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Abstract—This paper considers the channel estimation (CE)
and multi-user detection (MUD) problems in cloud radio access
network (C-RAN). Assuming that active users are sparse in the
network, we solve CE and MUD problems with compressed
sensing (CS) technology to greatly reduce the long identifi-
cation pilot overhead. A mixed `2,1-regularization functional
for extended sparse group-sparsity recovery is proposed to
exploit the inherently sparse property existing both in user
activities and remote radio heads (RRHs) that active users are
attached to. Empirical and theoretical guidelines are provided
to help choosing tuning parameters which have critical effect
on the performance of the penalty functional. To speed up the
processing procedure, based on alternating direction method of
multipliers and variable splitting strategy, an efficient algorithm
is formulated which is guaranteed to be convergent. Numerical
results are provided to illustrate the effectiveness of the pro-
posed functional and efficient algorithm.

I. INTRODUCTION

The cloud radio access network (C-RAN) has been pro-
posed as a breakthrough network architecture to improve
spectral efficiency and energy efficiency [1], [2]. In C-RAN,
strong functional but high-power-consumption base stations
(BSs) are decoupled into two parts: distributed remote radio
heads (RRHs) and baseband units (BBUs) [3]. The BBUs are
consolidated together to be a BBU pool for handling all the
baseband signal processing in the network. Plenty of RRHs
are distributed on a large area, and connected to BBU pool
through fronthaul links.

The estimation of channel state information (CSI) is fun-
damental and vital in wireless communication. The identifi-
cation of active users is also critical for resource allocation
in the network. Channel estimation (CE) and multi-user de-
tection (MUD) problems have been investigated extensively
[4]. However, in classical CE and MUD methods, in order to
keep orthogonal characteristic between identification pilots
belong to different users, the length of identification pilots
needs to be scale with the number of users times the number
of antennas per user, which is a significant overhead when
the network is large. With the observation that active users
are sparse, many recent works [5]–[8] on MUD and CE
have taken the sparsity of user activities into consideration
by using compressed sensing (CS) technology, which greatly
reduces the identification pilot overhead.

The C-RAN architecture brings new challenges to CE and
MUD. Since the baseband processing is clustered together
in C-RAN, CE and MUD is no longer restricted to local BS
processing, but jointly processed in BBU pool to meet the
demand of the whole network. Each user is linked to each
RRH to enable full cooperation among RRHs. This paper

aims to detect the active users and to estimate full CSI, i.e.
the channel states between each active user and each RRH
in C-RAN.

Related works on CE and MUD in C-RAN can be found
in [9] and [10]. Bayesian sparsity inference tool and hybrid
generalized approximate message passing method are lever-
aged in [9] and [10] respectively to exploit sparsity of user
activities. [9] assumes multiple antennas in each RRH and
user, while [10] adopts single-antenna RRHs and users but
takes limited capacity of fronthaul links into consideration.
Both [9] and [10] assume the Rayleigh fading channel and
the exact knowledge of large-scale path loss. However, this
simplified model tends to describe static network, while mo-
bility and environment changes introduce more uncertainty
[11], [12]. Besides, to predict the precise large-scale path
loss between each RRH and each user in C-RAN is very
expensive when the network is large [13], [14].

In this paper, we formulate a penalty functional to solve CE
and MUD problems in C-RAN. Our formulation is general
which does not depend on the prior information of channel
parameters or the assumption of channel model. We only
assume the sparsity of active users, which is practical in real
communication systems. On the other hand, we observe that
there are limited RRHs surrounding each active user in C-
RAN, and the effects of most distant RRHs on this user are
negligible. Hence there exist two types of sparsity: one is the
sparse active users; the other is sparse RRHs related to one
particular active user. Motivated by this observation, we pro-
pose a mixed `2,0-regularization functional to exploit these
two types of sparsity simultaneously, and then relax it as a
convex and smoothed mixed `2,1-regularization functional.
A re-weighting strategy is adopted to enhance estimation
accuracy. As tuning parameters in the functional have critical
influence on the performance, we also provide empirical and
theoretical guidelines for choosing the appropriate values.

Considering that the processing time of MUD and CE
should be less than the channel coherence time, we propose
an efficient algorithm based on alternating direction method
of multipliers (ADMM) and variable splitting strategy to
reduce the computational complexity of solving the proposed
functional. Simulation results show that, even without any
prior information on the channel, our algorithm provides
almost the same performance and has almost the same
computational complexity as state-of-the-art algorithm.

Notations: Uppercase (lowercase) boldface letters denote
matrices (column vectors). iff denotes “if and only if”. The
operators (·)T , (·)H , ‖·‖F stand for transpose, conjugate
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transpose and Frobenius norm, respectively. IN denotes an
N×N identity matrix. ⊗ and ◦ denote the Kronecker product
and Hadamard product (element product) respectively. <(a)
stands for real part of complex number a. vec(A) denotes
the vectorization of A formed by stacking its columns into
a single column vector. A[i,j] stands for the {i, j}th element
in A, and Ai,j for the {i, j}th submatrix in A. A◦(a)

denotes an element-wise exponentiation operator on A, i.e.,
(A◦(a))[i,j] = (A[i,j])

a.

II. SYSTEM MODEL

We consider a C-RAN architecture with G RRHs and K
users. There are M antennas in each RRH, and N antennas
in each user device. The length of identification pilots is L,
and the kth user is assigned with a pilot matrix Pk ∈ CN×L.
We assume that only a small part of users are active. The set
of active users is indicated by A $ {1, ...,K}. An indicator
function is defined to mark whether the kth user is active,

1A(k) =

{
1, if k ∈ A
0, if k /∈ A (1)

In the following descriptions, we use 1k to denote 1A(k)
if there is no confusion.

The quasi-static channel between kth user and gth RRH is
denoted by complex matrix Hg,k ∈ CM×N . As only active
users transmit their identification pilots, the received pilot
data in the gth RRH can be described as

Rg =
∑
k∈A

Hg,kPk+N̄g =

K∑
k=1

Hg,k1kPk+N̄g, g = 1, ..., G

(2)
where N̄g ∈ CM×L denotes the antenna additive noise in
the gth RRH.

By stacking received pilot data in all the G RRHs, the data
received in BBU can be described as

R = HΛP + N̄ (3)

where R = [RT
1 , ... ,R

T
G]T , Λ = diag[11, ... ,1K ] ⊗ IN ,

P = [PT
1 , ... ,P

T
K ]T , N̄ = [N̄T

1 , ... , N̄
T
G]T , and

H =

H1,1 · · · H1,K

· · · · · · · · ·
HG,1 · · · HG,K

 (4)

Besides the received pilot data R, BBU also has the
knowledge of identification pilot matrix P. Hence, our MUD
problem is to estimate Λ in (3). With the constraint of
sparse user activities, our CE problem is to estimate matrices
[HT

1,k; ...; HT
G,k]T , ∀k ∈ A.

III. PROBLEM FORMULATIONS

By taking the transposition of equation (3), we get a
compressed sensing problem as below.

RH = PHΛHH + N̄H (5)

where PH is a fat matrix with the assumption that the pilot
length L is less than the number of users K. Our MUD and
CE problems are converted to estimating ΛHH as a whole.

ΛHH =

 11H
H
1,1 · · · 11H

H
G,1

· · · · · · · · ·
1KHH

1,K · · · 1KHH
G,K

 (6)

We define the submatrix [1kHH
1,k, ... ,1kH

H
G,k] as the kth

“row chunk” matrix in ΛHH , and the submatrix 1kH
H
g,k as

the {k,g}th “element chunk” matrix. The sparsity of the kth
row chunk is determined by 1k, which denotes whether the
kth user is active. Therefore the matrix ΛHH has row-chunk
sparsity structure at first.

In practical C-RAN architecture, huge numbers of RRHs
are distributed on vast areas, and most of RRHs have negli-
gible effect on a particular active user. It gives rise to that,
if the kth user is active, most of the element chunks in the
kth row chunk approximate to zero, and the kth row chunk
has sparsity structure. Therefore, we say ΛHH has element-
chunk sparsity structure. For one particular active user, the
element-chunk sparsity situation is affected by many factors,
like the position of this user, the distribution geometry of
surrounding RRHs, power allocations and beamformings in
RRHs, etc.

To simplify the expression, we rewrite the system model
(5) as below,

B = AX + N (7)

where B = RH ∈ CL×GM , A = PH ∈ CL×KN , X =
ΛHH ∈ CKN×GM , and N = N̄H .

The matrix X to be estimated has both row-chunk
and element-chunk sparsity structures. In the following,
we use Xi ∈ CN×GM to denote the ith row chunk
[1kHH

1,k, ... ,1kH
H
G,k], and Xi,j ∈ CN×M to denote the

{i, j}th element chunk 1iHH
i,j . We define Ai = PT

i ∈ CL×N
in (5), then A = [A1, ... ,AK ]; and define Bi = RT

i ∈
CL×M in (5), then B = [B1, ... ,BG].

To exploit row-chunk and element-chunk sparsity struc-
tures simultaneously, we propose a mixed `2,0-regularization
functional shown as blow,

min
X

α1

K∑
i=1

1(Xi) + α2

K∑
i=1

G∑
j=1

1(Xi,j) +
1

2
‖AX−B‖2F

(8)
where 1(·) is an indicator function defined as following,

1(D) =

{
1, if D is a non-zero matrix
0, if D is a zero matrix (9)

In the functional (8), the first term exploits the row chunk
sparsity, and the second term takes into account the element
chunk sparsity. The absolute values of tuning parameters
α1 and α2 control the tradeoff between the sparsity of the
solution and the quality of fit, while the relative values
between α1 and α2 control the balance of row-chunk and
element-chunk sparsity.

As (8) is non-smooth, we will relax it to a smooth and
convex mixed `2,1-regularization functional. However, there
is one drawback in `2,1-regularization functionals that coef-
ficients with larger magnitudes are penalized more heavily
than coefficients with smaller magnitudes, which limits the
performance and also exhibits a key difference between `2,1
and `2,0 regularizations.

An iteratively re-weighted `1-norm minimization algo-
rithm was proposed in [15] to provide approximative “demo-
cratic penalization” on coefficients and further enhance the
performance of `1-norm functional. Similarly to that, we



introduce the weight matrix W, and propose a weighted `2,1-
regularization functional as below,

min
X

α1

K∑
i=1

‖Wi ◦Xi‖F + α2

K∑
i=1

G∑
j=1

‖Wi,j ◦Xi,j‖F

+
1

2
‖AX−B‖2F (10)

where Wi and Wi,j denote the ith row-chunk submatrix and
the {i, j}th element-chunk submatrix in W respectively.

The functional (10) is in the context of multiple measure-
ment vectors (MMV) scenario. If we suppose that each RRH
and user owns only one antenna, i.e., M = N = 1, then
each element chunk Xi,j reduces to a complex number. By
letting b = vec(BT ), x = vec(XT ), n = vec(NT ) and
Â = A⊗ IG, from equation (7) we get

b = Âx + n (11)

which is a single measurement vector (SMV) model. The
vector x to be estimated has two types of sparsity: “group-
wise sparsity” and “element-wise sparsity within group”,
where the group size is G. By removing the effect of weight
matrix W, our proposed functional (10) is reduced to a sparse
group lasso criterion [16] as following,

min
x

α1

K∑
i=1

∥∥∥x(i)
∥∥∥
F

+ α2 ‖x‖1 +
1

2

∥∥∥Âx− b
∥∥∥2
F

(12)

where x(i) denotes the ith group in x, and ‖x‖1 denotes the
sum of magnitudes of each element in x.

Considering feasibility of multiple antennas in RRHs and
users, and also higher estimation accuracy demand, we adopt
the functional (10), which can be viewed as extended version
of sparse group-sparsity recovery problem. If only single-
antenna RRHs and user devices are deployed in the C-
RAN architecture, (12) can be used to get normal precise
estimation, and can be solved by several existing algorithms
[16], [17], etc.

Next, we discuss the choices of α1 and α2, which have
critical effect on the performance of (10). Smaller values
of α1 and α2 may be insufficient to recover the interested
sparse signal, and larger values may lead to biased estimation.
However, to the best of our knowledge, determining proper
values for tuning parameters like α1 and α2 still remains an
implementation-level issue.

Remark 1. The choice of α1 and α2 are empirical. In
general, a larger α1 should be chosen when the C-RAN is
small and dense, where the row-chunk sparsity dominates
and the element-chunk sparsity is non-significant. When the
C-RAN is large, we empirically choose a larger α2 to exploit
the element-chunk sparsity efficiently.

Here we further provide rigorously numerical upper
bounds to help choosing α1 and α2. We notice that if α1 = 0
or α2 = 0, only one type sparsity is grasped, and (10) reduces
to an extension of group-lasso functional [18]. Inspired by
this insight, we further arrive at the following result.

Theorem 1. The solution of the functional (10) is X̂ = 0
if α1 ≥ α∗1 = max

i

∥∥(AH
i B) ◦ (Wi)

◦(−1)
∥∥
F

or α2 ≥ α∗2 =

max
i,j

∥∥(AH
i Bj) ◦ (Wi,j)

◦(−1)
∥∥
F

.

The proof of Theorem 1 can be found in Appendix A. It
can be seen that α1 should be chosen strictly less than α∗1,
and α2 less than α∗2, to prevent identically zero solution.

IV. ALGORITHM DESIGN

A. Standard Second-Order Cone Programming
The proposed functional (10) can be transformed into a

second-order cone programming (SOCP) problem as below,
and solved by standard method, such as interior point method
[19].

min
X

α1

K∑
i=1

ci + α2

K∑
i=1

G∑
j=1

Di,j + e

s.t. ‖Wi ◦Xi‖F ≤ ci

‖Wi,j ◦Xi,j‖F ≤ Di,j

1

2
‖AX−B‖2F ≤ e (13)

where c ∈ RK×1+ and D ∈ RK×G+ .
The SOCP method is guaranteed to find the optimal

solution of our convex functional (10) with fixed W. We
iterate the procedure (13) for several times, in each of which
we use previous estimation of X to determine W similarly to
[15]. As an empirical law, each element in W is set inversely
to previous estimation of element magnitude, as below

W[i,j] =
1

abs
(
X[i,j]

)
+ ε

(14)

where ε > 0 is a very small positive number to provide
stability.

B. Alternating Direction Method of Multipliers
Solving SOCP problem in (13) has high computational

complexity when the problem size is medium to large scale.
In practical C-RAN system, the huge number of users and
RRHs make it impractical to solve (10) by standard algorithm
like SOCP. Given that, we propose an efficient algorithm
to accelerate the problem-solving procedure. The alternating
direction method of multipliers (ADMM) combined with
variable splitting strategy can be used to separate our problem
into simple sub-problems. Methods based on ADMM are
easy to implement and also own a guaranteed convergency
property [20].

We first split the variable X in (10), and bring two
auxiliary variables Z and Q:

min
X,Z,Q

α1

K∑
i=1

‖Zi‖F + α2

K∑
i=1

G∑
j=1

‖Qi,j‖F +
1

2
‖AX−B‖2F

s.t. Z = W ◦X, Q = W ◦X (15)

As (15) is separable in variables Z, Q and X, ADMM is
applicable. We transform (15) to be an augmented Lagrangian
problem as below,

L(X,Z,Q,λ1,λ2)

= α1

K∑
i=1

‖Zi‖F + α2

K∑
i=1

G∑
j=1

‖Qi,j‖F +
1

2
‖AX−B‖2F

−<
{
tr
(
λH1 (Z−W ◦X)

)
+ tr

(
λH2 (Q−W ◦X)

)}
+
β

2

(
‖Z−W ◦X‖2F + ‖Q−W ◦X‖2F

)
(16)



where λ1 and λ2 are Lagrange multipliers which have the
same dimension as X. β is the regularization parameter.

The ADMM iterates over the minimization of augmented
Lagrangian problem (16) on variables X, Z and Q sequen-
tially, each of which forms a subproblem as below.

The X-subproblem is to minimize (16) with respect to X,
which is a convex quadratic problem. We have the following
equation by taking derivative with respect to X and setting
it to be zero.

βW ◦ (Z + Q) + AHB−W ◦ (λ1 + λ2)

= 2βW◦(2) ◦X + AHAX (17)

By setting the left side in (17) equal to a newly defined
matrix D, we get the estimation of the lth column in X,

X̂[:,l] =
(

2βdiag
(
(W[:,l])

◦(2))+ AHA
)−1

D[:,l]

=
(
Pl −PlA

H(IL + APlA
H)−1APl

)
D[:,l] (18)

for l = 1, ..., GM , where Pl := (0.5/β)diag
(

(W[:,l])
◦(−2)

)
.

The Z-subproblem is to minimize (16) with respect to Z,
which is given by

min
Z

α1

K∑
i=1

‖Zi‖F −<
{
tr(λH1 Z)

}
+
β

2
‖Z−W ◦X‖2F

(19)

Clearly, the minimization problem (19) can be solved
separately for each row chunk Zi. With a little algebra, (19)
is equivalent to

K∑
i=1

min
Zi

[
α1 ‖Zi‖F +

β

2

∥∥∥∥Zi −Wi ◦Xi −
1

β1
(λ1)i

∥∥∥∥2
F

]
(20)

For the ith subproblem in (20), we show in Appendix B
that it has a closed-form solution. Then the optimal solution
of (20) is

Ẑi = max
{∥∥∥Z̃i∥∥∥

F
− α1

β
, 0
} Z̃i∥∥∥Z̃i∥∥∥

F

, ∀i = 1, ... ,K,

(21)

where Z̃ = W ◦X + (1/β)λ1. To simplify expression, we
denote the above chunk-wise soft shrinkage operation as

Ẑ = Shrink(N,GM)

(
W ◦X +

1

β
λ1,

α1

β

)
(22)

where (N,GM) is the dimension of shrinkage operation in
the objective matrix W ◦X + 1

βλ1.
Similarly to Z-subproblem, the Q-subproblem also has a

closed-form solution:

Q̂ = Shrink(N,M)

(
W ◦X +

1

β
λ2,

α2

β

)
(23)

At last, the multipliers matrix λ1 and λ2 are updated in
standard way as following,{

λ1 ←λ1 − β(Z−W ◦X)

λ2 ←λ2 − β(Q−W ◦X)
(24)

Note that there are three variables X, Z and Q updated in
our method, which is different from standard ADMM theory
in which only two blocks of variables are updated alterna-
tively. However, the functional (16) is separable in Z and Q,
i.e., min

Z,Q
L(·) = min

Z

{
min
Q
L(·)

}
= min

Q

{
min
Z
L(·)

}
, then

the Z-subproblem and Q-subproblem in our method can be
merged into one subproblem. Hence our method owns the
same convergency as the standard ADMM [21]. In short, we
have the following result.

Theorem 2. For any β, α1, α2 > 0, and fixed W, the
iteration of X, Z and Q in the ADMM from any initial
point is guaranteed to converge to a global minimizer of
(15). Specially, X converges to a solution of (10).

We iterate the ADMM for several times, in each of which
we update W by (14) using the previous estimation of X as
the same as in SOCP. For convenience, we summarize our
ADMM in Table I.

TABLE I: ADMM
Algorithm Alternating Direction Method of Multipliers

1: Initialize variables Z, Q, weight matrix W, and multi-
pliers λ1, λ2.

2: Initialize parameters α1, α2, β, ε and the iteration num-
ber MaxCount. Set the iteration counter count ← 1.

3: while count ≤MaxCount do
4: while not convergent and stopping criterion not met

do
5: Update X with (18), Z with (22), Q with (23), in

turn.
6: Update λ1 and λ2 with (24).
7: end while
8: Update W with (14).
9: count← count+ 1.

10: end while

V. NUMERICAL RESULTS

In this section, we carry out experiments to illustrate the
performances of our proposed functional and efficient algo-
rithm. Our SOCP and ADMM for solving functional (10) are
addressed as “SolveSOCP” and “SolveADMM” respectively
in this simulation. As only the sparsity of user activities is
exploited if we eliminate the second term in (10) by setting
α2 = 0, we address it “SolveRowLasso” and add it into
comparison. Correspondingly, we eliminate the first term in
(10) by setting α1 = 0, and address it “SolveElementLasso”
which only exploits the sparse relationship between active
users and effective RRHs surrounding it. SolveRowLasso and
SolveElementLasso can be considered just as special cases
of our proposed functional, and both of them are solved by
SOCP in this simulation.

The method “modified Bayesian compressive sensing”
(“BCS” for short) in [9] is also included for comparison.
BCS is based on the exact knowledge of large-scale path
loss between each RRH and each user, which, however, is
costly in real C-RAN and may not be predicted accurately
due to mobility and environment changes. Here we include



another case named “BCS2” in which BCS is provided with
inaccurate large-scale path loss parameters. We address BCS
and BCS2 as “SolveBCS” and “SolveBCS2” respectively in
this simulation.

We set the number of RRHs G = 10 and number of users
K = 100. The number of antennas in each RRH and user
are M = 3 and N = 2 respectively. Rayleigh fading channel
model is assumed between RRHs and users. The size of
active user set A is 10. SNR is set to 10 dB. Each element
of pilot matrix P in (3) has an independent and identical
normalized complex gaussian distribution.

We empirically set α1 and α2 in functional (10) equal to
a small percentage of α∗1 and α∗2 respectively, say 1%-5%.
β in the ADMM functional (15) has the same value level
as α1 and α2 to accelerate convergence. The number of re-
weighting times MaxCount in both SOCP and ADMM is
set to 2. ε in (14) is set to 10−8. Assuming the precise large-
scale path loss between kth user and gth RRH is τg,k, we
provide BCS2 with τg,k · (1 + 0.5n) where n obeys standard
normal distribution. All the results are averaged over 50 runs.

At first, we demonstrate the channel estimation results
of respective algorithms, as shown in Fig. 1 where NMSE
denotes the normalized mean squared error. It can be seen
that SOCP and BCS provide the best performances. Because
of the tradeoff between preciseness and efficiency in the
implementation, our ADMM works slightly worse than BCS
and SOCP, but still lies in the same level. The performances
of “ElementLasso” and “RowLasso” are worse than SOCP
which is in accordance with our expectation. BCS2 has a
poor performance for reliance on the exact information of
large-scale path loss parameters.

Pilot Length
10 15 20 25

N
M

S
E

10-2

10-1

100

101
SolveADMM
SolveBCS
SolveBCS2
SolveSOCP
SolveRowLasso
SolveElementLasso

Fig. 1: NMSE of respective algorithms vs. pilot length

Fig. 2 shows the wrongly detected user number of re-
spective algorithms vs. pilot length. We can see that our
SOCP and ADMM exhibit the best performances in detect-
ing activities of users. ElementLasso, RowLasso and BCS
need longer training pilots to detect users precisely. It can
be observed from Fig. 3 that ADMM and BCS have the
lowest computational complexity. SOCP has a rather high
complexity particularly when pilot is long, which attributes
to the increase of problem dimension. The complexity of
ADMM and BCS do not increase with pilot length within
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SolveADMM
SolveBCS
SolveBCS2
SolveSOCP
SolveRowLasso
SolveElementLasso

Fig. 2: Multi-user detection results of respective algorithms
vs. pilot length

our simulation range because that properly longer pilot helps
them to converge faster.
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SolveADMM
SolveBCS
SolveBCS2
SolveSOCP
SolveRowLasso
SolveElementLasso

Fig. 3: Computation time of respective algorithms vs. pilot
length

VI. CONCLUSION

We proposed a mixed `2,1-regularization functional to
solve channel estimation and multi-user detection problems
in C-RAN. This functional simultaneously exploits the spar-
sity of user activities and sparsity of RRHs related to each
active user. Guidelines are also provided to help choosing
tuning parameters. To accelerate the processing procedure,
an efficient method based on ADMM is proposed. Numerical
results show that our functional solved by our efficient
method achieves state-of-the-art performance and also has
low computational complexity.

VII. APPENDIX

A. Proof of Theorem 1
At first we prove the solution of (10) X̂ equals to zero if

α1 ≥ α∗1 = max
i

∥∥(AH
i B) ◦ (Wi)

◦(−1)
∥∥
F

.
To simplify expressions, we denote the three positive terms

in (10) as a1(X), a2(X) and c(X) in turn. It can be seen
that

min
X

(
a1(X) + c(X)

)
+ min

X′
a2(X′) ≤ (10) (25)



where equality holds when the minimum solutions X̂ = X̂′.
As a1(X) + c(X) is convex, by taking derivative, we get

AH(AX−B) + α1V = 0 (26)

where V is the derivative of
∑K
i=1 ‖Wi ◦Xi‖F with regard

to X, and each Vi satisfies

Vi =

{
Xi◦(Wi)

◦(2)

‖Xi◦Wi‖F
iff Xi 6= 0

∈ {Vi :
∥∥Vi ◦ (Wi)

◦(−1)
∥∥
F
≤ 1} iff Xi = 0

(27)
Hence the solution of min

X

(
a1(X) + c(X)

)
is zero iff∥∥(AH

i B) ◦ (Wi)
◦(−1)

∥∥
F
≤ α1, ∀k = 1, ...,K. The solution

of min
X′

a2(X′) is zero. Therefore zero is also the solution of

(10) when α1 ≥ max
i

∥∥(AH
i B) ◦ (Wi)

◦(−1)
∥∥
F

.
The proof that solution of (10) equals to zero if α2 ≥ α∗2 =

max
i,j

∥∥(AH
i Bj) ◦ (Wi,j)

◦(−1)
∥∥
F

can be derived similarly.

B. Complex Matrix Shrinkage

The shrinkage operator for complex matrix is a direct
extension of the basic one-dimensional soft thresholding
method or shrinkage in, e.g., [22]. To find the solution of
an optimization problem as blow

min
X

α ‖X‖F +
β

2
‖X−B‖2F (28)

where X, B ∈ CN×M . As (28) is convex but non-
differentiable, by taking the derivative of it, we get

αV + β(X−B) = 0 (29)

where V ∈ CN×M is the subgradient of ‖X‖F , and

V =

{
X
‖X‖F

iff X 6= 0

∈ {V : ‖V‖F ≤ 1} iff X = 0
(30)

By plugging (30) into (29), we get the optimal solution
X̂ = (‖B‖F − α/β)B/‖B‖F iff X̂ 6= 0, and ‖B‖F ≤ α/β
iff X̂ = 0. At last, we arrive at

X̂ = max{‖B‖F −
α

β
, 0} B

‖B‖F
(31)
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