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Abstract—In this work, we propose a new channel training
(CT) scheme to enhance physical layer security in a full-
duplex wiretap channel, where the multi-antenna and full-
duplex receiver simultaneously receives the information signal
and transmits artificial noise (AN). In order to suppress the
self-interference caused by AN, the receiver has to estimate
the self-interference channel prior to the data communication
phase. In the proposed CT scheme, the receiver transmits limited
pilot symbols which are known only to itself, which prevents
the eavesdropper from estimating the jamming channel from
the receiver to the eavesdropper, hence effectively degrades the
eavesdropping capability. Compared with the traditional CT
scheme that uses publicly known pilots, the newly proposed
secret CT scheme offers significantly better performance when
the number of antennas at the eavesdropper is larger than one,
e.g., NE > 1. The optimal power allocation between CT and
data/AN transmission at the legitimate transmitter/receiver is
determined for the proposed secret CT scheme.

I. INTRODUCTION

Physical layer security is emerging as a promising technique

to realize and enhance the secrecy of wireless communications

and is also compatible and complementary to the traditional

cryptographic techniques [1]. In the pioneering studies of

physical layer security (e.g., [2]), a wiretap channel was

established as the fundamental model to characterize physical

layer security, in which an eavesdropper (Eve) attempts to

intercept the data transmission between a transmitter (Alice)

and a legitimate receiver (Bob). In the context of multiple-

input multiple-output (MIMO) wiretap channels, artificial

noise (AN)-aided secure transmission is of growing interesting

due to its robustness and desirable performance (e.g., [3–7]).

As a result of the full-duplex techniques coming to reality

[8], AN was proposed to be transmitted by a full-duplex

receiver that can simultaneously receive an information signal

and transmit AN to enhance physical layer security (e.g., [9–

14]). We refer to the wiretap channel with a full-duplex Bob

as the full-duplex wiretap channel.

One of the key challenges faced in designing practical

full-duplex transceivers is self-interference and thus many

techniques have been developed in the literature to suppress

the self-interference [8]. Among the different types of self-

interference cancellation techniques, the channel-aware tech-

nique has attracted increasing research interests since it is

normally the last line of defense against self-interference

in the digital domain [8]. In channel-aware self-interference

cancellation, the channel state information (CSI) of the self-

interference channel (i.e., the channel between the transmit and

receive antennas of a full-duplex transceiver) is first estimated

and then the self-interference is suppressed by beamforming

or subtraction. However, how to perform the self-interference

channel estimation and how to allocate transmit power be-

tween the channel training (CT) and data transmission have

not been addressed in the context of physical layer security.

The assumption that the CSI of the self-interference channel

is perfectly known is widely adopted in the literature and

thus the self-interference can be fully cancelled [9]. This

assumption cannot be justified in many practical scenarios

in which the self-interference channel consists of not only

deterministic direct paths but also random reflected paths from

nearby scatterers. This partially motivates this work, which, for

the first time, examines CT in the full-duplex wiretap channel.

The assumption that Eve knows the CSI of the jamming

channel (i.e., the channel between Bob’s transmit antennas

and Eve) in the full-duplex wiretap channel is adopted in the

literature (e.g., [9, 14]). This assumption ignores one property

of the full-duplex wiretap channel, which is that Bob knows

exactly the signals he transmits. This means that the pilots

used to estimate the self-interference channel are not required

to be public. The ignorance of this property in the literature

leads to the fact that the benefits of transmitting AN by a

full-duplex Bob rather than an external jammer have not been

fully exploited. Therefore, our work explores this property

to redesign CT in order to enhance physical layer security.

We develop, for the first time, a new secret CT scheme

based on this property. Specifically, secret pilots are utilized

to estimate the self-interference channel in limited symbol

periods in order to avoid Eve obtaining the CSI of the jamming

channel. In order to maximize the connection probability (CP)

subject to a maximum allowable secrecy outage probability

(SOP), we determine the optimal transmit power allocation

between CT and data/AN transmission at Alice and Bob under

average power constraints. Our study show that our proposed

secret CT scheme significantly outperforms the traditional CT

scheme (which utilizes publicly known pilots to estimate the

self-interference channel) when NE > 1, where NE is the

number of antennas at Eve. The performance advantage of

our proposed secret CT scheme increases as NE increases. We

further find that the secret CT scheme obtains the same secrecy

performance as the traditional CT scheme when NE = 1.



Fig. 1. The full-duplex wiretap channel of interest.

II. SYSTEM MODEL

A. Channel Model

The full-duplex wiretap channel of interest is illustrated in

Fig. 1, where Alice is equipped with a single antenna, Bob is

equipped with NB full-duplex antennas, and Eve is equipped

with NE antennas. We assume that Bob operates in the full-

duplex mode (i.e., all NB antennas are used for reception and

transmission simultaneously). We denote h ∈ C
NB×1 as the

main channel vector, denote g ∈ C
NE×1 as the channel vector

between Alice and Eve (referred to as the eavesdropper’s

channel), denote Gj ∈ C
NE×NB as the jamming channel

matrix, and denote Hs ∈ C
NB×NB as the self-interference

channel matrix. We assume all the wireless channels within

our system model are subject to independent quasi-static

Rayleigh fading with equal block length1. We further assume

that the entries of h, g, Gj , and Hs are independent and

identically distributed (i.i.d.) circularly symmetric complex

Gaussian random variables with zero-mean. We adopt the

assumption that the variance of each entry in h, g, and Gj is

normalized to one, but the variance of each entry in Hs is σ2

s .

This assumption is to keep the generality of these channels,

since the fading variances (including path loss) of h, g, and

Gj can be effectively absorbed into the noise variance at Bob

and the transmit powers of Alice and Bob, while the fading

variance of Hs is quantified by σ2

s .

We assume that the total duration of each block consists of

T symbol periods, including pilot and data symbols. In the

pilot symbol periods, Alice and Bob send pilots to enable the

estimation of the main channel and the self-interference chan-

nel, respectively. The pilots used by Alice is publicly known.

In the data symbol periods, Alice transmits confidential infor-

mation to Bob while the full-duplex Bob sends AN to aid this

secure transmission. We denote Alice’s transmit powers for

pilots and data by PAp and PAd, respectively. We also denote

Bob’s transmit powers for pilots and AN by PBp and PBa,

1The self-interference channel considered throughout this work is the
effective self-interference channel after channel-unaware interference cancel-
lation. Based on [8] we know that the deterministic components in the self-
interference channel can be removed through channel-unaware interference
cancellation and thus it is reasonable to assume the self-interference channel
after the channel-unaware cancellation is subject to independent quasi-static
Rayleigh fading.

respectively. We consider an average power constraint over

a fading block [15], in which the total energy for a fading

block at Alice and/or Bob is subject to a fixed upper bound.

We also consider the passive eavesdropping scenario, in which

Alice does not know the CSI of the eavesdropper’s channel.

In practice, it is difficult, if not impossible, to know the noise

at Eve. As such, we adopt the worst-case scenario where the

noise at Eve is zero, which is widely used in the literature

(e.g., [4]).

B. Transmission Strategy and Performance Metrics

In the data symbol periods, Alice adopts a fixed-rate wiretap

code that can be described using two rate parameters, namely,

the codeword rate RB and the redundancy rate RE , which are

predetermined and fixed [16]. The actual information rate is

given by RB − RE . For such a transmission scheme, Bob

cannot reliability decode the transmitted information when

the capacity of the main channel is less than RB , while

perfect secrecy against Eve fails when the capacity of the

eavesdropper’s channel is larger than RE [16]. We refer to

the probability of achieving reliable decoding as CP and refer

to the probability of failing to achieve perfect secrecy as

SOP. The CP and SOP exist for the considered full-duplex

wiretap channel due to channel estimation errors. The CP is the

probability that Bob can decode the message for a given RB

with a negligible decoding error probability, which is given by

Pc=Pr(log
2
(1 + γB)≥RB). (1)

Likewise, the SOP is the probability that the capacity of the

eavesdropper’s channel is less than RE , which is given by

Pso = Pr (log(1 + γE) > RE) . (2)

As mentioned above, data transmission in the considered

full-duplex wiretap channel may incur connection and secrecy

outages. Considering block fading channels, we adopt the

effective throughput subject to a given secrecy constraint as

our key performance metric, which is given by [16]

η =
T−NB−1

T
(RB−RE)Pc, (3)

s.t. Pso ≤ ǫ,

where ǫ is the maximum allowable SOP (i.e., the predeter-

mined secrecy requirement of the system). We note that in

this work T , RB , and RE are a priori determined. As such,

the maximization of η subject to Pso ≤ ǫ is equivalent to the

following optimization

maxPc, s.t. Pso ≤ ǫ. (4)

III. SECRET CHANNEL TRAINING SCHEME

In the full-duplex wiretap channel, the pilots sent by Bob to

estimate the self-interference channel can be kept secret to Eve

(i.e., the pilots are secret and unknown to Eve). This is due to

the fact that Bob knows exactly what he transmits and thus it

is not necessary to a priori share his pilots with other devices

to conduct the self-interference channel estimation. As such,



in this section we develop a specific CT strategy dedicated to

the full-duplex wiretap channel, which is named as the secret

CT scheme.

A. Secret Channel Training

In this secret CT scheme, we first set TB = NB , where

TB is the number of symbol periods used to estimate the self-

interference channel Hs. This assumption is to guarantee a

reliable estimate of Hs at Bob according to the principle of

the Linear Minimum Mean Square Error (LMMSE) estimation

(i.e., if TB < NB Bob cannot achieve a reliable estimate of

Hs) [17]. We note that TB = NB is also a hard requirement

for the secret CT scheme since when TB > NB Eve can obtain

partial information about the jamming channel Gj through

blind channel estimation [18] even though she does not know

the pilots sent by Bob. Setting TB = NB guarantees that

the estimation problem of Gj at Eve is ill-posed due to the

unknown pilots (from the signal processing point of view),

and thus Eve cannot achieve any information about Gj in the

secret CT scheme.

To enable Bob to estimate the main channel, Alice transmits

its publicly known pilots. We note that Alice and Bob have to

transmit pilots in different symbol periods in order to achieve

orthogonality between Alice’s and Bob’s pilots, due to the

constraint TB = NB . In this work, we set the number of

symbol periods used to estimate the main channel to be 1 since

Alice is equipped with a single antenna. We note that prior

studies on optimal training resource allocation have shown

that the optimal number of pilot equals the number of transmit

antennas (which is NB for the self-interference channel and 1

for the main channel in this work), under the average power

constraint [15].

When Alice transmits the pilot, the corresponding received

signal at Bob is given by zA =
√

PAphsA + wB , where

zA ∈ CNB×1, sA ∈ C1×1 is the pilot transmitted by Alice

satisfying sAs
†
A = 1, and wB ∈ CNB×1 is the noise at

Bob with i.i.d entries, each of which follows the distribution

CN (0, σ2

B). Considering the LMMSE estimator, based on the

known pilot Bob achieves the estimate of h as [17]

ĥ =

√

PAp

PAp + σ2

B

zAs
†
A. (5)

Based on the properties of LMMSE [17], the entries of ĥ

are i.i.d and each of them follows the distribution CN (0, σ2

ĥ
),

where

σ2

ĥ
=

PAp

PAp + σ2

B

. (6)

Again, due to the properties of LMMSE, the estimation error

h̃ = h− ĥ is independent of ĥ and the entries of h̃ are i.i.d,

each of which follows the distribution CN (0, σ2

h̃
), where

σ2

h̃
=

σ2

B

PAp + σ2

B

. (7)

Since Alice’s pilot is publicly known, Eve can obtain perfect

CSI of the eavesdropper’s channel g in the worst-case scenario

(i.e., when the receive noise at Eve is zero).

When Bob transmits pilots over NB symbol periods with his

NB full-duplex antennas, the signal at his receive antennas is

given by ZB =
√

PBpHsSB +WB , where ZB ∈ C
NB×NB ,

SB ∈ CNB×NB are the pilots transmitted by Bob satisfying

SBS
†
B = INB

, and WB ∈ C
NB×NB is the noise at Bob with

i.i.d entries, each of which follows the distribution CN (0, σ2

B).
Again, adopting the LMMSE estimator (based on the known

SB and σ2

s ) Bob obtains the estimate of Hs as

Ĥs =

√

PBpσ
2

s

PBpσ2
s + σ2

B

ZBS
†
B . (8)

Likewise, the estimation error H̃s = Hs − Ĥs is indepen-

dent of Ĥs and each of its entries follows the distribution

CN (0, σ2

H̃
), where

σ2

H̃
=

σ2

Bσ
2

s

PBpσ2
s + σ2

B

. (9)

When Bob transmits the pilots SB , the received signal

matrix at Eve in the worst-case scenario is given by

ZE =
√

PBpGjSB . (10)

We note ZE ∈ CNE×NB and in order to prevent Eve from

achieving any information on Gj we have to guarantee

NE ≤ NB . Otherwise (i.e., if NE > NB), Eve can learn

the null space of Gj through performing a singular value

decomposition (SVD) on ZE and this null space can be

utilized to cancel the AN transmitted by Bob. As such, the

secrecy CT scheme requires NE ≤ NB . We would like to

highlight that this requirement is solely due to the considered

worst-case scenario where the noise at Eve is zero. This

requirement has also to be met in the traditional CT scheme

(e.g., [4]).

B. Data Transmission with AN following Secret CT

In the data symbol periods, Alice transmits a data stream

while Bob transmits AN to confuse Eve. In addition to

Eve, the AN also causes interference to Bob through the

self-interference channel due to channel estimation errors. In

general, Bob has two strategies to suppress such interference

based on the estimated self-interference channel Ĥs. First, Bob

can subtract the known part of AN based on Ĥs at his receive

antennas since Bob knows AN he transmits. Second, Bob can

transmit AN in the null space of Ĥs, which leads to the fact

that AN that lies in the null space of Ĥs does not cause any

interference to Bob. We note that the second approach requires

that the number of Bob’s transmit antennas is greater than that

of his receive antennas, which is not satisfied in our system

model. Therefore, in this work we assume that Bob adopts the

first strategy to suppress the interference caused by the AN.

The received signal at Bob in each data symbol period is

given by

yB =
√

PAdhx+

√

PBa

NB

Hsn+ vB , (11)

=
√

PAd(ĥ+h̃)x+

√

PBa

NB

(Ĥs+H̃s)n+vB , (12)



where x ∈ C1×1 denotes the transmitted signal satisfying

E[|x|2] = 1, n ∈ CNB×1 is the AN vector, whose entries are

i.i.d circularly-symmetric complex normal random variables

with zero mean and unit variance, and vB ∈ CNB×1 is the

noise vector at Bob with i.i.d entries, each of which follows the

distribution CN (0, σ2

B). Knowing Ĥs and n, Bob can remove

Ĥsn from yB and obtain the effective received signal as

y′B =
√

PAdĥx+
√

PAdh̃x+

√

PBa

NB

H̃sn+ vB . (13)

Although Bob knows that his received signal is subject to

the interference caused by the channel estimation errors in

h and Hs, he cannot suppress such interference since he

does not know h̃ and H̃s. As such, the optimal combining

technique that maximizes the signal-to-interference-plus-noise

ratio (SINR) at Bob is maximum ratio combining (MRC)

based on ĥ (since the entries of ĥ, h̃, Ĥs, H̃s are independent),

which leads to the instantaneous SINR at Bob as

γB =
µB‖ĥ‖

2

µB |ĥ†h̃|2

‖ĥ‖2
+ µS‖ĥ†H̃s‖2

NB‖ĥ‖2
+ 1

, (14)

where µB = PAd/σ
2

B and µS = PBa/σ
2

B .

Likewise, the received signal at Eve in one data symbol

period is given by

yE =
√

PAdgx+

√

PBa

NB

Gjn. (15)

Although Eve knows that her received signal is subject to

the interference caused by the AN, she cannot suppress such

interference since she does not know Gj as discussed in

Section II-B. As such, the optimal combining technique that

maximizes the signal-to-interference ratio (SIR) at Eve is

MRC based on the CSI of the eavesdropper’s channel g.

Following (15) and applying MRC, the SIR at Eve for the

secret CT scheme is given by

γE =
PAdNB

PBa

‖g‖2
∥

∥

∥

g†Gj

‖g‖

∥

∥

∥

2
. (16)

C. Traditional Channel Training Scheme as a Benchmark

In order to better illustrate the benefits of the secret CT

scheme, we now consider the traditional CT scheme as a

benchmark. Unlike the secret CT scheme, in the traditional

CT scheme the pilot transmitted by Bob (i.e., SB) is pub-

licly known, which can be jointly designed with the pilot

transmitted by Alice (i.e., sA). As such, in the traditional CT

scheme we do not need the constraint TB = NB because

Bob’s pilots are known by Eve anyway. Hence, Alice and

Bob can simultaneously transmit pilots over 1 + NB symbol

periods while still ensuring the orthogonality of their pilots.

This setting also guarantees a fair comparison between the

secret CT scheme and the traditional CT scheme, since the

total number of symbol periods allocated to CT is 1 +NB in

both schemes. Therefore, σ2

ĥ
, σ2

h̃
, and σ2

H̃
(which are given by

(6), (7), and (9), respectively, in the secret CT scheme) for the

traditional CT scheme should be updated accordingly.

In the traditional CT scheme, the pilot SB is public and thus

Eve can obtain perfect CSI for the jamming channel Gj in the

worst-case scenario (where the noise at Eve is zero). Since Eve

knows that her received signal is subject to the interference

caused by the AN transmitted by Bob, the optimal combining

technique that maximizes the SIR at Eve is MMSE based on

g and Gj . Following (15) and applying the MMSE combiner,

for the traditional CT scheme the instantaneous SIR at Eve is

given by

γE =
PAdNB

PBa

g†
(

GjG
†
j

)−1

g. (17)

We note that (17) is only valid when GjG
†
j is invertible.

Otherwise, Eve can perfectly cancel the interference caused

by AN and thus the SIR given in (17) approaches infinity. As

such, the traditional CT scheme does also require NE ≤ NB

in order to guarantee interference at Eve (e.g., [4]).

IV. OPTIMAL POWER ALLOCATION WITHIN THE SECRET

CHANNEL TRAINING SCHEME

In this section, we determine the optimal transmit power

allocation between CT and data/AN transmission at Alice and

Bob under average power constraints in order to maximize the

CP for a maximum allowable SOP.

In this work, we consider the average power constraint

at both Alice and Bob. Following (4) the power allocation

optimization for the secret CT scheme can be presented as

max
PAp,PAd,PBp,PBa

Pc, (18)

s.t. Pso ≤ ǫ, (19)

PAp + PAd(T −NB − 1) ≤ EA, (20)

PBpNB + PBa(T −NB − 1) ≤ EB , (21)

where EA and EB are the total powers available at Alice and

Bob for each block of T symbol periods (hence, the average

power constraints per symbol for Alice and Bob are EA/T
and EB/T ), respectively. We next detail how to determine the

solution to (18) (i.e., the optimal values of PAd, PAp, PBa,

and PBp) in the following theorem.

Theorem 1: The optimal value of PAd that maximizes Pc

subject to the constraints given in (19), (20), and (21) can be

obtained through

P∗Ad = argmax
0<PAd<Pm

Ad

Pc(P
†
Ap,PAd,P

†
Bp,P

†
Ba), (22)

where

Pm
Ad = min

{

EA
T −NB − 1

,
EB

τ∗(T −NB − 1)

}

, (23)

P†Ap = EA − PAd(T −NB − 1), (24)

P†Ba = τ∗PAd, (25)

P†Bp =
EB − τ∗PAd(T −NB − 1)

NB

, (26)

and τ∗ can be obtained by solving the following equation

Pso(τ
∗) = ǫ. (27)
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Then, the optimal values of PAp, PBa, and PBp are functions

of P∗Ad given as follows

P∗Ap = EA − P
∗
Ad(T −NB − 1), (28)

P∗Ba = τ∗P∗Ad, (29)

P∗Bp =
EB − τ∗P∗Ad(T −NB − 1)

NB

. (30)

Proof: We first note that both Pso and Pc are both

monotonically decreasing functions of PBa (since as shown

in (14) and (16) both γB and γE decrease as PBa increases).

As such, Pso = ǫ is always achieved in order to maximize

Pc subject to the secrecy constraint (19). Otherwise (i.e., if

Pso < ǫ), we can decrease PBa to increase Pc. Following (16),

we note that Pso only depends on the ratio of PBa to PAd

(i.e., τ ) but not the specific values of PBa or PAd. As such,

we can obtain τ∗ through solving (27). As per τ = PBa/PAd,

we obtain (25). We also note that Pso is not a function of PAp

or PBp as per (16), while Pc monotonically increases as PAp

or PBp increases as per (14). Then, we can conclude that the

equality in both (20) and (21) is always guaranteed, which

leads to (24) and (26), respectively. Finally, (23) is achieved

due to PAp > 0 and PBp > 0.

By substituting P∗Ad, P∗Ap, P∗Ba, and P∗Bp into (1), we can

obtain the maximum CP of the secret CT scheme.

V. NUMERICAL RESULTS

In this section, we present numerical results to examine the

secrecy performance of the proposed secret CT scheme with

the traditional CT scheme as the benchmark.

In Fig. 2 we plot the maximum CP of the secret CT scheme

versus the secrecy constraint indicator ǫ for different values of

NB and NE . We first observe that as ǫ increases the maximum

CP increases, which demonstrates the tradeoff between the

effective throughput and the secrecy constraint. For example,

ǫ
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Ad
versus the secrecy constraint

ǫ for different values of NB and NE , where RB = 5, RE = 3, T = 300,
σ2
s = 1, EA/T = EB/T = 10dB, and σ2

B
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by comparing the values of the maximum CP for ǫ = 0.01 and

ǫ = 0.15 we can see that the cost in terms of the reduction

in the maximum CP to achieve secrecy is significant. We also

observe that the maximum CP decreases as NE increases or

NB decreases, which is mainly due to the fact that the SOP

increases as NE increases or NB decreases.

Under the same settings of Fig. 2, we plot Alice’s optimal

transmit power for data (i.e., P∗Ad) and Bob’s optimal transmit

power for AN (i.e., P∗Ba) versus ǫ in Fig. 3 and Fig. 4,

respectively. We first observe that P∗Ad increases as ǫ increases

in Fig. 3, which demonstrates that more transmit power is

allocated to data transmission as the secrecy constraint is

relaxed. We also observe that P∗Ba decreases as ǫ increases

in Fig. 4, which demonstrates that as the secrecy constraint

is relaxed less transmit power is allocated to AN at Bob.

These two observations confirm that as ǫ increases the optimal

power ratio τ∗ decreases since the SOP is a monotonically

increasing function of τ . In Fig. 3, we also observe that more

transmit power is allocated to data transmission at Alice as

NE decreases or NB increases. In Fig. 4, we also observe

that less transmit power is allocated to AN at Bob as NE

decreases or NB increases. Overall, we can conclude that more

transmit power is allocated to data transmission at Alice and

less transmit power is allocated to AN at Bob as Eve becomes

weaker or Bob becomes more powerful.

We now consider the scenario where Bob and Eve have the

same number of antennas, i.e., NB = NE = N , to compare

the secrecy performance of the secret and traditional CT

schemes. In Fig. 5 we plot the maximum reliable probabilities

of the secret and traditional CT schemes versus N . In this

figure, we first observe that for N = 1 our proposed secrecy

CT achieves the same maximum CP as the traditional CT

scheme. This can be explained by the fact that the SOP for

the secret CT scheme is the same as that for the traditional CT
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scheme for N = 1 and the number of symbol periods allocated

to CT in both the secret CT scheme and the traditional CT

scheme is optimal under average power constraints. We also

observe that for N > 1 our proposed secret CT scheme

significantly outperforms the traditional CT scheme in terms

achieving a much higher maximum CP. Specifically, the secret

CT scheme with ǫ = 0.05 even achieves a much higher

maximum CP than the traditional CT scheme with ǫ = 0.1
when N > 1. This is due to the fact that the secret CT scheme

prevents Eve from obtaining the CSI of the jamming channel.

VI. CONCLUSION

This work devised a new secret CT scheme based on the

property of the full-duplex wiretap channel in which Bob

knows exactly what he transmits. Our studies show that when

NE > 1 the secret CT scheme significantly outperforms the

traditional CT scheme in terms of achieving a much higher

CP subject to the same secrecy constraint, and when NE = 1
they achieve the same secrecy performance. The secrecy

performance improvement of the secret CT scheme relative

to the traditional CT scheme increases as NE increases.
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