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Channels with Cooperating Hybrid Energy Nodes
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Abstract—In this paper, we consider the energy-bandwidth
allocation for a network of multiple users, where the transmitters
each powered by both an energy harvester and conventional grid,
access the network orthogonally on the assigned frequency band.
We assume that the energy harvesting state and channel gain of
each transmitter can be predicted for K time slots a priori.
The different transmitters can cooperate by donating energy to
each other. The tradeoff among the weighted sum throughput,
the use of grid energy, and the amount of energy cooperation
is studied through an optimization objective which is a linear
combination of these quantities. This leads to an optimization
problem with O(N2K) constraints, where N is the total number
of transmitter-receiver pairs, and the optimization is over seven
sets of variables that denote energy and bandwidth allocation,
grid energy utilization, and energy cooperation. To solve the
problem efficiently, an iterative algorithm is proposed using
the Proximal Jacobian ADMM. The optimization sub-problems
corresponding to Proximal Jacobian ADMM steps are solved in
closed form. We show that this algorithm converges to the optimal
solution with an overall complexity of O(N2K2). Numerical
results show that the proposed algorithms can make efficient
use of the harvested energy, grid energy, energy cooperation,
and the available bandwidth.

Index Terms—Energy Harvesting, Conventional Grid, Multi-
user network, Proximal Jacobian ADMM.

I. INTRODUCTION

The rapid development of energy harvesting technologies
leads to a new paradigm of wireless communications powered
by renewable energy sources [2, 3]. By their nature, some
renewable energy technologies (wind, solar, and run-of-river
hydro) provide intermittent generation. Thus, hybrid energy
sources with a mix of energy from the grid and renewable
energy sources become important. Further, the grid allows
different nodes to share energy with each other. Although
energy harvesting can potentially enable sustainable and en-
vironmentally friendly deployment of wireless networks, it
requires efficient utilization of energy and bandwidth resources
[4, 5]. In this paper, we consider optimizing the weighted sum
throughput of a multi-user network while minimizing both
the energy from the grid and energy cooperation between the
nodes.

In the absence of conventional energy, a number of works
addressed energy scheduling with non-causal channel state
information. A single-user channel is considered in [6–10].
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For multiple users, novel scheduling algorithms have been
proposed for multiple-access channels [11, 12], relay channels
[13–15], broadcast channels [16, 17], and interference channels
[5, 18–21]. Recently, the authors of [5, 19] considered joint
allocation of energy and bandwidth for multi-user networks
with renewable energy. Cooperation between nodes has been
studied for a relay channel in [22]. Hybrid energy supply
at the transmitter has been studied in [23–25], where there
is a single transmission node. Cooperation for hybrid energy
supply for cellular networks has been recently considered in
[26–29]. However, these papers do not consider the aspect of
limited capacity of battery capacity, nor the maximum trans-
mission power constraint, which will be taken into account in
this paper. Limited battery capacity helps mitigate the energy
supply variations in time and space. For example, at any given
slot, a node with sufficient energy can either share it with
other nodes with insufficient energy, or store it for future
use. The maximum power constraint on the transmitting node
encourages cooperation to avoid energy wastage, reduces the
need of grid energy, while making a part of the incoming
energy prone useless and thus has to be discharged. In this
paper, we consider the cost for the use of additional grid
energy, and possible energy cooperation between nodes which
brings new challenges to optimize the system throughput for
a multi-user system.

This paper considers seven degrees of freedom for the de-
sign which include bandwidth allocation, transmission energy
allocation, local harvested energy allocation, donated energy
allocation, donated energy usage allocation, grid energy alloca-
tion, and discharged energy allocation. The problem is jointly
convex, but has O(N2K) variables and O(N2K) constraints
for N users scheduling over K time slots which makes it
hard for a generic convex solver. This is mainly due to the
donation of energy between two users in a time-slot need to be
decided, which contributes to these many variables/constraints.
In this paper, we give the optimal solution with complexity
O(N2K2). In the prior work [12], since the incoming energy
was stored in battery, used, or discharged which helped finding
the energy discharge in each time slot by a greedy algorithm.
The existence of energy cooperation between nodes makes
such greedy algorithm for energy discharge no longer optimal.
Without energy cooperation and grid energy, the problem
reduces to that in [19]. This paper gives a different optimal
algorithm in this case, with the same computational complexity
of O(NK2), and also provides convergence rate.

The Alternating Direction Method of Multipliers (ADMM)
is a widely used algorithm for solving separable convex
optimization problems with linear constraints for two sets of
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variables. Global convergence of ADMM was established in
the early 1990s by Eckstein and Bertsekas [30] while studying
the algorithm as a particular instance of a Douglas-Rachford
splitting method. This relationship allowed them to use the
monotone operator theory to obtain their global convergence
guarantees. The interest in ADMM has exploded in recent
years because of applications in signal and image processing,
compressed sensing [31], matrix completion [32], distributed
optimization and statistical and machine learning [33], and
quadratic and linear programming [34]. Extensions to more
than two blocks have been recently considered. For example,
an ADMM-type algorithm is introduced in [35], where during
each iteration a randomly selected subset of blocks is updated
in parallel. The method incorporates a backward step on the
dual update to ensure convergence. Hong and Luo [36] present
a convergence proof for the n-block ADMM when the func-
tions are convex, but under many assumptions that are difficult
to verify in practice. The work in [37] shows that ADMM is
convergent in the n-block case when the separable functions
are strongly convex. The separable functions in the proposed
problem in this paper are not strongly convex limiting the use
of this algorithm. Recently, different extensions of ADMM
like Jacobian ADMM [38], Flexible ADDMM [39], Proximal
Jacobian ADMM [40], etc. have been considered which give
different conditions on the guarantees for convergence.

In this paper, we show that recent results of Proximal Ja-
cobian Alternating Direction Method of Multipliers (Proximal
Jacobian ADMM) for any number of variables can be used
to give a convergence speed in terms of the residual error as
o(1/k) for k iterations [40]. As this algorithm is based on
ADMM, it solves convex optimization problems by breaking
them into smaller, easier to handle pieces which can be solved
in parallel, and is thus useful in distributed scenarios [33]. This
algorithm uses Jacobi-type scheme that helps convergence of
the algorithm and adds proximal terms to get a convergence
rate of o(1/k). Further, the conditions of the convergence
of the algorithm are conservative, and do not require strong
convexity of the separable functions.

The challenge of the non-separable objective function is
handled through pairing a set of variables into a single
variable.

The proposed algorithm reveals a tradeoff between the
system throughput, amount of energy consumption from the
grid, and the amount of energy cooperation. The system
designer can use this tradeoff region to choose an optimal
operating point. The simulation results depict these tradeoffs.
Further, we investigate the different interactions of incoming
and outgoing energy, and their impact with changing cost of
energy cooperation. An interesting observation is that with low
cost of energy cooperation, a node with low energy arrivals
may receive donated energy from other nodes not necessarily
to consume it but to transfer it back when others need thus
making efficient use of battery sizes at different nodes.

The main contributions of the paper are as follows.

1) This paper jointly considers use of grid and renewable
energy with maximum battery capacity, and energy coop-
eration between all nodes in a multi-user network.

2) Multi-variable Proximal Jacobian ADMM is used and
shown to be optimal for this problem, with an efficient
splitting of variables.

3) Unlike the prior works where the bandwidth allocation had
to be assumed at least ε (for some ε > 0), and an outer
loop was needed to decrease ε due to non-differentiability
of the objective function at zero bandwidth allocation [5,
21], this paper uses power and bandwidth allocation as a
single variable in Proximal Jacobian ADMM to show that
such conditions are no longer needed.

4) The seven sets of sub-problems are solved in closed form,
except one of the sub-problems in which single variable
equation needs to be solved.

5) The proposed algorithm has been used in a window-based
schemes with limited prediction and the performance gap
as compared to the offline strategy has been shown to
decrease with increasing window size.

6) The proposed algorithm reveals a tradeoff between the sys-
tem throughput, amount of energy consumption from the
grid, and the amount of energy cooperation, and performs
better than the considered causal and greedy baselines.

The remainder of the paper is organized as follows. In
Sections II, we describe the system model and formulate the
problem. In Section III, we solve our problem efficiently using
Proximal Jacobian ADMM, and prove the convergence to the
optimal solution. In Section IV, we provide numerical results
for the proposed solution. Finally, Section V concludes the
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a network consisting of N pairs of transmitters and
receivers with a total bandwidth of B Hz. Assume that no two
transmitters can transmit in the same time slot and the same
frequency band thus the channel is accessed orthogonally by
sharing the total bandwidth without any overlap. We consider a
flat-fading channel where the channel gain is constant within
the entire frequency band of B Hz and over the coherence
time of Tc seconds. Assume a scheduling period of K time
slots and the duration of a time slot of Tc seconds. We denote
Xnki as the symbol sent to the receiver of link n at instant i
in slot k ( a time-slot is composed of multiple time-instants
). The corresponding received signal at receiver n ∈ N ,
{1, · · · , N} is given by

Ynki = hnkXnki + Znki, (1)

where hnk represents the complex channel gain for link n
in slot k, and Znki ∼ CN(0, 1/Tc) is the i.i.d. complex
Gaussian noise (i.e., the power spectrum density of the noise
is 1/Tc). We denote Hk

n , |hnk|2 and denote pkn as the total
transmission energy consumption for link n in slot k. Without
loss of generality, we assume Tc = B = 1. Assuming that
link n uses a normalized bandwidth of akn in time-slot k,
we use an upper bound on the achievable rate for link n,∑K
k=1 a

k
n log(1 +

pknH
k
n

akn
) as the system performance metric

[41], where 0 · log(1 + x
0 ) , 0. We note that in general

frequency reuse may give benefits, while optimal capacity for
general interference channels is an open problem [42]. Thus,
we use bandwidth splitting to orthogonalize transmissions,
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while still being able to have multiple users transmit in the
same time slot. Joint energy-bandwidth allocation has been
shown to be advantageous with energy harvesting with limited
capacity battery since multiple users can transmit simultane-
ously and avoid energy wastage [5, 21].

Assume that each transmitter is equipped with a hybrid
energy source, with access to both the energy from the grid,
and the energy from the energy harvesting device. The energy
from the grid to transmitter n is unbounded, whose cost
influences the amount of energy that can be used from the
grid. For transmitter n in time-slot k, let gkn be the energy
used from the grid, and lkn is the amount of local harvested
energy that is used. The energy harvesting device at transmitter
n harvests energy from the surrounding environment, and is
equipped with a buffer battery of capacity Bmax

n . We denote
Ekn as the total energy harvested up to the end of slot k
by transmitter n. Since in practice energy harvesting can be
accurately predicted for a short period [43, 44], we assume that
the amount of the harvested energy, Ekn−Ek−1n in each slot k
is known. Moreover, the short-term prediction of the channel
gain in slow fading channels is also possible [45]. Therefore,
we assume that {Hk

n} and {Ekn} are known non-causally
before scheduling. We will further consider a window-based
scheme with limited look-ahead information of the channels
and energy harvesting in Section IV.

We further assume that different transmitters can donate
energy to each other. The energy donation can for instance
happen through a power grid or as a wireless power transfer
[23–25]. However, there is a cost to this energy cooperation
which will prioritize using the locally harvested energy at each
node as opposed to cooperation. Let rkn,m be the amount of
energy that is donated from node n to node m in time slot
k, where rkn,n = 0. A part of the incoming donated energy
skn ≤

∑N
m=1 r

k
m,n is used while the rest is stored in the

battery. Thus, the amount of power used for communication
for transmitter n in time slot k is pkn = lkn + skn + gkn.

We assume that each transmitter n has a maximum per-slot
transmission energy consumption, Pn, such that pkn ≤ Pn for
all k ∈ K , {1, 2, · · · ,K}. Thus, all the energy may not
be used and some may get wasted. Let Dk

n be the amount of
energy that is discharged (or wasted) by node n in time slot k.
For transmitter n, assuming that the battery is empty initially,
then the battery level at the end of slot k can be written as

Bkn = Bk−1n +
(
Ekn − Ek−1n

)
− lkn −

∑
m∈N

rkn,m

+
∑
m∈N

rkm,n − skn −Dk
n, (2)

where Bkn must satisfy 0 ≤ Bkn ≤ Bmax
n for all k ∈ K. The

constraints on the battery level can be re-written as

0 ≤ Ekn −
k∑
t=1

ltn −
k∑
t=1

∑
m∈N

rtn,m +

k∑
t=1

∑
m∈N

rtm,n

−
k∑
t=1

stn −
k∑
t=1

Dt
n ≤ Bmax

n . (3)

Moreover, we denote P , {pn | pn , [p1n, p
2
n, . . . , p

K
n ], n ∈

N} as the transmission energy allocation, A , {an | an ,
[a1n, a

2
n, . . . , a

K
n ], n ∈ N} as the bandwidth allocation,

L , {Ln | ln , [l1n, l
2
n, . . . , l

K
n ], n ∈ N} as the lo-

cal harvested energy allocation, R , {rn,m | rn,m ,
[r1n,m, r

2
n,m, . . . , r

K
n,m], n 6= m,n,m ∈ N} as the donated

energy allocation, S , {sn | sn , [s1n, s
2
n, . . . , s

K
n ], n ∈ N}

as the donated energy usage allocation, G , {gn | gn ,
[g1n, g

2
n, . . . , g

K
n ], n ∈ N} as the grid energy allocation, and

D , {Dn | Dn , [D1
n, D

2
n, . . . , D

K
n ], n ∈ N} as the

discharged energy allocation. A system model is described in
Figure 1, where we consider four transmitters, each equipped
with a battery. For transmission, a part of grid energy, energy
from battery, renewable energy, and donated energy is used.
All the arriving energy that could not be used in a time slot
is saved in the battery. The centralized controller makes all
decisions of the different allocations for each node in each
time slot.

Controller

 Harvested
Energy

Donated in
Energy

B
2
max

 Harvested
Energy

Donated in
Energy

 Harvested
Energy

Donated in
Energy

B
1
max

Battery 1

Battery 2

B
3
max

Battery 3

Harvested
Energy

Battery 4

Transmitter 2
Energy allocation

0≤p
2 

k≤ Pn

Receiver 2
Achievable rate

a
2
k log(1+p

2
k H

2
k/a

2
k)

Channel fading H
2

k

BW allocation a
2
k

E
2 

k

r
2

k g
2

k

Transmit 
Power 1

Grid
Energy

s
2
k

Grid
Energy

B
4

max

Transmit
Power 3

Transmit
power 2

Transmit
power 4

Fig. 1. System model for four transmitters depicting different energy
arrivals at a node.

We wish to maximize the weighted sum rate of all links
while minimizing the use of grid energy and energy coopera-
tion. Thus, the objective is to maximize

CW(P,A,L,R,S,G,D)

=

N∑
n=1

Wn

K∑
k=1

akn log(1 +
pknH

k
n

akn
)− λ

(
K∑
k=1

N∑
n=1

gkn

)

−µ

 K∑
k=1

N∑
n=1

N∑
m=1,m 6=n

rkn,m

 , (4)

where λ ≥ 0 and µ ≥ 0 are parameters that impact the cost
of using energy from the grid, and cooperation, respectively,
and W , {Wn, n ∈ N} is the weight set, which determines
the weight (or priority) of different links. Increasing λ would
mean that the energy from the grid will be used less since
it gets more expensive. Similarly, increasing µ would make
energy cooperation more expensive. The values of λ and µ can
be chosen by the system designer to choose a tradeoff point
between the system throughput, amount of energy cooperation,
and the use of grid energy.
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We thus have the following problem to optimize the system
resources:

max
P,A,L,R,S,G,D

CW(P,A,L,R,S,G,D), (5)

subject to

0 ≤ Ekn −
∑k
t=1 l

t
n −

∑k
t=1

∑
m∈N r

t
n,m

+
∑k
t=1

∑
m∈N r

t
m,n −

∑k
t=1 s

t
n −

∑k
t=1D

t
n ≤ Bmax

n ,
pkn − lkn − skn − gkn = 0, skn ≤

∑
m∈N ,m 6=n r

k
m,n,∑N

i=1 a
k
i = 1, pkn ≤ Pn,

akm, p
k
n, l

k
n, r

k
n,m for n 6= m, skn, g

k
n, D

k
n ≥ 0,

(6)
for all k ∈ K,m, n ∈ N .

Remark 1. We note that the energy donated from one node to
another may lead to an energy transfer loss (e.g., propagation
loss), which can be easily incorporated into the model by
adding an efficiency parameter to the received energy. This
will not change any of the results in this paper, and is thus
ignored for the rest of this paper.

We note that the problem is convex with respect to each set
of variables. However, it is not separable in all the variables.
Further, the objective is not differentiable at akn = 0 which
limits the applicability of a generic convex solver. In addition,
the complexity of a generic convex solver is exponential in the
number of constraints [46], which in this case is O(N2K).
Thus, this paper proposes an algorithm that exploits the
problem structure to give a computationally efficient solution.

III. OPTIMAL ALGORITHM
There are seven sets of variables in the problem - bandwidth

allocation A, transmission energy allocation P , local harvested
energy allocation L, donated energy allocation R, donated
energy usage allocation S, grid energy allocation G, and
discharged energy allocation D. We note that the proposed
problem in (5)-(6) is jointly convex in all variables. We
use the Proximal Jacobian Alternating Direction Method of
Multipliers (Proximal Jacobian ADMM) technique to solve
this problem [40]. The Proximal Jacobian ADMM algorithm
solves convex optimization problems by breaking them into
smaller and easier pieces which can be run in parallel and
is thus useful for large-scale distributed convex optimization.
Since the standard Proximal Jacobian ADMM does not allow
inequalities, we add additional variables to only have equality
constraints.

Γ(P,A,L,R,S,G,D,U) = −CW(P,A,L,R,S,G,D)+
N∑
n=1

K∑
k=1

(
I(uk1,n) + I(uk2,n) + I(uk3,n) + I(uk4,n) + I(pkn) + I(

akn) + I(lkn) + I(skn) + I(gkn) + I(Dk
n) +

N∑
m=1,m6=n

I(rkn,m)

 ,

where U , {(u1,n,u2,n,u3,n,u4,n)|ui,n ,
[u1i,n, u

2
i,n, . . . , u

K
i,n], n ∈ N , i ∈ {1, 2, 3, 4}} are the

auxiliary variables that help remove inequalities in the

constraints, and I(·) is the indicator function which represents
I(x) = 0 for x ≥ 0 and is infinite otherwise. Thus, the
problem in (5)-(6) becomes

min
P,A,L,R,S,G,D,U

Γ(P,A,L,R,S,G,D,U), (7)

subject to

∑k
t=1 l

t
n +

∑k
t=1

∑
m∈N ,m6=n r

t
n,m +

∑k
t=1D

t
n + uk1,n

−
∑k
t=1

∑
m∈N ,m 6=n r

t
m,n +

∑k
t=1 s

t
n = Ekn,∑k

t=1 l
t
n +

∑k
t=1

∑
m∈N ,m6=n r

t
n,m +

∑k
t=1D

t
n − uk2,n

−
∑k
t=1

∑
m∈N ,m 6=n r

t
m,n +

∑k
t=1 s

t
n = Ekn −Bmax

n ,

pkn − lkn − skn − gkn = 0, pkn + uk3,n = Pn,

skn + u4,n =
∑
m∈N ,m 6=n r

k
m,n,

∑N
i=1 a

k
i = 1,

(8)
for all k ∈ K,m, n ∈ N .

Let the augmented Lagrangian ψ be defined as in Equa-
tion (9). The Proximal Jacobian ADMM updates variables
(pkn, a

k
n), lkn, rkm,n, skn, gkn, Dk

n, and ukn for all m,n, and k in
sequence, whose steps are summarized in Algorithm 1. Note
that the objective function is not separable in pkn and akn),
which is why (pkn, a

k
n) is taken as a single variable.

Remark 2. Algorithm 1 is a distributed parallel algorithm. In
particular, the variables associated with different (n, k) can
be updated independently and in parallel.

We note that there are seven sets of arg-mins in Algorithm 1.
All these problems are convex problems (since the indicator
functions are equivalent to linear constraints). The detailed
solutions to these problems are given in Appendix, where the
problems are solved in closed form, except the first where the
solution is in terms of a solution to a single variable equation.
The next theorem states the optimality of Algorithm 1.

Theorem 1. Algorithm 1 optimally solves the problem in
(5)-(6), and converges with an error rate of o(1/b) after b
iterations when the ADMM parameters are chosen such that

τ > 4Kρ

(
9NK +N2K

2− γ
− 1

)
, (10)

for 0 < γ < 2, and ρ > 0.

Proof. The objective function Γ(P,A,L,R,S,G,D,U) is
separable in all the variables (pkn, a

k
n), lkn, rkm,n, skn, gkn, Dk

n,
and ukn for all m,n, and k, and the constraints are linear
equalities. The problem is convex optimization and all the sep-
arable functions are closed proper convex, which satisfies the
assumptions for the optimality of Proximal Jacobian ADMM
in [40]. Further, the choice of parameters in (10) satisfy the
parameter conditions in [40] for the 9NK +N2K number of
variables ( (pkn, a

k
n), lkn, rkm,n, skn g

k
n, Dk

n, and ukn for all m,n,
and k ), and that each variable is in at-most 4K constraints
with absolute multiplicative coefficient of 1 in the problem
(5)-(6).

The next result gives the computational complexity of the
proposed algorithm.

Theorem 2. Each iteration of Algorithm 1 has O(N2K2)
computational complexity.
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ψ(P,A,L,R,S,G,D,U ,Y) = Γ(P,A,L,R,S,G,D,U)

+
∑
k,n

yk1,n

 k∑
t=1

ltn +

k∑
t=1

∑
m∈N ,m 6=n

rtn,m −
k∑

t=1

∑
m∈N

rtm,n +

k∑
t=1

stn +

k∑
t=1

Dt
n + uk

1,n − Ek
n


+
∑
k,n

yk2,n

 k∑
t=1

ltn +

k∑
t=1

∑
m∈N ,m 6=n

rtn,m −
k∑

t=1

∑
m∈N

rtm,n +

k∑
t=1

stn +

k∑
t=1

Dt
n − uk

2,n − Ek
n +Bmax

n


+
∑
k,n

yk3,n

(
pkn − lkn − skn − gkn

)
+
∑
k,n

yk4,n

(
pkn + uk

3,n − Pn

)
+
∑
k,n

yk5,n

skn + uk
4,n −

∑
m∈N ,m 6=n

rkm,n


+
ρ

2

∑
k,n

 k∑
t=1

ltn +

k∑
t=1

∑
m∈N ,m 6=n

rtn,m −
k∑

t=1

∑
m∈N

rtm,n +

k∑
t=1

stn +

k∑
t=1

Dt
n + uk

1,n − Ek
n

2

+
ρ

2

∑
k,n

 k∑
t=1

ltn +

k∑
t=1

∑
m∈N ,m 6=n

rtn,m −
k∑

t=1

∑
m∈N

rtm,n +

k∑
t=1

stn +

k∑
t=1

Dt
n − uk

2,n − Ek
n +Bmax

n

2

+
ρ

2

(∑
n

akn − 1

)2

+
ρ

2

∑
k,n

(
pkn − lkn − skn − gkn

)2
+
ρ

2

∑
k,n

(
pkn + uk

3,n − Pn

)2

+
ρ

2

∑
k,n

skn + uk
4,n −

∑
m∈N ,m 6=n

rkm,n

2

+
∑
k

yk6

(∑
n

akn − 1

)
. (9)

Algorithm 1 - Proximal Jacobian ADMM for Solving Proposed Problem in (5)-(6)

1: Initialization: i = 0, (P,A,L,R,S,G,D,U ,Y)0 = (0, 0, 0, 0, 0, 0, 0, 0, 0)
Specify the ADMM parameters ρ, τ , and γ, and the convergence threshold η
2: ADMM Iteration: REPEAT

(pkn, a
k
n)i+1 ← argminpkn,ak

n
ψ((P,A \ pkn, akn)i, pkn, a

k
n,Li,Ri,Si,Gi,Di,U i,Yi) + 1

2
τ(pkn − (pkn)i)2 + 1

2
τ(akn − (akn)i)2, ∀ k, and n

(lkn)
i+1 ← argminlkn

ψ(Pi,Ai, (L \ lkn)i, lkn,Ri,Si,Gi,Di,Ui,Yi) + 1
2
τ(lkn − (lkn)

i)2, ∀ k, and n
(rkn,m)i+1 ← argminrkn,m

ψ(Pi,Ai,Li, (R \ rkn,m)i, rkn,m,Si,Gi,Di,Ui,Yi) + 1
2
τ(rkm,n − (rkm,n)

i)2, ∀ k, n, and m, n 6= m

(skn)
i+1 ← argminskm

ψ(Pi,Ai,Li,Ri, (S \ skn)i, skn,Gi,Di,Ui,Yi) + 1
2
τ(skn − (skn)

i)2, ∀ k, and n
(gkn)

i+1 ← argmingkn
ψ(Pi,Ai,Li,Ri,Si, (G \ gkn)i, gkn,Di,U i,Yi) + 1

2
τ(gkn − (gkn)

i)2, ∀ k, and n
(dkn)

i+1 ← argmindkn
ψ(Pi,Ai,Li,Ri,Si,Gi, (D \ dkn)i, dkn,U i,Yi) + 1

2
τ(Dk

n − (Dk
n)

i)2, ∀k ,and n

(uk
j,n)i+1 ← argminuk

i,n
ψ(Pi,Ai,Li,Ri,Si,Gi,Di, (U \ uk

j,n)i, uk
j,n,Yi) + 1

2
τ(uk

n − (uk
n)i)2, ∀ k, n, and j = 1, 2, 3, 4

(yk1,n)i+1 ← (yk1,n)i + γρ(
∑k

t=1 l
t
n +

∑k
t=1

∑
m∈N ,m 6=n r

t
n,m −

∑k
t=1

∑
m∈N r

t
m,n +

∑k
t=1 s

t
n +

∑k
t=1D

t
n + uk

1,n − Ek
n)i+1 ∀ k, and n

(yk2,n)i+1 ← (yk2,n)i + γρ(
∑k

t=1 l
t
n +

∑k
t=1

∑
m∈N ,m 6=n r

t
n,m −

∑k
t=1

∑
m∈N r

t
m,n

+
∑k

t=1 s
t
n +

∑k
t=1D

t
n − uk

2,n − Ek
n +Bmax

n )i+1 ∀ k, and n
(yk3,n)i+1 ← (yk3,n)i + γρ(pkn − lkn − skn − gkn)i+1 ∀ k, and n
(yk4,n)i+1 ← (yk4,n)i + γρ(pkn + uk

3,n − Pn)i+1 ∀ k, and n
(yk5,n)i+1 ← (yk5,n)i + γρ(skn + uk

4,n −
∑

m∈N ,m 6=n r
k
m,n)i+1 ∀ k, and n

(yk6 )i+1 ← (yk6 )i + γρ(
∑

n a
k
n − 1)i+1 ∀ k

i← i+ 1
UNTIL |ψ(Pi,Ai,Li,Ri,Si,Gi,Di,Ui,Yi)− ψ(Pi−1,Ai−1,Li−1,Ri−1,Si−1,Gi−1,Di−1,Ui−1,Yi−1)| < η

Proof. We note that the detailed steps the sub-problems are
given in the Appendix. Problem 1 for each n and k involves
solving a single-variable equation and is thus O(NK) com-
putational complexity. Problem 2 for each n and k needs a
sum over v from k to K and thus has O(NK2) complexity.
Problem 3 is for energy cooperation which for every m, n,
and k requires O(K) time, and has O(N2K2) complexity.
We assume that for each n and k,

∑
m6=n r

k
m,n can be

computed and stored which is O(N2K) complexity. Using
this, Problem 4 has O(NK2) complexity. Similarly, Problem 5
has O(NK) complexity. Problem 6 has O(NK2) complexity.
Having stored values of

∑
m 6=n r

k
m,n and

∑
m 6=n r

k
n,m for each

n and k, Problem 7 has a complexity of O(NK2). Thus, the

overall complexity is dominated by the complexity of Problem
3, and is O(N2K2).

Remark 3. Without any energy cooperation, rkm,n = 0 and
the overall complexity of the proposed algorithm is O(NK2).

We further note that this problem was considered without
the energy cooperation and grid energy in [21] and the
proposed algorithm in [21] has the same computational com-
plexity of O(NK2). However, the algorithm in [21] performs
the first step of calculating the optimal discharge allocation.
However, in the presence of grid energy and cooperation,
such allocation cannot be found since the energy can be
transferred to other nodes rather than discharging. Having
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removed the discharge variables, there were only two variables
for power and bandwidth left, which could be solved using an
alternating minimization based approach in [21]. However, we
have many more sets of variables. In order to use Proximal
Jacobian ADMM, we had to use the power and bandwidth
as the variables in a single block. Rather than performing
an alternating minimization over these variables, the joint
optimization is solved in this paper. Thus, this paper gives an
alternate way of solving the algorithm in [21] with the same
complexity. In addition, the proposed algorithm in this paper
works for the energy cooperation and grid energy parameters
while the approach of [21] do not extend easily.

We finally note that the cooperation may involve a loss due
to efficiency of transfer which can be easily incorporated in
the given constraints without changing the problem structure
or the approach. In order to keep the expressions simpler, we
have not included the efficiencies for energy transfer as well
as battery charging or discharging.

IV. SIMULATION AND RESULTS

In this section, we will evaluate the proposed algorithm in
different scenarios.

A. Impact of Grid Energy Cost

We consider N = 5 users with a scheduling period of
K = 5 time slots. The weights of all the users are taken
to be identical, Wn = 1. We assume that the maximum power
constraints is Pn = 20W , and maximum battery capacity
is Bmax

n = 20W . The channel gains {hkn} are distributed
as CN(0, 1). For the energy arrival Ekn − Ek−1n , a truncated
Gaussian distribution is used which is given by the maximum
of zero and a Gaussian random variable with mean ∆n and
variance 4. Let ∆n = ∆, independent of n. The Proximal
Jacobian ADMM parameters are ρ = 10−3, γ = 1, τ = 0.5,
and the convergence threshold for the iterative loop is chosen
to be η = 10−6. Let the cooperation cost to be µ = 0.2. The
grid energy cost λ is chosen as a variable.

The results are averaged over 12 runs with different real-
izations of channel gains and energy arrivals. Figure 2 shows
the decrease of system throughput (in nats) with increasing
grid energy cost, λ, for four different values of ∆ = 5, 10, 15,
and 20J. We note that when λ = 0, the system throughput is
independent of ∆ since the energy from grid can be taken up
to the maximum power constraint in the chosen bandwidth.
Thus, the problem in this case becomes a bandwidth allo-
cation problem with each node using the maximum energy
constraint in each time slot. Due to similar channel gains for
all links, assuming equal bandwidth for all links, and ignoring
the random effect of channel gains give the system rate as
5 × log(1 + 20 × 5) ≈ 23 nats. Thus, the result at λ = 0 is
almost equal to this. As the use of grid energy becomes more
expensive, the system throughput reduces. For ∆ = 20J, more
energy arrives at each node and thus there is little decrease in
throughput with increasing λ as compared to the case where
grid energy is free. However, for smaller value of ∆, the
system throughput decreases significantly with λ. An optimal
operating point can be chosen based on the system design
requirements.

B. Impact of Energy Cooperation Cost

We consider N = 5 users with ∆n = 5nJ, n = 1, · · · , 5.
The maximum battery capacity of each node is chosen to be
the same Bmax

n = Bmax. The grid energy cost λ = 0.1, and
µ is a variable. All other parameters are same as those in
Sect. IV-A. Figure 3 plots the system throughput with respect
to µ for different values of Bmax. We note that the system
throughput decreases with µ since the donation across nodes
is more expensive. Figure 4 demonstrates that the amount of
energy that is discharged and thus not used also increases
with the increase in µ. This is because different nodes have
different average incoming energy and by penalizing donation,
the energy does not get evenly distributed.

C. Energy Arrival and Utilization

We will now compare the amounts of energy that enters a
node, and that leaves a node including the power consumption
for communication transmission. The grid energy cost λ =
0.01, Bmax

n = 10W , and all other parameters are the same
as those in Section IV-B. For a given realization of channel
gains and energy arrivals, we find the total amount of incoming
energy at each node and separate it into the amount of energy
harvested L, the amount of energy donated by other nodes R
(incoming part), and the amount of grid energy G. We also find
the amount of energy that leaves the node and separate it into
the amount of energy used for communication transmission
P , the amount of energy donated to other nodes R (outgoing
part), and the amount of energy discharged D. We consider
two donation cost values, µ = 0.01, 0.1, in Figures 5 and 6
respectively. The first three nodes (with lower harvested energy
arrival) have incoming donated energy, while the nodes with
higher harvested energy have outgoing energy when µ is small.
This is because the later nodes can store energy in the first
nodes to avoid going over the battery which can be transferred
back in future time slots, and this impact is higher at smaller
values of µ. It is easier to donate energy at lower value of µ
and thus external grid energy used is lower, and there is less
discharge as compared to higher value of µ. At lower µ, more
energy can be used by the users with less harvested energy.
Finally, we note that the total amount of outgoing energy is
slightly less than the total amount of incoming energy in some
nodes. This is because a residual amount of energy is stored
in the battery.

D. Comparison with Baseline Schemes

We consider three baseline schemes. The first is a window-
based scheme where at each time, each node only has the infor-
mation of the energy arrival in its current and the next T < K
number of time slots. At each time i, we perform the optimiza-
tion for min(T + 1,K − i+ 1) time-slots using the proposed
Proximal Jacobian ADMM strategy and use these decisions
for the current time slot. Even though the complexity of the
algorithm at each time is lower (O(N2(T + 1)2)), the process
is repeated at each time (thus having overall complexity of
O(N2T 2K)). The second is equal bandwidth strategy, where
the bandwidth is equally divided among all transmission links,
and the remaining variables are optimized using the Proximal
Jacobian ADMM algorithm. The third is a greedy bandwidth
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Fig. 2. Decrease in system throughput with
increasing λ for different values of ∆.
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Fig. 5. Incoming and outgoing energy for
different nodes, µ = 0.01.
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different nodes, µ = 0.1.
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TABLE I
CONVERGENCE SPEED FOR VARYING N .

N Iterations to converge Time / iteration (ms) System throughput
5 3715 88.5 21.4

10 4004 189.7 25.2
15 4008 299.7 28.1
20 4050 426.6 29.8
25 4014 573.7 31.0
30 4085 733.8 31.9

scheme, which assigns all available bandwidth to the link with
the highest channel gain. Given such bandwidth allocation,
the rest of the variables are optimized based on the proposed
Proximal Jacobian ADMM strategy.

We consider N = 5 users, K = 5 time units, ∆n =
∆ = 10, and variance of energy arrival in each time slot
as 36. Let µ = 0.8 and all other parameters be the same
as those in Section IV-A. Figure 7 depicts the weighted sum
rate (or the system throughput) for the proposed algorithm
as compared to the different base-lines for varying λ. For
window-based schemes, we consider T = 0 and T = 1. As T
increases, the performance improves, and will reach optimal
when T = K − 1. When T = 0, the algorithm is causal since
it does not use any future information. However, the algorithm
does not try to save for future ( since the optimization is
performed only for the current time-slot). Thus, there is a
bigger difference between T = 0 and T = 1, while there is
diminishing return since there is not a big difference between
T = 1 and T = 4 (offline scheme). We note that the closeness
between T = 1 and T = 4 are for the particular parameters
chosen, while the diminishing returns in T should hold in
general. Thus, with limited prediction, window-based schemes
can potentially be used where in each window, the proposed
algorithm is used for system optimization. We also note that
the proposed strategy significantly outperforms the greedy

and equal bandwidth strategies thus depicting that the joint
optimization over all variables is necessary.

E. Convergence with Increasing Number of Users

We consider increasing the number of users N , for the
parameters as in Section IV-D, and λ = 0.01. The results
are presented in Table I. The test was carried out on a 64-bit
desktop with 3.5 GHz quadcore processor and 20 GB RAM.
We see that the number of iterations to converge to a value
lower than the chosen threshold η = 10−6 generally increases
with N , since the number of variables is growing in the ex-
panding system. On the other hand, the time taken per iteration
increases as well. At these parameters, the complexity seems
to increase slightly more than linearly with N even though
theoretically, the complexity scales as N2. This is because
the only step that takes N2K2 complexity is the update of
variables rkn,m, which potentially do not take that dominant
time at the considered parameters, and all other updates are
O(NK2). The system throughput increases as the number
of users increase. However, we see diminishing gains with
increasing number of users. We note that the parallelization
of the algorithm for different (n, k) can significantly reduce
the time per iteration in practice.

V. CONCLUSIONS

We have treated the energy-bandwidth allocation problem
for multiuser network where each node is powered with both
renewable and grid energy, nodes can cooperate, and each node
has a limited battery capacity and finite transmission power.
The objective is to maximize the weighted sum through-
put, and minimize the use of grid energy and the amount
of energy cooperation. An iterative algorithm based on the
Proximal Jacobian ADMM is proposed and proved to be
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optimal. Numerical results demonstrate the different tradeoffs
in the optimal solution. Extension of the results with a data
buffer at the transmitter is an open problem. Using stochastic
information of the energy arrivals and the channel gains to
come up with optimal online algorithms is an interesting future
direction. Incentive based mechanisms to help increase users’
willingness to donate energy is left for the future.
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VI. APPENDIX: SOLVING SEVEN OPTIMIZATION
PROBLEMS

For primal updates, we have seven sets of problems. We
now consider solving these problems one by one. Note that
we will ignore the iteration numbers, accounting that the last
values of the other variables are used.
Problem 1: Updating (P,A)

(pkn, a
k
n) = argmin

pkn≥0,akn≥0

(
−Wna

k
n log(1 + pknH

k
n/a

k
n)

+yk3,np
k
n + yk4,np

k
n + yk6,na

k
n +

ρ

2

(
pkn − lkn − skn − gkn

)2
+
ρ

2

(
pkn − Pn + uk3,n

)2
+
ρ

2
(akn +

N∑
j,j 6=n

akj − 1)2

+
1

2
τ(pkn − (pkn)i)2 +

1

2
τ(akn − (akn)i)2

)
. (11)

This optimization is for a jointly convex function that is not
differentiable at akn = 0 at which pkn = 0. The KKT conditions
for akn > 0 are as follows.

− WnH
k
n

1 + pknH
k
n/a

k
n

+ yk3,n + yk4,n + ρ
(
pkn − lkn − skn − gkn

)
+ρ
(
pkn − Pn + uk3,n

)
+ τ(pkn − (pkn)i) = 0, (12)

−Wn log(1 + pknH
k
n/a

k
n) +

Wnp
k
nH

k
n/a

k
n

1 + pknH
k
n/a

k
n

+ yk6,n

+ρ(akn +

N∑
j,j 6=n

akj − 1) + τ(akn − (akn)i) = 0. (13)

From (12), we can solve akn as akn = pknH
k
n/(

WnH
k
n

yk3,n+y
k
4,n+ρ(p

k
n−lkn−skn−gkn)+ρ(pkn−Pn+uk

3,n)+τ(pkn−(pkn)i)
− 1

)
,

which can be substituted in (13) where we get an
equation with a single variable which can be solved.
If there is a solution (pkn, a

k
n) with pkn ≥ 0, and

yk3,n + yk4,n + ρ
(
pkn − lkn − skn − gkn

)
+ ρ

(
pkn − Pn + uk3,n

)
+

τ(pkn − (pkn)i) < WnH
k
n , this is the required solution. Else,

akn = pkn = 0.
Problem 2: Updating L

Let βk,vn =
∑v
t=1,t6=k l

t
n +

∑v
t=1

∑
m∈N ,m 6=n r

t
n,m −∑v

t=1

∑
m∈N r

t
m,n +

∑v
t=1 s

t
n +

∑v
t=1D

t
n−Evn for k ≤ v ≤

K and n ∈ N .

lkn = argmin
lkn≥0

((
K∑
v=k

(
yv1,n + yv2,n

)
− yk3,n

)
lkn

+
ρ

2

K∑
v=k

(
lkn + βk,vn + uv1,n

)2
+
ρ

2

K∑
v=k

(
lkn + βk,vn − uv2,n +Bmax

n

)2
+
ρ

2

(
pkn − lkn − skngkn

)2
+

1

2
τ(lkn − (lkn)i)2

)
. (14)

This is a quadratic equation. By differentiating it we obtain

lkn =
1

ρ(2(K − k) + 3) + τ
max

(
0, τ(lkn)i

−

(
K∑
v=k

(
yv1,n + yv2,n

)
− yk3,n + ρ

K∑
v=k

(
βk,vn + uv1,n

)
+ρ

K∑
v=k

(
βk,vn − uv2,n +Bmax

n

)
− ρ

(
pkn − skn − gkn

)))
. (15)

Problem 3: Updating R
For m = n, rkm,n = 0. Otherwise, let

νk,vm,n =
∑v
t=1 l

t
m +

∑
t=1,··· ,v,b∈N ,(t,b) 6=(k,n),b 6=m r

t
m,b −∑v

t=1

∑
b∈N r

t
b,m +

∑v
t=1 s

t
m +

∑v
t=1D

t
m − Evm,

and γk,vm,n =
∑v
t=1 l

t
n +

∑v
t=1

∑
n∈N r

t
n,b −∑

t=1,··· ,v,b∈N ,(t,b) 6=(k,m),b6=n r
t
b,n+

∑v
t=1 s

t
n+
∑v
t=1D

t
n−Evn

for k ≤ v ≤ K and n,m ∈ N , n 6= m. Then, the optimization
for R reduces as

rkm,n = argmin
rkm,n≥0

((
µ+

K∑
v=k

(
yv1,m − yv1,n + yv2,m − yv2,n

)
−yk5,n

)
rkm,n +

ρ

2

K∑
v=k

(
rkm,n + νk,vm,n + uv1,m

)2
+
ρ

2

K∑
v=k

(
−rkm,n + γk,vm,n + (uv1,n)

)2
+
ρ

2

K∑
v=k

(
rkm,n + νk,vm,n − uv2,m +Bmax

m

)2
+
ρ

2

K∑
v=k

(
−rkm,n + γk,vm,n − uv2,n +Bmax

n

)2
+
ρ

2

skn + u4,n −
∑

b∈N ,b 6=n,b6=m

rkb,n − rkm,n

2

+
1

2
τ(rkm,n − (rkm,n)i)2

)
. (16)

This is a quadratic equation. By differentiating it we obtain

rkm,n =
1

ρ(4(K − k) + 5) + τ
max

(
0, τ(rkm,n)i − (µ+

K∑
v=k

(
yv1,m − yv1,n + yv2,m − yv2,n

)
− yk5,n

+ρ

K∑
v=k

(
νk,vm,n + uv1,m − γk,vm,n − uv1,n

)
+ρ

K∑
v=k

(
νk,vm,n − uv2,m +Bmax

m − γk,vm,n + uv2,n −Bmax
n

)
−ρ

skn + u4,n −
∑

b∈N ,b 6=n,b6=m

rkb,n

 . (17)

Problem 4: Updating S
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Let βk,vn =
∑v
t=1 l

t
n +

∑v
t=1

∑
m∈N ,m 6=n r

t
n,m −∑v

t=1

∑
m∈N r

t
m,n +

∑v
t=1,t6=k s

t
n +

∑v
t=1D

t
n −Evn for k ≤

v ≤ K and n ∈ N .

skn = argmin
skn≥0

((
K∑
v=k

(
yv1,n + yv2,n

)
− yk3,n + yk5,n

)
skn

+
ρ

2

K∑
v=k

(
skn + βk,vn + uv1,n

)2
+
ρ

2

K∑
v=k

(
skn + βk,vn − uv2,n +Bmax

n

)2
+
ρ

2
(pkn − lkn − skn − gkn)2 +

1

2
τ(skn − (skn)i)2

+
ρ

2

skn + u4,n −
∑

m∈N ,m 6=n

rkm,n

2
 . (18)

This is a quadratic equation. By differentiating it we obtain

skn =
1

ρ(2(K − k) + 4) + τ
max

(
0, τ(skn)i

−

(
K∑
v=k

(
yv1,n + yv2,n

)
+ ρ

K∑
v=k

(
2βk,vn + uv1,n − uv2,n

+Bmax
n )− yk3,n + yk5,n − ρ

(
pkn − lkn − gkn

)
+ρ

u4,n − ∑
m∈N ,m 6=n

rkm,n

 . (19)

Problem 5: Updating G

gkn = argmin
gkn≥0

(
λgkn − yk3,ngkn +

ρ

2

(
pkn − lkn − skn − gkn

)2
+

1

2
τ(gkn − (gkn)i)2

)
. (20)

This is a quadratic equation. By differentiating it we obtain

gkn =
1

ρ+ τ
max

(
0,−λ+ yk3,n + ρ

(
pkn − lkn − skn

)
+ τ(gkn)i

)
.

(21)
Problem 6: Updating D

Let βk,vn =
∑v
t=1 l

t
n +

∑v
t=1

∑
m∈N ,m 6=n r

t
n,m −∑v

t=1

∑
m∈N r

t
m,n +

∑v
t=1 s

t
n +

∑v
t=1,t6=kD

t
n −Evn for k ≤

v ≤ K and n ∈ N .

Dk
n = argmin

Dk
n≥0

((
K∑
v=k

(
yv1,n + yv2,n

))
Dk
n

+
ρ

2

K∑
v=k

(
Dk
n + βk,vn + uv1,n

)2
+

1

2
τ(Dk

n − (Dk
n)i)2

+
ρ

2

K∑
v=k

(
Dk
n + βk,vn − uv2,n +Bmax

n

)2)
. (22)

This is a quadratic equation. By differentiating it we obtain

Dk
n =

1

2ρ(K − k + 1) + τ
max

(
0,−

(
K∑
v=k

(
yv1,n + yv2,n

)
+ρ

K∑
v=k

(
2βk,vn + uv1,n − uv2,n +Bmax

n

))
+ τ(Dk

n)i

)
. (23)

Problem 7: Updating U
The optimization for each of uki,n is a quadratic problem,

and thus the solutions for these problems are as follows.

uk1,n =
1

ρ+ τ
max

(
0,−yk1,n − ρ

k∑
t=1

ltn − ρ
k∑
t=1∑

m∈N ,m 6=n

rtn,m + ρ

k∑
t=1

∑
m∈N

rtm,n − ρ
k∑
t=1

stn

−ρ
k∑
t=1

Dt
n + ρEkn + τ(uk1,n)i

)
, (24)

uk2,n =
1

ρ+ τ
max

(
0, yk2,n + ρ

k∑
t=1

ltn + ρ

k∑
t=1∑

m∈N ,m 6=n

rtn,m − ρ
k∑
t=1

∑
m∈N

rtm,n + ρ

k∑
t=1

stn

+ρ

k∑
t=1

Dt
n − ρEkn + ρBmax

n + τ(uk2,n)i

)
, (25)

uk3,n =
1

ρ+ τ
max

(
0,−yk4,n − ρpkn + ρPn

+τ(uk3,n)i
)
, (26)

uk4,n =
1

ρ+ τ
max

(
0,−yk5,n − ρskn

+ρ
∑

m∈N ,m 6=n

rkm,n + τ(uk4,n)i

 . (27)


