel usess constrained
by n < N. Although a largem offers more observations to
Willie for detecting the transmission, we analytically peo

. o : — P/o2 i ignal-to-noi i
that the optimal value of, that maximizes; subject to the where_'ylb = P/oj is the signal-to-noise ratio (SNR) at Bob,
given covert requirement sV (i.e., the entire block with @nd@ ™ () is the inverse Q-function. Equivalently, for a given

all available channel uses). We also determine the maxim@nnel coding raté?, the decoding error probability at Bob

allowable transmit power per channel use (denotedrby IS 9iven by
that achieves the maximum. Our examination shows that Vil + ) (In(1 +7) + 3 In(n) — RIn2)
P* decreases ad’ increases, which is due to the fact that d = Q 2 :
increasing N forces Alice to allocate less power for each (7 +2)
channel use to meet the covert requirement. Nevertheless, w ®)
show that the maximum allowable total transmit power (i.eG. Binary Hypothesis Testing at Wllie
NP*) increases asV increases, which leads to the fact that |y order to detect Alice’s presence, Willie is to distinguis
the effective throughput of the communication from Alice tgne following two hypotheses
Bob increases ad increases. The results in this paper, for the
first time, provide important insights on the design of cover Ho : yuli] = ruld] 4)
communication with a finite blocklength. Hi: Ywli] = x[i] + 1y il

Notations: Scalar variables are denoted by italic symbols. . L
Vectors and matrices are denoted by lower-case and upper-é%here ?{’9 denoteds the nUIfI] hyplothes[s wEere hA“C.e IS hnot
boldface symbols, respectively. Given a vector:[i] denotes tr?nsmlttlng, Hl. .enotesdt ela.ternr?twe ypo(; esis ‘;V ere
thei-th element ofx. The expectation is denoted -} and Alice is transmitting, andys,[i] is the received signal at

CN(0,02) denotes the circularly-symmetric complex norma\{Villie. Following the assumptions detailed in Section IJ-A
distribhtion with zero mean and varianed we have the likelihood functions af,,[:] underH, and #;

as f(ywli]|Ho) = CN(0,02) and f(y.[i]|H1) = CN(0, P +

s Alice
transmitting?
Yes/No

Willie

'Yb(')/b + 2) Qil(é) + 1Og2(n) (2)

R~1 1 -
0g2(1+ %) n(y +1)2 In(2) 2n

Il. SYSTEM MODEL 02), respectively. In the cover communication, the ultimate
A Channel Model goal of Willie is to minimize the total error rate, which is
' given by

The system model of interest for covert communication is
illustrated in Fig. 1, where each of Alice, Bob, and Willie § = Pr+ Pu, (%)



where Pr £ Pr(D;|H,) is the false positive ratePy; £ D. Covert Requirement

Pr(Do[#,) is the miss detection rate), and D, are the  Covert communication requirgs> 1 — e for some arbitrar-
binary decisions that infer whether Alice is present or nofly small e. As per (12), we can ensu®(Po||P;) < 262 in

respectively. We assume Fhat Willie knows_ bdt’n ar_1d o2 order to guaranteé > 1 — e. We note thatD(P,||P;) < 2¢2

exactly, and thus the optimal test that minimizess the js a more strict constraint relative 9 > 1 — ¢ as per

given by complex expressions faPr and P, in this work we adopt
Py £ [T, f (ywli][Ha) 7; . 5 D(Po||P1) < 2¢* as the requirement for covert communica-
P, 2 1, f WwlilHo) < : ®)  tion. Also, the value of is especially very small in order to
= Do provide good covertness. Thus, in this work we only consider
After performing some algebraic manipulations, (6) can bec (0,0.5] because > 0.5 means that Willie is allowed to
reformulated as achieve more than 50% success detection rate.
1 7;1 [1l. CoVERT COMMUNICATION WITH A FINITE NUMBER
T = - Z |ywli][? - b (7) OF CHANNEL USES
=1 Do In this section, we first adopt the effective throughput to
where T is the average power of each received symbol gvaluate the performance of covert communication in AWGN
Willie and T is the threshold fofl", which is given by channels with finite blocklength. Then, we determine the
9y o 5 optimal » and P that maximize this effective throughput
= (P +;w)0w In <P +20w> ) (8) subject to the covert requirement.
U’w

. . A. Effective Throughput
As per (6) and (7), we note that the radiometer is indeed the

optimal detector when Willie knows the likelihood funct®n The square root law states that Alice can transmit no more
exactly (i.e., there are no nuisance parameters embedde%h%n O(vn) b'ts_ in'n channel uses conrtIy and reliably to
the likelihood functions). Following (7) and noting thAtis a 0b. Such scaling-law results are obtained when—>_ oo
chi-squared random variable withn degrees of freedom, theAS such, these square-law results cannot be applied in the

false positive rate and miss detection rate are given byl]9, 1covert commumcgﬂon W'th finitez. In this work, we focu.s
on the amount of information that can be transmitted rejiabl

o (n nF) from Alice to Bob for a given positive. Noting that the
— 1 —

Prp =Pr(T > T|Ho) ’7012“, (9) decoding error probability of a channel with finite bloclkigim
I'(n) is not negligible, we adopt the effective throughput from
y (n, Pi%) Alice to Bob as the main performance metric for the covert
Py =Pr(T <T[Hy) = T)w’ (10) communication with finite blocklength, while utilizing the

covert requirement as the constraint. The effective thinpug
whe_rel“(n) =(m-1)is the_gam_ma function andl(-,-) is  from Alice to Bob is defined as [19, 20]
the incomplete gamma function given by 0= nR( —0). (14)

v(n,z) = / et Ldt. (11) We note that; gives the average number of information bits
0 that can be transmitted from Alice to Bob reliably (excluglin
With the radiometer as the optimal detector, followinghformation bits suffering from decoding errors) by utilig
Pinsker’s inequality, we have a lower bound gnwhich is a codeword with finite length.

given by [5,17, 18] B. Optimal Number of Channel Uses and Transmit Power

£>1— /%D(Pol\]}”l), (12) The ultimate goal of our design in covert communication

is to achieve the maximum effective throughput while guar-

where D(Py||P;) is the Kullback-Leibler (KL) divergence @nteeing the covert requirement. To this end, we first censid
from P, to P1, which can be expressed as a fixed channel coding rat& and focus on the design of

) the number of channel uses and the transmit poiiesince

D(Po||Py) = n {m <P+0w) P ] _ (13) the des_ign ofn and P affects both_ the effective through_pl_Jt

2 P+ o2, from Alice to Bob and the detection performance at Willie.
As such, for a giverR the optimization problem in the covert

communication of interest can be written as

w

1We note that\ = 1 is due to the unknown or equalpriori probabilities,
i.e., Py and P; are unknown or equal, wher@, is thea priori probability that
Ho is true, Py is thea priori probability that?; is true, andPy + P = 1.
If both Py and P; are known, the total error rate is reformulated éas=
Py Pr + P1 Py and the optimal test that minimizes this reformulateds 5
the likelihood ratio test with\ = Py /P;. We also note that the assumption s.t. D(Py|Py) < 2€7, (16)
of equala priori probabilities is commonly adopted in the literature of abve <N 17
communication (e.g., [5, 10, 11]). n= . ( )

argmax, (15)
n,P



Theorem 1: The optimal values of. and P that maximize w0’ Py
the effective throughput subject toD(Py||P;) < 2¢2 and mmnizloc L
n < N are derived as (RllP) < 2€ - e

n* =N, (18) .2 -2 .2
P* 100 F P s P s s 3
P*:(Ui}‘i‘P*) |:1n<—2+1)—2€2N:|, (19) ;” -7 ’¢’
w
where P* is the solution to the fixed-point equation (19). = -2 -2 -2
Proof: The detailed proof is provided in Appendix. B L2 . .

Based on Theorem 1, we see that it is best for Alice ti 10 -2 -
transmit over all available channel uses for covert comami 9 -2 N = 500
tion, provided that the transmit power is optimized to maiimt -
the same level of covertness despite that Willie has mol . N =100
observations whem is larger. The same level of covertness ‘
is achieved by reducing the transmit power whebecomes 10‘;_3 102 10
larger, which can be seen from (19) th&t decreases with €
N. It. IS mterestlng to observe that botit and P*_ are not Fig. 2. Maximum allowable total transmit pow&F P* versuse for different
functions of R. This demonstrates that the obtainetl and ygjyes of v, wheres? = o2 = 1.

P* are globally optimal, regardless the value of the channel
coding rateR. As such, the optimal value d? that maximizes

the effective throughput subject to the covert requirencamt 10 @ a7 ©
. — N R [
be obtained through ol [T b <e] ] [N, APy < 26
R* = argmin NR[1 — §(P*, N, R)], (20) &, ”,,—— g 10 o
Ok = Phe - A, -20 R -
whered(P*, N, R) is obtained by substituting® = P* and v 21 T
n* = N into (3). We note thaf?* can be also obtained through 22
searching the optimal value éfthat maximizes for n* = N 2000 40060 8001000200 40060 800 1000
and P = P*. We defined* = §(P*, N, R*) and denote the ®) 5 2107 O
maximum effective throughput ag*, which is achieved by I [
substitutingP*, n*, R*, ands* into (14). 3 e L i
2 - g3 PP e
IV. NUMERICAL RESULTS =2 . 2, .7
: . o,
In this section, we provide numerical results on the efiecti 1 L 4
throughput subject tg > 1 — ¢ to verify our analysis on the N> 0'

covert communication wit(Py ||P;) < 2¢? as the constraint. 200 400 600 800 1000 200 400 600 800 1000

In Fig. 2 we plot the maximum allowable total transmit N N
power N P* over the entire block versus In this figure and Fig. 3. NP*, 7, P*, andn/N versusN, whereo? = 02 =1, § = 0.01,
the following figures, the curves f@r> 1 — e are achieved by ande =0.1.
numerically evaluating the false positive and detectiolesa
as per (9) and (10), respectively. In this figure, we observe
that the NP* with ¢ > 1 — ¢ as the constraint is higherin Fig. 3 (a) and Fig. 3 (b), respectively. Althoughi P*
than that withD(Py||P;) < 2¢? as the constraint. This isincreases as shown in Fig. 3 (a), it is interesting to observe
due to the fact that the equality in (12) cannot be achievéitht the maximum allowable transmit powt monotonically
in the considered system model, and hef@®,||P;) < 2¢> decreases a¥ increases in Fig. 3 (c). This can be explained
is a more strict constraint thafir > 1 — e. We also observe by (19) in our Theorem 1. Intuitively, this is due to the fduat
that N P* increases (hence the effective throughput increases) the number of observations at Willie increases, Alicetbas
as N increases, which can be explained by our Theorem rduce her transmit power in order to meet the same detection
Finally, we observe thalv P* decreases (hence the effectivgperformance at Willie. In Fig. 3 (d), we observe that the
throughput decreases) aslecreases, which demonstrates theffective throughput per channel use (i»¢/./N) monotonically
tradeoff between the covert requirement and the achievablereases asV increases. This is due to the fact that the
effective throughput (e.g., a more strict covert requiramedecrease i (i.e., the decoding error probability given in
leads to a smaller effective throughput). (3)) caused by increasingy is more than the increase in

In Fig. 3, we plot NP*, n, P*, andn/N versusN in caused by the reduction @ as shown in Fig. 3 (c). These
different sub-figures, respectively. As expected, we fitst oaforementioned observations based on Fig. 3 demonstiate th
serve thatV P* andn monotonically increase a¥ increases increasing/N not only helps Alice to allocate less transmit
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Fig. 4. Effective throughput) versus the decoding error probabililyfor ~ Fig. 5. Maximum effective throughput per channel uge/ N versusN for
different values ofN, wheres? = o2 =1 ande = 0.1. different values of ando?, wheres?, = 1.

power to each channel use in order to maintain the same let@eleach channel use, but also decreases the decoding error

of covertness, but also reduces the decoding error praotyabiprobability of the communication from Alice to Bob.

in the communication from Alice to Bob, which turns out to

improve the effective throughput of the covert communaati ) _
In Fig. 4, we plot the effective throughput subject to This work was supported by the Australian Research Coun-

¢ > 1 — ¢ versus the decoding error probabilify We first Cil's Discovery Projects (DP150103905).

observe that the optimal value éfthat maximizes; indeed APPENDIX

exists, based on which we can determine the optimalVe . .

also observe that the optimal value 6fdecreases asv We present our proof of Theorem 1 in the following 6 steps.

increases. As shown in Fig. 3 (c), the maximum aIIowab{e Step 1: We note thatn and D(Po|[P1) are both mono-

transmit powerP* decreases ad increases. As per (2), the onically increasing fungno_ns o and n._As suc_h, We can

observation. that both* and P* decreases ad’ increases conclude that the equality in the constraint (16) is alwaygt m

i imi — 9.2
indicates that the optimal channel coding r&edecreases as in order to maximize;. Thus, we haveD(Po|[P1) = 2¢” and

N increases. We also plot the maximum effective throughpflﬁ}llowmg (13) we have

ACKNOWLEDGMENTS

per channel use (i.ep*/N) versusN in Fig. 5. In this figure, B 2¢2 21
we first observe that ad" increases)*/N increases, which " f(rw)’ (1)
is consistent with our observation found in Fig. 3 (d). W@vhere

also observe that as increases slightly (e.g., frord.02 to

0.08) n* /N significantly increases. This demonstrates that the fvw) 2 D(L”R) =In(yp+1)— Tw ’ (22)
achievable effective throughput is very sensitive to the th n Yw + 1

covert requirement. and~, = P/o2 is the SNR at Willie.

Step 2:We notef(0) = 0 and we derive the first derivative
of f(~.) with respect toy,, as

This work investigated the covert communication with finite OF (1)
blocklength (i.e., a finite number of channel uses< N) Tw) _ T 5 >0, (23)
over AWGN channels. We proved that the effective throughput al® (7w +1)
of covert communication is maximized when all availablevhich leads to the fact that(v,,) is @ monotonically increas-
channel uses are utilized, i.e2; = N. To guarantee the ing function ofv,,. With the constrain®D(Py||P;) = 2¢2, n
same level of covertness, the maximum allowable transnsta monotonically decreasing function ¢fv,,) as per (21),
power per channel use decreasesNasncreases, while the which results in that is a monotonically decreasing function
maximum allowable total transmit power over all channekusef ~,, (thus of P).
increases a®V increases. In contrast, we found that both the Step 3:Instead of directly proving* = N for maximizing
effective throughput and the effective throughput per dehn the effective throughput, we next prove that = N maxi-
use increase a¥Vv increases. This is due to the fact thamizesn~y, (i.e., maximizes:P) under the constraint (21) in
increasingN not only reduces the transmit power allocatethe remaining steps. This is due to the fact thdt is the

V. CONCLUSION




total transmit power for the: channel uses and the effectivg(0.4835)? as~"=2 > 1.16, which leads touy,, > 2.32 when
throughputincreases as the total transmit power incrdad¢s n = 2. As such, we havery,, < 2.3145 whenn = 1 and

Step 4: We next prove that eithes = 1 or n = N max- n~y, > 2.32 whenn = 2, which results innv,, forn =2 is
imizes n+y,,. To this end, in the following we first show thatlarger thann~,, for n = 1. We recall that.v,, monotonically
Ny, initially decreases and then increases withFollowing increases witm whenn > nf. Therefore, for0.4835 < € <

(21) and (22), we have 0.5 the optimal value of. that maximizesy,, is V.
2¢2 Step 6: So far, we have proved* = N. Then, substituting
Y = T’ (24) n* = N into (21), we obtain the fixed-point equation in (19).
w
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