
Modeling Flow Setup Time for Controller
Placement in SDN: Evaluation for Dynamic Flows

Mu He, Arsany Basta, Andreas Blenk, Wolfgang Kellerer
Chair of Communication Networks

Department of Electrical and Computer Engineering
Technische Universität München

Email: {mu.he, arsany.basta, andreas.blenk, wolfgang.kellerer}@tum.de

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Software-Defined Networking (SDN) controllers are
network entities that act as strategic control points in an SDN
network. Controller placement studies mostly aim at optimizing
network performance in terms of control latency, reliability
and resilience, given network characteristics that are static. Yet
dynamic traffic conditions, if not adapted by the controller
placement properly, may cause high end-to-end flow setup time.
For reactive controllers, the end-to-end flow setup time of a
flow implies the difference between sending time at the source
and receiving time at the sink of the first packet in that flow.
Therefore, end-to-end flow setup time indicates the amount of
time needed to set up forwarding rules in all involved switches
and acts as a primary concern in terms of service establishment of
network operators. In this paper, we analyze the controller place-
ment for dynamic traffic flows based on a combined controller
placement model: controller locations and switch-to-controller
assignments are simultaneously optimized for minimum average
flow setup time with respect to different traffic conditions inside
the network. Linearization method is applied to transform the
problem into a Mixed Integer Programming (MIP) problem
which can be solved optimally. Two derivatives are also presented
for comparison, one optimizing only controller locations and
the other optimizing only switch-to-controller assignments. Our
simulations cover two real network topologies and we explain the
effects of the models have on the flow setup time with respect to
dynamic flows. For low flow densities, the controller placement
that adapts to flows could reduce the average flow setup time
by about 50% compared to the static placement. However, when
densities are high, the need of changing controller placement to
guarantee flow setup performance is marginal.

I. INTRODUCTION

Software-Defined Networking (SDN) is a novel network
architecture which targets programmable, flexible and dynamic
management of network resources with minimal interruption
of network services. Concerning scalability and single point
of failure issues [1], the architecture of physically distributed
controllers sharing global network states becomes a promising
solution. HyperFlow [2] is proposed as the first prototype
distributing control plane logic among several controllers.
ONOS [3] and OpenDaylight [4], as distributed SDN plat-
forms, address the performance and reliability concerns in
large operator networks. Controller placement in SDN includes
several system components to change, namely the controllers’
placement and also the switch-to-controller assignments. Dis-
tributed controllers running on VMs in data centers as a cloud
solution can be migrated over different locations [5]. Control
plane migration protocol [6], on the other hand, guarantees a

seamless change of switch assignment. However, the evalua-
tion of which components should change given certain flow
characteristics has not been considered in a comprehensive
way so far.

Given topology’s graph characteristics, we would expect
one optimal placement suffices most network management
concerns. However, it does not always satisfy controller re-
sponse time requirement when traffic flows vary dynamically
[7]. Suppose a large backbone network spanning the US. In the
morning of eastern coast side, the probability of high volume
traffic is much higher than that of western coast side because
of time difference. Moreover, traffic variability and sudden
bursts occur even in small time scales. Working reactively, a
controller needs to install flow rules in all involved switches
inside its control domain when it receives the first packet of
a flow. We refer the total time involved to forward the first
packet of a flow from source to destination as end-to-end flow
setup time Tf , as all switches will be ready to directly forward
the following packets after the first one. For the flows that
only contain a few packets, e.g. DNS requests, Tf is a non-
negligible part in each flow’s lifetime and the responsiveness
of those network services thus greatly impacts user experience.

Consequently, it is critical that controller placement can
react to different flow distributions, for lower Tf of all
flows and better allocation of controller resources. A flow
distribution describes the sources and destinations of current
flows for clarification and different flow distributions reflect
dynamic traffic flows varying over time. Up to now, the effect
of flow dynamics on the flow setup time and, in particular,
on the change of different components involved in controller
placement has not received enough attention.

We build our work on top of [8], in which Tf is mentioned
but not clearly defined. Because of SDN’s architecture, Tf is
a combination of control latencies of some (not all) switches
in the path and the total forwarding latency. After proposing a
mathematical formulation of Tf , we formulate the controller
placement problem with respect to flow distribution as an
optimization problem, which minimizes average end-to-end
flow setup time. From a flow’s perspective, it prefers the
controller placement in which its own Tf is minimum. The
global optimum is therefore the placement that average Tf of
all flows in a flow distribution is minimized. As a different
flow distribution presents, the controller placement will also

change accordingly.
This paper focuses on controller placement for average flow

setup time improvement in SDN and makes the following
contributions: 1) formulating end-to-end flow setup time in
SDN; 2) building up a combined controller placement model
which minimizes average flow setup, as well as two derivatives
that represent the change of different components in controller
placement; 3) evaluating optimal placement results of two
real network topologies for different flow distributions and
analyzing the influence of different models including different
system components to change.

The remainder of this paper is structured as follows. In
Section II, we give a summary of related work in controller
placement. Formulation of flow setup time and a controller
placement problem which minimizes this metric are proposed
in Section III. Section IV presents the simulation results of
our optimization model, followed by conclusions drawn and
future work in Section V.

II. RELATED WORK

Controller Placement in SDN. Heller et al. in [9] initiated
the controller placement problem and formulated it as a
general facility location problem. They observed the effects
of controller placement on both average control latency and
worst-case control latency, between which a trade-off exists.
[10] brought in a combination of real costs of controller
deployment and device interconnection and then solved the
problem optimally via brute force search. The work in [11],
while considered load alleviation on controllers in addition
to control latency, proposed a heuristic approach. [12], [13],
[14] and [15] paid attention on the reliability and resilience
aspects of control paths. They compared algorithms such as
random, greedy and simulated annealing and tried to find the
most efficient one.

Controller Placement for Dynamic Traffic. The above
controller placements would not adapt to dynamic traffic
inside the network, which would lead to possible performance
degradation. Yao et al. in [16] considered the node weight
when placing the controllers, and balanced the load of mul-
tiple controllers by a dynamic switch migration algorithm.
They assumed yet only one switch is allowed to change its
assignment from one controller to another. The work in [7]
did switch-to-controller assignment update with respect to
dynamic aggregate traffic in data center networks and proposed
a two-phase algorithm to solve it efficiently; nevertheless, con-
troller placement update was not considered. Bari et al. in [8]
proposed a framework which adapts the number of controllers
and their locations with changing network conditions for lower
average Tf , based on a compound cost function. However, Tf

is not appropriately modeled and the optimization model could
not be solved optimally. Also, the effect of flow dynamics on
the flow setup time is not shown.

III. MODEL AND FORMULATION

In this section, we start by presenting the system model
and the assumptions. With the help of an example, we then

Control Plane

Data Plane

C1 C2

S11

S13

S12

S21

S22

S23

H1
H2

Substrate Network Connection

Inter-Controller Connection

Flow Forwarding Path

Initial Flow Setup Request

Intermediate Flow Setup Request

Flow Rule Setup

Domain 1

Domain 2

Fig. 1. Illustration of inter-domain flow and switch-controller interactions.

give a mathematical formulation of end-to-end flow setup time.
Afterwards, the controller placement problem is formulated
as a non-linear programming problem with the objective of
minimizing average flow setup time given flow profile as input,
followed by necessary linearization methods. In the end, more
constraints are taken into consideration to address the cases
that only controller placement or only switch-to-controller
assignment is able to change.

A. System Model: SDN with Distributed Controllers

We consider an SDN network with the topology following
an undirected and connected graph G = (V,E). Each node
V in the graph hosts an SDN switch which is assigned to
exactly one controller as its master. All switches that are
controlled by the same controller form a control domain of that
controller. K distributed controllers, that compose the control
plane, need to be placed and the potential nodes that could host
a controller are represented by C ⊆ V . Each controller only
installs flow rules to its control domain switches reactively
after it receives a flow setup request and the control-plane
network is not separated from the data-plane network (in-band
control). Shortest-path algorithm is applied for control-/data-
plane routing and the forwarding latency between two nodes
u and v is denoted as Du,v .

We assume the scenario in which no controller is over-
loaded. [1] confirmed that the processing time for each flow
setup request varies between 100 and 150 microseconds when
controller is not overloaded. Therefore, compared with the
forwarding latency on each link, which is in a magnitude of
millisecond in large national topologies, the processing time
can be neglected. Flow profile F represents the set of current
flows in the network, indicating one flow distribution. Each
element f ∈ F is defined as a source-destination node pair and
its forwarding path is represented as an ordered set of node pair
pf from source to destination. Note that as the control plane
adapts to dynamic flow profiles, system reconfigurations, i.e.
migrating controllers and reassigning switches, are inevitable.
[17] and [6] mentioned that the reassignment of a switch takes

C1

S11 S12

T1

T2 T3
....

....

S

S S

S

(a) T1 + T2 > T3

C1

S11 S12

T1

T2

....

S

S

(b) T1 + T2 = T3

Fig. 2. (a) and (b) cover all possible topologies for depiction of flow setup
time. A flow enters the control domain of C1 at S11 and leaves from S12. T1

is the latency between S11 and S12. T2 and T3 represent control latencies of
S11 and S12. There are two disjoint control paths in (a) just for illustration
and switches in two control paths could actually overlap. The number of
switches residing in each control path is greater than or equal to zero.

several RRTs between the switch and the controller, during
which the switch experiences a performance degradation.
However, in this paper we assume that the reconfiguration
does not have any effect on Tf . An overview of the input
sets and parameters is presented in Table I.

B. End-to-End Flow Setup Time

Following [8], [18], [19] and [20], we define end-to-end
flow setup time Tf as follows. Consider an inter-domain flow
in Figure 1, which originates at H1 and ends at H2. When the
first data packet of this flow reaches switch S11, the switch has
no stored forwarding rule with respect to this new flow and it
thus sends an initial flow setup request to its master controller
C1. After flow rules are properly decided, the controller sends
them to every involved switch inside its own control domain, in
this case S11 and S12. The data packet is then forwarded inside
the first domain until it enters the second domain. Similarly,
the switch S21 initiates an intermediate flow setup request to
its master controller C2, waits for the flow rule setup and
forwards it further. Tf is then the difference between the
time S11 receives the first data packet and S22 successfully
forwards it to the destination host H2. Next we will provide
a formulation of Tf .

For simplicity, we consider T ′
f which is the time for the

packet to go through one control domain. Figure. 2 illustrates
this scenario in all possible topologies and S11 acts as the
ingress switch, while S12 is the egress switch. The forwarding
latency T1 between S11 and S12 and the control latencies T2

and T3 of S11 and S12 are already known. If we compare
the magnitude of T1 + T2 and T3, we would encounter three
situations. When T1 + T2 > T3 as in Figure 2a, T ′

f = T2 +
max(T2 + T1, T3) = T1 + 2T2. The first data packet will be
directly forwarded when it arrives at S12, since the flow rule
setup packet reaches S12 earlier than the data packet. Figure 2b
shows another case that T1+T2 = T3 and that the control path
of S12 has to go through S11, resulting in both flow rule setup
packet and data packet simultaneously reach S12 and therefore
T ′
f = T2+T2+T1 = T1+2T2. The case that T1+T2 < T3 does

not exist because the control path of S12 is not the shortest

TABLE I
LIST OF INPUT SETS AND PARAMETERS

Notations Implication

V Set of nodes

E Set of links with E ⊆ V × V

G(V,E) Substrate network with node set V and link set E

C Set of possible controller locations with C ⊆ V

F Set of flows in the network (i.e. flow profile) with f [s]
and f [d] as source node and destination node for f ∈ F

pf Ordered set of node pairs from source to destination on
flow path of f ∈ F with pf ⊆ E

P Set of flow paths pf

K Number of controllers to be placed

Du,v Forwarding latency from node u to node v with u, v ∈ V

CLi Set of nodes in ith cluster with CLi ∈ V and 1 ≤ i ≤ K

PL Set of controller locations with PL ∈ V and |PL| = K

TABLE II
LIST OF VARIABLES

Variables Implication

pc Binary variable representing whether a controller is placed
on c ∈ C

av,c Binary variable representing whether a switch v ∈ V is
assigned to a controller c ∈ C

clv Non-negative variable representing the control latency of
a switch v ∈ V

sdc,u,v Binary variable representing if both switches u ∈ V and
v ∈ V are in the control domain of controller c ∈ C

ddu,v Binary variable representing whether two switches u ∈ V
and v ∈ V are in different control domains

nru,v Non-negative variable representing the necessary control
latency if the flow goes from u to v

TABLE III
SIMULATION PARAMETER SETTINGS

Parameters Values

Flow density D 0.05, 0.3, 0.6, 0.9

Traffic intensity Following log-normal distribution with
mean=1, var=0.8, in GBps

Data rate per flow 50 Mbps

Topologies Abilene (11 nodes), AttMpls (24 nodes)

CPP models CTR-SW, CTR, SW, STATIC

to the controller C1, which violates the assumption of our
system model. From both conditions, we could conclude that
T ′
f is a summation of twice the control latency of the ingress

switch S11 and the forwarding latency of the flow inside this
domain. As we consider all control domains that a flow goes
through, Tf thus consists of every involved flow setup request
and reply, as well as a total forwarding delay from source to
destination.

C. Combined Model for Controller Placement

1) Variables and Constraints: Table II lists all the variables.
Constraint (1) ensures that K controllers are to be placed.∑

c∈C

pc = K (1)

Constraint (2a) forces each switch to be controlled by only
one controller and Constraint (2b) ensures that a switch needs
be assigned to a location in which a controller is placed.

∑
c∈C

av,c = 1,∀v ∈ V (2a)∑
v∈V

av,c ≤|V | · pc,∀c ∈ C (2b)

Constraint (3) assures the latency between a switch and its
master controller to be either zero, when their places coincide,
or the forwarding latency between them in the other case.

clv =
∑
c∈C

av,c ·Dv,c,∀v ∈ V (3)

For every two switches, they need to be assigned to the
same controller if they are in the same control domain and this
is guaranteed by Constraint (4). Also, after checking the two
switches’ assignments to all potential controller locations with
Constraint (5), it is clear whether or not they stand in different
control domains. Both constraints can actually be combined;
nevertheless, we keep them separately for latter linearization
purposes.

sdc,u,v = au,c · av,c,∀u, v ∈ V,∀c ∈ C (4)

ddu,v = 1−
∑
c∈C

sdc,u,v,∀u, v ∈ V (5)

For each consecutive node pair along the flow path, if they
are in different domains, the second switch needs to issue a
flow setup request and its control latency will get involved;
otherwise it simply forwards the packet to the subsequent
switch.

nruv = clv · ddu,v,∀(u, v) ∈ pf (6)

2) Metric and Objective: After introducing variables and
constraints, formulating the metric is quite straightforward.
Following the modeling of end-to-end flow setup time in III-B,
the coefficients of the first two terms in the objective function
(7) represent the sum of latencies of flow setup request and
flow rule installation. Our Metric Mafst is an average of Tf

of all flows in a flow profile. Our objective is to minimize it.

Mafst =
1

|F |
∑
f∈F

(2·clf [s]+2·
∑

(u,v)∈pf

nru,v+Df [s],f [d]) (7)

D. Linearization

As nru,v in Mafst is a high-order entry, linearization by im-
porting auxiliary constraints is necessary to make the problem
solvable in generic optimizers, e.g. Gurobi and CPLEX. For
Constraint (4), which has a product of two binary variables on
its right side of the equal sign, we replace it by three equations.

sdc,u,v ≤ au,c,∀u, v ∈ V,∀c ∈ C (8a)
sdc,u,v ≤ av,c,∀u, v ∈ V,∀c ∈ C (8b)
sdc,u,v ≥ au,c + av,c − 1,∀u, v ∈ V,∀c ∈ C (8c)

For Constraint (6), which consists binary and non-binary
variables, four equations need to be introduced.

nru,v ≤ ddu,v · cl,∀u, v ∈ V (9a)
nru,v ≤ clv,∀u, v ∈ V (9b)

nru,v ≥ clv − (1− ddu,v) · cl,∀u, v ∈ V (9c)
nru,v ≥ 0,∀u, v ∈ V (9d)

In order to generate a feasible solution space, constant cl
should be an upper bound of clv,∀v ∈ V . We assign cl with
the worst case end-to-end forwarding latency in the topology.

E. Two Derivative Models

The previous optimization model, which we refer to as
CTR-SW, allows the placement variable p and assignment
variable a to change synchronously, when a new flow profile
presents. In order to check the performance in case of only
controller is allowed to move, or only switch can change its
assignment, two additional models with the same objective are
provided. For both models, Constraint (1) is replaced by other
constraints.

1) CTR model: This model stands for the scenario that
switch-to-controller assignment is fixed. In other words, the
control domains remain unchanged, while controller move
inside their control domains. Control domain clustering in-
formation is assumed to be given. Constraint (10) and (11)
assure that there is one and only one controller for each
control domain and the domain-switches are assigned to that
controller. ∑

c∈CLi

pc = 1, for i = 1, 2, ...k (10)

∑
v∈CLi,c∈CLi

av,c = 1, for i = 1, 2, ..., k, (11)

2) SW model: This model targets the scenario that con-
trollers stay in their places and switches change their as-
signments, like the case in [7] and [16]. Controller location
information is assumed to be given. Constraint (12) fixes the
location of each controller.

pc = 1,∀c ∈ PL (12)

1 2 3 4 5 6 7 8 9 1011

11
10

9
8

7
6

5
4

3
2

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) D = 0.05

1 2 3 4 5 6 7 8 9 1011

11
10

9
8

7
6

5
4

3
2

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) D = 0.3

1 2 3 4 5 6 7 8 9 1011

11
10

9
8

7
6

5
4

3
2

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c) D = 0.6

1 2 3 4 5 6 7 8 9 1011

11
10

9
8

7
6

5
4

3
2

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(d) D = 0.9

Fig. 3. Controller placement for Abilene considering different flow densities, each square shows one possible placement (two axes are two controller locations)
and the darkness shows the possibility of being optimal (K = 2). Small squares in the upper triangle represent all combinations of two controller locations
and the darker a square is, the higher possibility the corresponding combination has.

1 2 3 4 5 6 7 8 9
K

2

4

6

8

10

12

14

16

18

20

M
a
fs
t [

m
s]

D= 0. 05

D= 0. 3

D= 0. 6

D= 0. 9

(a) Abilene, K ∈ [1, 9]

1 2 3 4 5 6 7 8 9
K

2

4

6

8

10

12

14

16

18

20

M
a
fs
t [

m
s]

D= 0. 05

D= 0. 3

D= 0. 6

D= 0. 9

(b) AttMpls, K ∈ [1, 9]
Fig. 4. Optimal average flow setup time (in milliseconds [ms]) of CTR-SW
for different flow densities as a function of number of controllers K.

IV. SIMULATION AND EVALUATION

In this section, we investigate the behavior of the combined
model as well as the derivatives and analyze their trade-offs.

The chosen network topologies are Abilene (11 nodes) and
AttMpls (24 nodes) [21].

A python-based framework based on the work in [22] is
implemented and Gurobi 6.5 is chosen as our optimizer. The
parameter settings are given in Table III. K is chosen from
1 to the total number of nodes, to exploit the effect of the
number of controllers K on the metric. Flow density D is
introduced as a parameter representing the level of sparseness
of flow distribution inside the topology. Each flow distribution
is represented by a flow profile and we produce flow profiles
in the following way. There are in total N = |V | × |V |
source-destination pairs in G(V,E) and N · D pairs are
randomly chosen. Afterwards, the number of flows on each
pair will be generated. It is the quotient of total traffic volume
and average data rate per flow. Traffic volume follows log-
normal distribution [23]. For each D, flow profile generation
is repeated 100 times for varying flow characteristics in order
to achieve different flow distributions.

As is explained in Section III, we need clustering informa-
tion as additional input for CTR and we refer to the spectral
clustering method provided in [24]. Controller placement
model minimizing average control latency [9] is applied to
get controller location information for additional input for SW.
As a baseline, STATIC applys the same placement, which is
obtained by CTR-SW for the first flow profile, throughout all
flow profiles.

A. Controller Placement With Respect To Flow Densities

We first stick with the CTR-SW model and vary flow
densities, as well as the number of controllers. Figure 3 show
the placements of CTR-SW (K = 2) in Abilene with D rising
from 0.05 to 0.9. In Figure 3a, more than half of controller
location combinations are optimal at least once. As flow
distribution becomes denser in Figure 3d, controller locations
converge to the network node 4 and 7. One resides in the center
of the network (Kansas City) and the other is in the center of
the west coast side topology (Sunnyvale). As the average flow
setup time is partly impacted by control path of each switch,
Kansas City is a compromise of east and west parts. Also,
the distances in between the nodes of west part are longer
than those in east part and Sunnyvale acts as a compensation.

1 2 3 4 5
K

6
8

10
12
14
16
18
20
22
24

M
a
fs
t [

m
s]

CTR-SW
CTR

SW
STATIC

(a) Abilene, D = 0.05, K ∈ [1, 5]

1 2 3 4 5
K

10

11

12

13

14

15

16

17

18

M
a
fs
t [

m
s]

CTR-SW
CTR

SW
STATIC

(b) Abilene, D = 0.6, K ∈ [1, 5]

2 4 6 8 10
K

8

10

12

14

16

18

20

M
a
fs
t [

m
s]

CTR-SW
CTR

SW
STATIC

(c) AttMpls, D = 0.05, K ∈ [1, 10]

2 4 6 8 10
K

9
10
11
12
13
14
15
16
17
18

M
a
fs
t [

m
s]

CTR-SW
CTR

SW
STATIC

(d) AttMpls, D = 0.6, K ∈ [1, 10]
Fig. 5. Optimal average flow setup time (in milliseconds [ms]) for different models as a function of number of controllers K.

Flow density plays a role in controller placement. When
flows are fully distributed inside the network, less candidate
placements might contribute to potential controller locations
in optimization. In other words, a set of potential controller
placements can be considered to shrink the set size of C, which
will lead to a smaller optimization runtime.

Figure 4 depicts the relation between the number of con-
trollers K and average flow setup time. We get the optimal
placements of CTR-SW with K changing from 1 to 10 for
both topologies. Then Mafst are plotted with respect to D
and K. Tf is the combination of a fixed part, which is the
path forwarding latency, and a changing part, which comes
from the summation of flow setup request latencies along
the forwarding path. When more controllers are deployed,
each flow has a higher probability of going through more
control domains, but contrarily every involved flow setup
request latency tends to be smaller, because of decreased
control domain size. We can observe that Mafst monotonically
decreases as K increases, yet adding controllers yields less
than linear reduction in Mafst. A saturation point can also be
detected in Figure 4a for D = 0.05 and K ≥ 9. It means that
a large number of controllers could assure the changing part
in Mafst to be zero if the flow distribution is sparse. As D
increases, two phenomena can be observed. The distribution of
Mafst becomes narrower, meaning that the optimal placement
converges. Also, the expectation of Mafst increases, since
controller placement could not ensure the minimum Tf of
each individual flow and when flow density is higher, more
flows with longer Tf contribute to a larger Mafst.

B. Effectiveness Of Adapting To Dynamic Flows

Now we focus on the comparison among all models. Fig-
ure 5 depicts average flow setup time Mafst of CTR-SW,
CTR, SW and STATIC with 99.9% confidence in Abilene and
AttMpls. We make the following observations: (1) For a sparse
flow distribution (D = 0.05), CTR-SW, CTR and SW, which
adapt to dynamic traffic flows, mostly outperform STATIC,
which sticks to the first placement throughout all flow profiles.
When K > 2 and in Abilene, Mafst of STATIC is more than
twice that of CTR-SW. It demonstrates that static controller
placement could result in severely slow flow setup, if the static
placement we stick to is not properly chosen. (2) As flow
distribution becomes much denser (D = 0.6), the advantage
of CTR-SW over STATIC is not significant any more. Since

1 3 5
K

(a) D= 0. 05

10-3

10-2

10-1

100

101

R
un

tim
e

of
 G

ur
ob

i [
s]

1 3 5
K

(b) D= 0. 3

1 3 5
K

(c) D= 0. 6

1 3 5
K

(d) D= 0. 9

CTR-SW CTR SW

Fig. 6. Solution runtime (in seconds [s]) of different models and flow densities
(Abilene, K ∈ [1, 5], y-axis in log-scale).

2 4 6 8 10
K

(a) D= 0. 05

10-1

100

101

102

103

R
un

tim
e

of
 G

ur
ob

i [
s]

2 4 6 8 10
K

(b) D= 0. 3

2 4 6 8 10
K

(c) D= 0. 6

2 4 6 8 10
K

(d) D= 0. 9

CTR-SW CTR SW

Fig. 7. Solution runtime (in seconds [s]) of different models and flow densities
(AttMpls, K ∈ [1, 10], y-axis in log-scale).

CTR-SW ends up with nearly the same optimal solution for
different flow profiles, abiding any flow profile only loses less
than 1% optimality. Moreover, STATIC clearly beats CTR and
SW. Since CTR and SW models attempt changing either the
controller locations or the switch-to-controller assignments,
they end up in a less optimal solution. (3) CTR-SW always
guarantees the best Mafst. As the number of controllers
K becomes large, the gap in between CTR-SW and SW
stays unchanged. The performance difference between CTR
and SW, however, highly depends on K and topology. For
AttMpls, Mafst of CTR may even become worse, as more
controllers are deployed. The goodness of clustering algorithm
greatly affects the performance of CTR. Spectral clustering,

which only targets at nearly equal-sized clusters, does not
always benefit Tf . Moreover, Mafst of SW decreases as K
increases for both topologies, which demonstrates the positive
effect of average control latency on Mafst.

C. Runtime Evaluation

Figures 6 and 7 show the runtime for solving the models
of CTR-SW, CTR and SW. For CTR-SW, the runtime of
K > 1 takes about 10 times and 100 times that of K = 1
for Abilene and AttMpls respectively. The difference between
each K for K > 1 indicates that more controllers does not
necessarily bring in a harder problem. Larger D, however, for
both topologies and all K, results in an unapparent increase
in runtime. Unlike other two models, CTR becomes simpler
to solve as K increases, because having more clusters is also
cutting off more search space. SW, on the contrary, takes more
time for larger K. In case SW or CTR outputs near optimal
solutions as CTR-SW, it can be used to obtain savings in
runtime.

V. CONCLUSION

In this paper, we look into flow setup time in SDN which
reflects the goodness of service that network provider can
support. We design a controller placement model with the
metric of average flow setup time, reduce the model’s dimen-
sionality and solve it optimally. Two derivatives are introduced
to represent the change of different components involved
in controller placement. Simulation results have shown the
performance of CTR-SW for different flow dynamics and
different number of controllers. Moreover, we demonstrate the
effects of the different models with respect to dynamic flows.
Whereas controller placement models, that adapt to different
flows, can reduce the average flow setup time by up to 50%
(CTR-SW), advantages of a static placement (STATIC) are
revealed when flow densities are high. Optimization runtime
measurements reveal the complexity of different models.

For future work, we will consider the cost of controller
migration, depending on its load, and the cost of switch reas-
signment for generating new optimal placements. Besides, it
is important to consider the impact on flow setup performance
during controller replacement. The frequency of controller
replacement will also be studied based on the dynamic traffic
input.

ACKNOWLEDGMENT

This work is part of a project that has received funding from
the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation program (grant
agreement No 647158 - FlexNets)

REFERENCES

[1] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Presented
as part of the 2nd USENIX Workshop on Hot Topics in Management of
Internet, Cloud, and Enterprise Networks and Services, 2012.

[2] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking, 2010, pp. 3–3.

[3] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[4] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven sdn controller architecture,” in The Proceedings of 15th
IEEE WoWMoM. IEEE, 2014.

[5] F. Travostino, P. Daspit et al., “Seamless live migration of virtual
machines over the man/wan,” Future Generation Computer Systems,
vol. 22, no. 8, pp. 901–907, 2006.

[6] A. Basta, A. Blenk, H. B. Hassine, and W. Kellerer, “Towards a dynamic
sdn virtualization layer: Control path migration protocol,” in Network
and Service Management (CNSM), 2015 11th International Conference
on. IEEE, 2015, pp. 354–359.

[7] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic sdn controller assignment
in data center networks: Stable matching with transfers,” in Proc. of
INFOCOM, 2016.

[8] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in soft-
ware defined networks,” in Proceedings of CNSM 2013. IEEE, 2013.

[9] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the first workshop on Hot topics in software
defined networks. ACM, 2012, pp. 7–12.

[10] A. Sallahi and M. St-Hilaire, “Optimal model for the controller place-
ment problem in software defined networks,” IEEE Communications
Letters, vol. 19, no. 1, pp. 30–33, 2015.

[11] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller place-
ment problem in software defined networks,” IEEE Communications
Letters, vol. 18, no. 8, pp. 1339–1342, 2014.

[12] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-
optimized controller placement for software-defined networks,” China
Communications, vol. 11, no. 2, pp. 38–54, 2014.

[13] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan, “Reliability-
aware controller placement for software-defined networks,” in 2013
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2013). IEEE, 2013, pp. 672–675.

[14] M. Guo and P. Bhattacharya, “Controller placement for improving
resilience of software-defined networks,” in 2013 Fourth International
Conference on Networking and Distributed Computing. IEEE, 2013.

[15] D. Hock, M. Hartmann, S. Gebert, T. Zinner, and P. Tran-Gia, “Poco-
plc: Enabling dynamic pareto-optimal resilient controller placement in
sdn networks,” in Computer Communications Workshops, 2014 IEEE
Conference on. IEEE, 2014, pp. 115–116.

[16] L. Yao, P. Hong, W. Zhang, J. Li, and D. Ni, “Controller placement and
flow based dynamic management problem towards sdn,” in 2015 IEEE
International Conference on Communication Workshop. IEEE, 2015.

[17] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Elasticon: an elastic distributed sdn controller,” in Proceedings of
the tenth ACM/IEEE symposium on Architectures for networking and
communications systems. ACM, 2014, pp. 17–28.

[18] K. Bu, “Gotta tell you switches only once: toward bandwidth-efficient
flow setup for sdn,” in 2015 IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS). IEEE, 2015, pp. 492–497.

[19] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Cheetahflow: Towards low
latency software-defined network,” in 2014 IEEE International Confer-
ence on Communications (ICC). IEEE, 2014, pp. 3076–3081.

[20] D. Zeng, C. Teng, L. Gu, H. Yao, and Q. Liang, “Flow setup time
aware minimum cost switch-controller association in software-defined
networks,” in Heterogeneous Networking for Quality, Reliability, Secu-
rity and Robustness (QSHINE), 2015 11th International Conference on.
IEEE, 2015, pp. 259–264.

[21] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[22] A. Blenk, P. Kalmbach, P. van der Smagt, and W. Kellerer, “Boost
online virtual network embedding: Using neural networks for admission
control,” in Proceedings of 12th CNSM. IEEE, 2016.

[23] A. Nucci, A. Sridharan, and N. Taft, “The problem of synthetically gen-
erating ip traffic matrices: initial recommendations,” ACM SIGCOMM
Computer Communication Review, vol. 35, no. 3, pp. 19–32, 2005.

[24] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, “The sdn controller placement
problem for wan,” in 2014 IEEE/CIC International Conference on
Communications in China (ICCC). IEEE, 2014, pp. 220–224.

