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Abstract—Multiview applications endow final users with the
possibility to freely navigate within 3D scenes with minimum-
delay. High-quality rendering of the scene is enabled by trans-
mitting multiple high-quality camera views, which can be used to
synthesize additional virtual views to offer a smooth navigation
in the scene. When network resources are limited, the set of
camera views needs to be properly selected by the client. The
right tradeoff between coding artifacts (reducing the quality
of camera views) and virtual synthesis artifacts (reducing the
number of camera views sent to users) has to be optimized.
Existing client adaptation logic strategies usually fail to properly
consider the content characteristics and the client navigation
properties in the view selection problem. We therefore propose an
optimal representation selection for interactive multiview HTTP
adaptive streaming (HAS), with a complete problem formulation
to select the optimal set of camera views that optimize the
navigation quality experienced by the user while satisfying the
bandwidth constraints. We show that our optimization problem
is NP-hard and develop an effective solution based on a dynamic
programming algorithm with polynomial time complexity. Sim-
ulation results show significant navigation quality improvement
compared to two baseline multiview adaptation logic solutions.
This confirms that adaptation logics have to consider both video
content and interactivity level of the user in the representation
selection strategy.

Index Terms—Dynamic adaptive streaming over HTTP, multi-
view video plus depth, representation set, multiview navigation,
dynamic programming.

I. INTRODUCTION

Last years have witnessed the advent of disruptive inter-
active and immersive video technologies, where a user can
freely navigate within a 3D scene via images captured from
multiple cameras. This is possible due to the free-viewpoint
technology, where a virtual viewpoint can be synthesized at
decoder via depth-image-based rendering (DIBR) [1] using
texture and depth maps of camera views, namely anchor views.
The quality of the synthesized viewpoints generally increases
with both the quality of the anchor views and the similarity
or proximity between the anchor views and the synthesized
views. The optimization of the quality at the client therefore
corresponds to the proper selection of the camera views and
their encoding rates in resource constrained settings.

HTTP adaptive streaming (HAS), the universal technology
for video streaming over the Internet, offers the possibility for
users to adaptively select among different versions (different
coding rates and resolutions) of video streams that have been

pre-encoded and stored on a server. It provides an ideal frame-
work for interactive multiview (MV) navigation, where each
media client can choose different views along with different
encoding rates, in order to maximize the video quality. Most of
the research efforts in optimizing the client behavior have how-
ever focused on classical video streaming applications, while
interactive MV streaming is highly dependent on particular
factors like view synthesis artifacts and switching delays. In
this work, we fill this gap and propose an optimal adaptation
strategy for MV interactive users.

In more details, we consider the scenario of MV video
sequences stored at the main server of the service provider
(e.g., Netflix, YouTube). Each view corresponds to a sequence
of texture images and depth maps captured by a given camera.
Each view is pre-encoded into different representations. Each
representation is then decomposed into temporal segments
(usually 2s long) and stored at the server. The client then
requests the best set of representations for the current segment
based on both its level of interactivity and the available
bandwidth. The best set of representations is defined as the
one that permits to effectively reconstruct a navigation window
at the client, namely a range of consecutive virtual views that
can potentially be displayed by the client during the duration
of the video segment. To achieve this goal, we provide a
formal problem formulation to jointly optimize the subset of
camera views and their encoding rates that should be requested
by the client, among the ones available at the server. The
proposed optimization leads to an optimal solution that takes
into account both coding and virtual synthesis artifacts that
affect the navigation quality. Since our optimization problem
is NP-hard, we propose an effective solution based on dynamic
programming (DP) algorithm to reach optimality with polyno-
mial time complexity. Our adaptation logic strategy has been
compared with a few heuristic algorithms from the literature
and simulation results show significant gains (in terms of
navigation quality) under different streaming scenarios. This
means that the proposed optimization framework is able to find
the right combination of representations that exploits at best
the available resources for the considered client. This reflects
into a better usage of the available network resources and into
higher satisfaction of the final users.

Only a few works in the literature have studied the opti-
mization of HAS systems for MV streaming. The optimization



of the representations to store at the server for HAS MV
streaming under simplified assumptions on the client control
strategy has been studied in [2]. In this work, we rather
target the optimization at the client side for HAS MV as
[3], [4]. In [3], the client adjusts the downloading bit rate by
varying the number of anchor views but under the constraint
of equal coding rate for all camera views. Equal rate across
views is a limiting constraint in multiview systems [5]. A
two-step rate adaption approach is further proposed in [4],
where the reference views are chosen and then the optimal
bit rate is selected. We rather propose to optimize jointly the
reference views and the coding rates, which permits to find
better tradeoff and to reach significantly higher performance
in most settings by carefully considering the video content
characteristics, the user behavior and the network availability
altogether.

The rest of this paper is organized as follows. In Section II,
we present the system model and the MV representation selec-
tion optimization problem. Our solution is given in Section III.
Simulation results are provided in Section IV and conclusions
are given in Section V.

II. PROBLEM FORMULATION

A. System model

We consider the MV-based HAS system depicted in Fig.
1. At the server side, the set of camera views V =
{1, 2, 3, · · · , N} per video sequence are coded. Each texture
image is pre-encoded into different representations. Without
loss of generality, we consider one spatial resolution and
multiple encoding rates. Let R be the set of coding rates for
each camera view, and

T = {(vi, ri)}i,with vi ∈ V, ri ∈ R (1)

be the set of representations stored at the main server and made
available to clients1. The pair (vi, ri) identifies a representation
of camera view vi encoded at rate ri, ∀1 ≤ vi ≤ N .
Since accurate depth information has high importance for view
synthesis but relatively low coding rate cost, depth maps are
encoded once at high quality. The texture image is encoded at
rate ri. The resulting representations are divided into a set of
segments with equal playback duration τ (typically 2s long).

At the client side, the set of viewpoints that can be displayed
is U = {1, 1 + ∆, 1 + 2∆, · · · , 2, · · · , N}, where ∆ ∈ [0, 1)
is the minimum space between two adjacent virtual views.
We consider that v represents any camera view, while u
identifies any either virtual viewpoint or camera view that can
be displayed during the navigation. Any virtual viewpoint u
can be rendered using a pair of left and right reference view vL
and vR, vL < u < vR and vL, vR ∈ V , via a DIBR technique.

For each navigation segment, the client sends a downloading
request to the server. At the downloading opportunity t, Sk is
the segment eventually displayed by the client, while Sk+` is
the segment to be downloaded. There is therefore a mismatch

1We consider the same T for all videos, but our work can be easily extended
to the case of unequal T ′s
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Fig. 1. Multiview-based HAS system

between the downloading and displaying time of T = `τ
seconds. Assuming that the last viewpoint displaying in Sk

at t is denoted by u ∈ U , and that ρ is the maximum speed
at which a user can navigate to adjacent views, w(u) =
[u−ρT, u+ρT ] = [UL(u), UR(u)] is the range of viewpoints
that can potentially be displayed by the user in Sk+`. We
call this range the navigation window. In order to guarantee a
zero-delay view-switching, the adaptation logic has to select
the best set of representations such that any viewpoint in the
navigation window can be reconstructed on time at the client.

B. Navigation Distortion

We now evaluate the distortion experienced by a client
downloading the set of representations Td ⊆ T while nav-
igating in the window w,2 as illustrated in Fig. 2. Each
viewpoint u in the navigation window will be displayed at
a quality du(vk, rk, vk+1, rk+1), where vk, vk+1 are the left
and right reference views and rk, rk+1 are the corresponding
coding rates respectively, with (vk, rk), (vk+1, rk+1) ∈ Td.
This means that a user, given Td, navigates in the navigation
window w at the quality

D(Td, w) =
|Td|−1∑
k=1

∑
u∈w

du(vk, rk, vk+1, rk+1) (2)

where we assume that consecutive camera views in Td are
used as anchor views for all virtual viewpoints between them
[6].

The objective of the adaptation logic is then to seek for the
best subset T ∗d that minimize the distortion on the navigation
window of interest, subject to the bandwidth constraints.

C. Optimization Problem Formulation

We can now formulate a navigation-aware optimization
problem for MV adaptive streaming. Given a complete repre-
sentation set of MVs, the navigation window of interest for the
user and the available network bandwidth between the server
and user, we want to determine which representations should
be downloaded such that the navigation distortion experienced
at the end-user side is minimized. More formally, a particular

2For the sake of clarity, in the following we do not explicit the dependency
of w on the viewpoint u displayed at t.



Fig. 2. Example of representation set available at the server (T ), represen-
tation set downloaded by one final user (Td), with the associated distortion
experienced while navigating the scene.

client searches for

T ∗d : arg min
Td⊆T

D(Td, w)

s.t.
∑

∀i:(vi,ri)∈Td
ri ≤ c

(3)

where c corresponds to the bandwidth constraint.
The optimal MV representations selection problem in (3)

is unfortunately NP-hard. This can be proven by noting that
the reduced case of |R| = 1 is shown as a camera view
selection problem. This special problem can be formulated as
a set cover (SC) problem [6], which is a NP-hard. Optimizing
jointly camera view subsets and encoding rates is no easier
than solving the SC problem, thereby the problem in (3) is
also NP-hard in general cases.

III. OPTIMAL REPRESENTATION SELECTION

We present here an effective solution based on a DP
algorithm to solve the optimization of (3) with a polynomial
time complexity.

Given a representation (v, r) ∈ Td, we define the aggregate
distortion Φ(v, r, c) as the minimum distortion experienced
between max{UL, v} and UR, when a remaining rate budget
c is available for additional reference views. We can write the
iterative property as follows:

Φ(v, r, c)

= min
(vi,ri),vi>v

{
vi−∆∑

u=max{UL,v}
du(v, r, vi, ri) + Φ(vi, ri, c− ri)

}
(4)

The equation (4) states that, when one of the optimal rep-
resentation (vi, ri) is selected for download between [v, UR],
the range of views [v, UR] is decomposed into two ranges
[v, vi) and [vi, UR]. All viewpoints in the first range will
be synthesized by the pair of camera views (v, vi). In the
second range [vi, UR], other camera views can be selected for
downloading with a total bitrate budget of c− ri as depicted
in Fig. 3.

 
Fig. 3. The recursion property in the DP solution

Evaluating

min
{vL≤UL,rL}

Φ(vL, rL, C − rL) (5)

leads to the solution of the problem optimization in (3) under
the assumptions that i) only one camera view at one coding
rate is selected in Td, ii) the most left camera view in Td is
such that vL ≤ UL. These conditions are satisfied for most
common 3D sequences [6], therefore (5) solves (3) in almost
all multicamera scenarios. Due to the recursion shown in (4),
(5) can be evaluated by DP.

We can deduce the computational complexity of our solution
in (4) from a bound on the size of DP table and the cost
in computing each table entry. For the sake of clarity in the
notation, let the number of selected reference views and the
number of views covered in the navigation window be Nv =
|Td| and Nu = (UR−UL)/∆+1, respectively. The size of the
DP table Φ is no larger than Nv ×Nc× |R|, where Nc is the
number of channel bandwidth values that can be experienced
during the optimization. For each entry in the DP table, we
need to consider at most (Nv−1)×|R|+ 1 candidate camera
views and for each of them, we need to evaluate the distortion
to compare. Hence the complexity in computing each entry
over all navigation views is O((Nv−1)|R|+1)Nu). Generally,
the overall computation complexity of our proposed algorithm
in (4) is O(NvNc|R|((Nv − 1)|R| + 1)Nu), which can be
approximated by O(NuNcN

2
v |R|2).

IV. EXPERIMENTAL EVALUATION

In this section, we study the performance of our algorithm
and we show the navigation quality gains offered by our
proposed optimal MV adaptation logic.

A. Simulation framework

1) System Settings: We considered three multiview video
sequences at 1080p resolution, namely “Hall”, “Shark”, and
“Dancer”. The sequences are highly heterogenous in terms of
coding and view synthesis efficiency, and are thus represen-
tative of various video categories. “Dancer” for example is
a very dynamic sequence highly affected by coding artifacts,
while “Hall” is a quite static scene but with a 3D geometry
that renders virtual view synthesis highly challenging. For each
video sequence, we consider two sets of coding rates that can
be stored at the server, namely T 1 and T 2 provided in Table
I. We consider 50 segments (50τ seconds) for each video se-
quence. The adaptation logic is activated at each downloading
opportunity by the client, whose available bandwidth varies



TABLE I
THE REPRESENTATION AVAILABLE SETS

T 1 T 2
View Set 1 2 3 4 5 6 7 8 9 1 3 5 7 9

Encoding rate Set (Mbps) 0.2 0.3 0.5 1 2 3 4 6 8 10 0.2 0.5 2 4 6
Bandwidth (Mbps) 0.5 1 2 3 4 5 6 8 10

over time following a Markovian model, as widely used in
the literature [7]. We set the Markov transition matrix that
allows transitions to adjacent states with probability 2pc/3
and two-state jumps with probability pc/3. Finally, to emulate
heterogenous clients, we generate different navigation paths
following the dynamic MV navigation model in [8] with
minimum space between two adjacent views ∆ = 0.1. More
specifically, we simulate i) a uniform navigation, when the
user has the same probability of displaying the current view,
or switching to the left or right view, and ii) a non-uniform
navigation, when the user has a probability pn of displaying
the current view and (1 − pn)/2 of switching to the left or
right view.

In the following, for each realization of both the channel
and user navigation path, the adaptation logic is activated
over 50 downloading opportunities (one per segment as in
the regime phase of HAS system). The resulting distortion is
averaged over multiple realizations. It is worth noting that our
simulation considers some approximations (infinite playback
buffers, exact channel estimation, etc.) with respect to real
HAS systems. But it does not impact on our objective in this
paper, which is to demonstrate the benefit of considering con-
tent and interactivity information in the optimal representation
selection for a HAS client in a stationary regime.

2) Synthesis Distortion Function: For a given naviga-
tion window w, we evaluate the average distortion as
(1/Nu)

∑
u∈w du, with Nu being the number of viewpoints

in the navigation window. We adopt the synthesis distortion
model from [2], provided in the following for clarity:

du(vL, vR) = αDmin +(1−α)βDmax +[1−α− (1−α)β]DI

(6)
where Dmin = min{DL, DR}, Dmax = max{DL, DR},
DI is the inpainted distortion, and DL, DR are the distor-
tions of left and right reference views, respectively. Here,
α = exp(−ξ|u − vmin|, and β = exp(−ξ|u − vmax|), with
vmin = vL, vmax = vR if DL ≤ DR, otherwise, vmin = vR,
vmax = vL if DL > DR. The parameters ξ and DI can be
evaluated by curve fitting. Similarly, we set the inpainting dis-
tortion to DI = 0.35, and ξ = {0.35, 0.52, 1.32} for “Dancer”
(“sport-action” type of video), “Shark” (“cartoon” type of
video), and “Hall” (“movie” type of video), respectively.

Finally, the distortion of the coded camera views follows
the model

Dv = 1− (a− b

rv + e
) (7)

where rv is the coding rate, a, b and e are parameters that
depend on both the content characteristics and the resolution
of the video and are set to fit experimental (1 − VQM) data
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Fig. 4. Distortion comparison of a client having a navigation window w =
[1.5 8.5] with respect to bandwidth capacities using T 1. Solid lines show the
performance of our optimization, while dotted lines and broken lines show
the performance of “view-based adaptation logic” and “rate-based adaptation
logic”, respectively.

points, where VQM is Video Quality Metric [2]. Note that a
visually pleasant video usually has a VQM score below 0.2
and a gain in VQM of 0.1 is a good quality improvement as
shown in [9].

3) Baseline Algorithms: Our proposed algorithm is com-
pared to two recent works: the one proposed in [3] is labeled
in the following as “view-based adaptation logic”, while
the second one is extrapolated by [4] and labeled as “rate-
based adaptation logic”. The “view-based adaptation logic”
optimizes the best subset of camera views given a total channel
constraint, but under the constraint of equal coding rate for all
selected camera views. In [4], a two-step algorithm is used,
where in the first step the set of camera views is selected, and
then the rate per camera view is optimized. The algorithm
was originally limited to subsets of two or three camera
views, and it has been extended here to the case of navigation
window. This means that the “view-based adaptation logic”
first selects two camera views for one segment that better cover
the navigation window, then the coding rates for the selected
camera views are optimized given the channel constraints. In
our work, we rather consider a joint optimization of the camera
views subset and the coding rates.
B. Simulation Results

We first compare the proposed adaptation logic with the
baseline in the case of a fixed navigation window. This
particular scenario of low-interactivity is the most favorable
one for the baseline algorithms, which do not fully take into
account interactivity in their optimization.

In Fig. 4, the expected distortion as a function of the
available bandwidth is provided for a navigation window
w = [1.5 8.5] when the representation set T 1 is available at
the server. Simulation results are provided for our optimization
(solid lines) as well as competitor algorithms, i.e., “view-based
adaptation logic” (dotted lines) and “rate-based adaptation
logic” (broken lines). It can be observed that, even in this
particular static scenario, the proposed optimization always
outperforms the baseline ones for any channel constraint with



a gain up to 0.05 with respect to “view-based adaptation logic”
for the “Shark” and a gain up to 0.18 with respect to “rate-
based adaptation logic” for the “Hall”. This is because our
method is able to find the right tradeoff between coding and
synthesis artifacts.

To better understand this tradeoff, in Fig. 5 we provide the
optimal representation sets for each video sequence for all
algorithms, when the channel constraint is set to c = 10Mbps.
Each point along the curves is an additional representation
whose camera view index is indicated in the x-axis and its
coding rate is indicated in the y-axis. For the “Dancer” se-
quence, the proposed optimization selects 4 views at medium-
high rates to cover the navigation window, while a larger
number of views at lower rates are selected for the “Hall”
sequence. This is explained by the fact that “Dancer” sequence
is highly affected by coding artifacts (due to the high-motion
content) and not drastically by the synthesis artifacts (due to
a simple scene geometry). On the contrary, “Hall” has the
largest dissimilarity among adjacent camera views, making
the synthesis process highly challenging. Therefore, many
camera views are selected in such a way that virtual viewpoints
are always synthesized by close-by anchor views. To meet
the channel constraints, the camera views downloaded for
“Hall” are the ones encoded at lower rate. Therefore, the
joint optimization of both camera views and encoding rates
leads to an unequal allocation of the 10Mbps available per
sequence, based on the content characteristics. This unequal
allocation is a key concept of our method and it is not achieved
by the baseline methods. The view-based adaptation logic is
limited to the same rate for all the views and most of the
time selects many views but at low coding rate. This might
be convenient for the “Hall” sequence but not for “Dancer”.
On the contrary, the rate-based adaptation leads to a limited
number of downloaded views but at high coding rate. This can
be a close to optimal camera selection for “Dancer” but not
for the “Hall” sequence.

We now consider more interactive scenarios, where users
navigate within the 3D scene. This leads to a variation of
the navigation window over time. We simulate three types of
navigation paths: (1) a uniform navigation with view 2.4 as
first viewpoint; (2) a non-uniform navigation with pn = 0.3
and view 2.4 as starting point; (3) a non-uniform navigation
with pn = 0.6 and view 5.1 as initial view. To better
understand the temporal variation of distortion, we first depict
the simulated distortion over time derived from a specific
bandwidth constraint realization. This varied bandwidth is
randomly generated by the channel model with pc = 0.5
and indicated in the right y-axis of Fig. 6. For each segment
downloaded progressively, the experienced distortion for the
navigation window of interest is provided in the left y-axis
of Fig. 6 for the “Hall” video sequence and with T 1 as the
set of representations available at the server. As expected, the
greater the available bandwidth the lower the distortion. Most
importantly, despite the low channel bandwidth values, our
adaptation logic outperforms the baseline ones since it is able
to adapt its requests to the interactivity of users. Up to 0.06
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Fig. 5. Comparison of selected optimal representation sets with navigation
window [1.5 8.5] at C = 10Mbps using T 1.

and 0.19 gains in the uniform case are achieved with respect
to view-based and rate-based adaptation logic, respectively.

To conclude, we test our proposed adaptation logic for
different representation sets stored at the main server as well
as different video sequences. Dynamic channels are considered
with pc = {0.25, 0.5, 0.75, 0.9}. The results are shown in Fig.
7 and Fig. 8 respectively for T 1 and T 2 representation sets
at the server. In both scenarios, the performance of proposed
adaptation algorithm (solid curves) substantially outperforms
that of two comparative algorithms (dashed curves) for all
categories of clients. The gain is however more limited in
the case of a more limited representation set (Fig. 8). This is
expected since the small set T 2 reduces the search space in the
optimization as well as the room for finding optimal solutions.
However, in the second case of non-uniform navigation for the
“Hall” sequence, when using T 1, the overall mean distortion
reduction that we achieve is up to 0.03 with respect to the
“view-based adaptation logic” and 0.1 with respect to “rate-
based adaptation logic”, while using T 2, we can also achieve
the distortion reduction up to 0.03 and 0.09, respectively. We
recall that a distortion reduction of 0.1 is considered to be a
significant improvement.

In summary, the above results have shown that the nav-
igation distortion can be reduced for clients in the inter-
active MV system when the optimal representation set is
designed following our joint optimization logic. This shows
the importance of taking into consideration the video content
characteristics, bandwidth constraints, the users interactivity
and representation sets available at the server when selecting
the content to be downloaded by the client.

V. CONCLUSION

In this paper, we study a navigation-aware HAS logic
optimization problem for interactive MV video systems in
order to minimize the navigation distortion and view-switching
delay. To the best of our knowledge, it is the first work about
formal optimization of HAS-client controller for adaptive MV
streaming that jointly select the best anchor views subsets
and the corresponding encoding rates. Our algorithm properly
takes into consideration both video content characteristics and
user interactivity level and outperforms competitor algorithms
in different scenarios. We show that it is necessary to find the
proper tradeoff between view quality and number of reference
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Fig. 6. Distortion comparison over time in different navigation distribution cases with a specific channel realization using T 1 for “Hall”.
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Fig. 7. Comparison of average distortion over time in different navigation distribution cases using T 1.
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Fig. 8. Comparison of average distortion over time in different navigation distribution cases using T 2.

views in constrained-resource networks. Future work will
consider the deployment of the proposed solution in realistic
systems.
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