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Abstract—Users of cloud computing platforms pose different
types of demands for multiple resources on servers (physical or
virtual machines). Besides differences in their resource capacities,
servers may be additionally heterogeneous in their ability to
service users - certain users’ tasks may only be serviced by a
subset of the servers. We identify important shortcomings in
existing multi-resource fair allocation mechanisms - Dominant
Resource Fairness (DRF) and its follow up work - when used in
such environments. We develop a new fair allocation mechanism
called Per-Server Dominant-Share Fairness (PS-DSF) which we
show offers all desirable sharing properties that DRF is able to
offer in the case of a single “resource pool” (i.e., if the resources of
all servers were pooled together into one hypothetical server). We
evaluate the performance of PS-DSF through simulations. Our
evaluation shows the enhanced efficiency of PS-DSF compared to
the existing allocation mechanisms. We argue how our proposed
allocation mechanism is applicable in cloud computing networks
and especially large scale data-centers.

I. INTRODUCTION

Cloud computing has become increasingly popular as it
provides a cost-effective alternative to proprietary high per-
formance computing systems. As the workloads to data-
centers housing cloud computing platforms are intensively
growing, developing an efficient and fair allocation mechanism
which guarantees quality-of-service for different workloads
has become increasingly important. Resource allocation and
especially fair sharing in such shared computing system is
particularly challenging because of the following reasons: a)
heterogeneity of servers, b) placement constraints, c) dealing
with multiple types of resources, and d) diversity of workloads
and demands.

Real world data-centers are comprised of heterogeneous
machines/servers with different configurations, where some
machines might be incompatible for some processing pur-
poses/tasks. Furthermore, each user may have specific require-
ments which further restrict the set of servers that the tasks
of the user may run on. For example, a user may require a
machine with a public IP address, particular kernel version,
special hardware such as GPUs, or large amounts of memory,
and might be unable to run on machines which lack such
requirements. For instance, it has been observed that over 50%

of tasks at Google clusters have strict constraints about the
machines they can run on [1], [2].

Besides placement constraints, users present diversity over
the amount of resources they need for executing one task. For
instance, the tasks of some users might be CPU intensive while
for others memory or I/O bandwidth might be a bottleneck.
Dominant Resource Fairness is the first allocation mechanism
which describes a notion of fairness when allocating multiple
types of resources [3]. With DRF users receive a fair share
of their dominant resource. Of all the resources requested by
the user (for every unit of work called a task), its dominant
resource is the one with the highest demand when expressed
as a fraction of the overall resource capacity spread across all
available servers. There are several other works investigating
DRF allocation in case that different resources are distributed
over heterogeneous servers but there are no placement con-
straints [4], [5], [6], [7].

There are some recent works investigating max-min fair
allocation/scheduling for one type of resource while respecting
placement constraints [2], [8], [9], [10], [11], [12]. These
schedulers could be useful in a multi-resource setting only
when one of the resources serves as the bottleneck for all users,
otherwise they might result in poor resource utilization [3], [2].
There are limited works in the literature investigating multi-
resource fair allocation while respecting placement constraints
[13], [14], [15], [16]. In this case, it is unclear how to globally
identify the dominant resource as well as the dominant share
for different users, as each user may have access only to a
subset of servers. [14], [15] present an elementary extension
of DRF which identify the share of each user by ignoring
the placement constraints and applying the same ideas as the
un-constrained setting. We show that this approach does not
achieve fairness even in the specific case that one of the
resources serves as a bottleneck (Further discussions could
be found in Section II-B).
Our Contributions: We propose a new allocation mechanism
called Per-Server Dominant Share Fairness. We show that PS-
DSF achieves all the desirable properties offered by DRF for
a single resource pool: sharing incentive, strategy proofness,
envy freeness, Pareto optimality, bottleneck fairness and single
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resource fairness (A detailed description of these properties
can be found in Section II-A). In fact, PS-DSF reduces to
DRF when one considers a single server system.

The intuition behind PS-DSF is to compare and weigh
the allocated resources to each user from the perspective of
each server. PS-DSF identifies a dominant resource and a
virtual dominant share (VDS) for each user with respect to
each server (as opposed to a single system-wide dominant
share in DRF). The VDS for user n with respect to (w.r.t.)
server i describes the fraction of the dominant resource which
should be allocated to user n from server i as if all user
n’s tasks were allocated resources solely from server i. Each
server may then use this localized metric to decide whether to
increase or decrease the allocated tasks to each user without
the need to identify a global dominant share. Besides its
enhanced performance, PS-DSF is the first (to our knowledge)
principled allocation mechanism which could be intrinsically
implemented in a distributed manner.

The rest of this paper is organized as follows: In Section II,
after describing the model, we give the necessary background
and discuss insufficiency of the existing multi-resource allo-
cation mechanisms, especially in case of heterogenous servers
with placement constraints. After presenting our proposed
allocation mechanism in Section III, we investigate different
sharing properties that it satisfies and present a distributed
algorithm to realize it. We present some numerical experiments
in Section IV, and finally we draw conclusions in Section V.

II. BACKGROUND AND MODEL

Consider a set K of K = |K| heterogeneous servers
(resource pools) each containing M types of resources. We
denote by ci,r the capacity of resource r on server i, where
ci,r ≥ 0. Let N denote the set of active users, where N = |N |.
Let dn = [dn,r] denote the per task demand vector for user
n ∈ N , that is the amount of each resource required for
executing one task for user n. Let φn > 0 denote the weight
associated with user n. The weights reflect the priority of users
with respect to each other.

Due to heterogeneity of users and servers, each user may
be restricted to get service only from a subset of servers. For
example, each user may have some special hardware/software
requirements (e.g., public IP address, a particular kernel ver-
sion, GPU, etc.) which restrict the set of servers that the
tasks of the user may run on. Besides such explicit placement
constraints, users may not run their tasks on servers which
lack some required resources.

For instance, consider the example in Figure 1, where three
types of resources, CPU, memory, and network bandwidth
are available over two servers in the amounts of c1 =
[9 cores, 12GB, 100Mb/s] and c2 = [12 cores, 12GB, 0Mb/s],
where no communication bandwidth is available over the
second server. Consider three users with the weights φ1 =
φ2 = 1, φ3 = 2, whose demand vectors are d1 = [1, 2, 10],
d2 = [1, 2, 1] and d3 = [1, 2, 0]. Accordingly, users 1 and 2 are
restricted to get service only from the first server, while user 3

may get service from both servers. In summary, let δn,i = 1 if
the tasks of user n can run on server i, and otherwise δn,i = 0.

 

1 3 

Server 1 Server 2 

𝑑1 = [1, 2, 10] 𝑑3 = [1, 2, 0] 

𝑐1 = [9, 12, 100] 𝑐2 = [12, 12, 0] 

𝑑2 = [1, 2, 1] 

2 

𝜙1 = 1 𝜙2 = 1 𝜙3 = 2 

Fig. 1: A heterogeneous multi-resource system with three users and two
servers.

A. Dominant Resource Fairness

The problem of multi-resource fair allocation was originally
studied in [3] under the assumption that all resources are
aggregated at one resource-pool. Specifically, let cr denote
the total capacity of resource r. Let an = [an,r] denote
the amounts of different resources allocated to user n under
some allocation mechanism A. The utilization of user n of
its allocated resources, Un(an), is defined as the number of
tasks, xn, which could be executed using an, that is:

Un(an) := xn = min
r

an,r
dn,r

, (1)

where, xn is a non-negative real number. [3] argues that the
following important properties must be satisfied by a multi-
resource allocation mechanism:
• Sharing Incentive: Consider a generic uniform allocation

where every user n is allocated φn/
∑
m φm portion of each

resource. An allocation is said to provide sharing incentive,
when each user is able to run more tasks compared to the
uniform allocation.
• Envy freeness: A user should not prefer the allocation of

another user when adjusted according to their weights, i.e.,
Un(an) ≥ Un( φn

φm
am), for all m.

• Pareto Optimality: It should not be possible to increase xn
for any user n, without decreasing xm for some user m.

• Strategy Proofness: Users should not be able to increase
their utilization by lying about their resource demands.
Sharing incentive provides performance isolation, as it guar-

antees a minimum utilization for each user irrespective of
the demands of the other users. Envy freeness embodies the
notion of fairness. Pareto optimality results in maximizing
system utilization. Finally, strategy proofness prevents users
from gaming the allocation mechanism. The reader is referred
to [3] or [17] for further details.

DRF is the first multi-resource allocation mechanism satis-
fying all the above properties. Specifically, for every user n,
the Dominant Resource (DR) is defined as [3]:

ρ(n) := arg max
r

dn,r/cr, (2)



that is, the resource whose greatest portion is required for
execution of one task for user n. The fraction of the DR that
is allocated to user n is defined as dominant share:

sn :=
an,ρ(n)

cρ(n)
. (3)

Without loss of generality, we may restrict ourselves to non-
wasteful allocations, i.e., an = xndn, ∀n. In this case, an
allocation {xn} is feasible when:∑

n

xndn,r ≤ cr, ∀r. (4)

Definition 1. It is said that {xn} satisfies DRF, if it is feasible
and the normalized dominant share for each user, sn/φn
cannot be increased while maintaining feasibility without
decreasing sm for some user m with sm/φm ≤ sn/φn [3].

DRF is a restatement of max-min fairness in terms of
dominant shares. What make it appealing are desirable sharing
properties which are satisfied under this allocation mechanism.
Besides the above-mentioned essential properties, DRF also
satisfies the following simple but essential properties [3].

• Single Resource Fairness: When there is only one resource
type, the allocation satisfies max-min fairness.

• Bottleneck Fairness: If there is one resource which is dom-
inantly requested by each user, then the allocation satisfies
max-min fairness for that resource.

B. Challenges with Heterogeneous Resource-Pools and Place-
ment Constraints

The notion of DRF has been extended to the case of
heterogenous servers, when all types of resources are available
within each server and there are no placement constraints [7].
In this case, DR for user n is readily identified as the resource
whose greatest portion is required for execution of one task
as if all resources were integrated at resource pool. That is,
DR for user n could be identified according to (2), where
cr :=

∑
i ci,r is the total capacity of resource r. Furthermore,

the global dominant share for user n is given by:

sn = xn max
r

dn,r
cr

, (5)

where xn here is the total number of tasks which are allocated
to user n from different servers, that is xn :=

∑
i xn,i. In

[7] it is proposed to find {xn,i} such that max-min fairness is
achieved in terms of global dominant shares. This mechanism,
which is referred to as DRFH, has been shown to achieve
Pareto optimality, strategy proofness, envy freeness and bot-
tleneck fairness. However, it fails to provide sharing incentive
[7].

When there are placement constraints, it is unclear how to
define a single system-wide DR for a user similar to that in
[7]. A natural first thought may be to identify the DR over
the set of eligible servers for each user. However, in this case
users may have an incentive to misreport the set of eligible
servers [14]. A strategy-proof approach is to identify the DR
for each user as if there were no placement constraints and all

resources were integrated at one resource pool. We argue that
this approach, which we refer to as C-DRFH, does not result
in a fair allocation as it does not satisfy bottleneck fairness.

To appreciate this shortcoming of C-DRFH, consider the
example in Figure 1, where the second resource (RAM) is
dominantly requested by every user from its eligible servers.
If we allocate the available RAM proportionate to the weights,
6GB is allocated to the first two suers and 12 GB is allocated to
the third user. Accordingly, each user is allocated x1 = x1,1 =
3, x2 = x2,1 = 3 x3 = x3,2 = 6 tasks (this allocation follows
from our proposed allocation mechanism - see Section III).
However, C-DRFH would instead identify bandwidth as the
dominant resources for the first user and identifies RAM as
the dominant resource for the second and third users. Hence, if
we allocate global dominant shares in a weighted fair manner,
each user is allocated x1 = x1,1 = 2.609, x2 = x2,1 = 3.130,
and x3 = x3,1 + x3,2 = 6 + 0.261 = 6.261 tasks respectively,
which obviously violates fairness on the bottleneck resource.

Table I: Properties of different allocation mechanisms in case of heteroge-
neous servers with placement constraints: sharing incentive (SI), envy freeness
(EF), strategy proofness (SP), Pareto optimality (PO), and bottleneck fairness
(BF).

Property C-DRFH TSF PS-DSF
SI X X
EF X X X
SP X X *
PO X X *
BF X

Yet another extension of DRF that also considers heteroge-
neous servers, all containing all types of resources without
any placement constraints, is CDRF [4]. Specifically, let
γn :=

∑
i γn,i be defined as the number of tasks which

are allocated to user n when monopolizing the whole cluster
(i.e., if n were the only user running on the cluster). An
allocation is said to satisfy CDRF1, when xn/γn satisfies max-
min fairness. In case of one server, xn/γn gives dominant
share for each user n. As a result, CDRF reduces to DRF
in case of one server. In case of multiple heterogeneous
servers with no placement constraints, CDRF is shown to
satisfy Pareto optimality, strategy proofness, envy freeness and
sharing incentive properties [4].

In [14] CDRF has been extended to address the placement
constraints. Specifically, let γn :=

∑
i γn,i be (re)defined as

the number of tasks which are allocated to user n from dif-
ferent servers when monopolizing all servers as if there were
no placement constraints [14]. An allocation is said to satisfy
Task Share Fairness (TSF), when xn/γn satisfies max-min
fairness. TSF is shown to satisfy Pareto optimality, strategy
proofness, envy freeness and sharing incentive properties in
case of heterogeneous servers with placement constraints [14].
However, we argue that this mechanism is not essentially fair
as it does not satisfy bottleneck fairness.

For instance, consider again the example in Figure 1. The
number of tasks that each user may run in the whole cluster

1Containerized DRF



is γ1 = γ2 = 6, and γ3 = 12 tasks, respectively. Hence, each
user is allocated x1 = x1,1 = 2, x2 = x2,1 = 2 and x3 =
x3,1 + x3,2 = 6 + 2 = 8 tasks according to TSF mechanism,
which is completely different and far from the fair allocation.
Table I summarizes different sharing properties which could be
satisfied under different allocation mechanisms. Shortcomings
of the existing allocation mechanisms in case of heterogeneous
servers with placement constraints motivates us to develop a
new allocation mechanism.

III. PER-SERVER DOMINANT SHARE FAIRNESS

In this section we describe PS-DSF, an extension of DRF
that is applicable for heterogeneous resource-pools in the
presence of placement constraints. As discussed in the pre-
vious section, in the case of heterogeneous servers and in the
presence of placement constraints, it is unclear how to globally
identify one DR and the corresponding dominant share for
each user. The intuition behind PS-DSF is to define a virtual
dominant share for every user w.r.t. each server. Towards this,
we first define the DR for every user n w.r.t. each server i as:

ρ(n, i) := arg max
r

dn,r
ci,r

. (6)

Let γn,i denote the number of tasks which could be executed
by user n when monopolizing server i:

γn,i := δn,i min
r

ci,r
dn,r

= δn,i
ci,ρ(n,i)

dn,ρ(n,i)
. (7)

We say that server i is eligible to serve user n when γn,i > 0
or equivalently δn,i = 1. Without loss of generality we restrict
ourselves to non-wasteful allocations, that is an,i = xn,idn,
where an,i = [an,i,r] is the vector of allocated resources to
user n from server i and xn,i ∈ R+ is the number of allocated
tasks from the same server.

Definition 2. The Virtual Dominant Share (VDS) for user n
w.r.t. server i, sn,i, is defined as:

sn,i =
xn
γn,i

, (8)

where xn =
∑
j xn,j is the total number of tasks that are

allocated to user n (whether or not these tasks are actually
allocated using server i).

Intuitively, sn,i gives the fraction2 of the dominant resource
for user n w.r.t. server i which should be allocated to it as if
xn tasks were allocated to it entirely from server i. When the
available resources over each server are arbitrarily divisible,
we have the following condition on {xn,i} to be feasible.

Definition 3. An allocation, {xn,i}, is said to satisfy Resource
Division Multiplexing (RDM) constraint, when:∑

n

xn,idn,r ≤ ci,r, ∀i, r. (9)

For a data-center comprising of a plurality of servers, it is
sometimes of more practical interest to assume that servers

2The reader may note that sn,i could be possibly greater than 1, as some
tasks could be allocated to user n from other servers.

may not be divided to finer partitions [2]. Accordingly, the
hypervisor may only time-share servers among different users.
In this case, we have the following condition on {xn,i} to be
feasible.

Definition 4. An allocation, {xn,i}, is said to satisfy Time
Division Multiplexing (TDM) constraint, when3:∑

n

xn,i/γn,i ≤ 1, ∀i. (10)

It can be observed that TDM constraint is more stringent
than RDM constraint, as (10) implies (9):

1 ≥
∑
n

xn,i
γn,i

=
∑
n

xn,idn,ρ(n,i)

ci,ρ(n,i)
≥

∑
n xn,idn,r
ci,r

, ∀i, r. (11)

We investigate our proposed allocation mechanism under both
of these feasibility conditions.

Definition 5. An allocation {xn,i} satisfies Per-Server
Dominant-Share Fairness, if it is feasible and the allocated
tasks to each user, xn cannot be increased while maintaining
feasibility without decreasing xm,i for some user m and server
i with sm,i/φm ≤ sn,i/φn.

A. An Example

Consider again the heterogeneous servers from our earlier
example this time serving four equally weighted users whose
demand vectors are d1 = [1.5, 1, 10], d2 = [1, 2, 10], d3 =
[0.5, 1, 0], d4 = [1, 0.5, 0]. We show this in Figure 2. Note
the placement constraints for users 1 and 2 whose tasks may
only run on the first server. We show the PS-DSF allocation
(based on RDM) in Figure 3. The allocated tasks to each user
are x1 = x1,1 = 3.6, x2 = x2,1 = 3.6, x3 = x3,2 = 8,
x4 = x4,2 = 8, respectively, where no tasks are allocated
to users 3 and 4 from the first server. Specifically, the VDS
for user 3 (and user 4 respectively) w.r.t. the first server is
s3,1 = 8/12 (s4,1 = 12/12 = 1), while the VDS of users
1 and 2 w.r.t. this server is s1,1 = s2,1 = 0.6. The VDS of
users 3 and 4 w.r.t. the second server is s3,1 = s4,1 = 8/12.
The reader may verify that for each server i the allocated
tasks to each user may not be increased without decreasing
the allocated tasks of some user with less VDS.

B. The Properties of the PS-DSF Allocation Mechanism

Before examining different sharing properties satisfied un-
der PS-DSF allocation mechanism, we describe a necessary
and sufficient condition to achieve PS-DSF.

Definition 6. Given a feasible allocation {xn,i} based on
RDM, we say that r is a bottleneck resource for user n w.r.t.
an eligible server i if dn,r > 0,

∑
m xm,idm,r = ci,r (i.e. r is

saturated), and
sn,i
φn
≥ sm,i

φm
, ∀m such that xm,idm,r > 0. (12)

3Considering resources such as CPU, BW, · · · , which are attributed a
processing speed per time-unit, xn,i/γn,i represent the percentage of time-
unit that server i is allocated to user n.



 

1 2 3 4 

Server 1 Server 2 

𝑑1 = [1.5, 1, 10] 𝑑2 = [1, 2, 10] 𝑑3 = [0.5, 1, 0] 𝑑4 = [1, 0.5, 0] 

𝑐1 = [9, 12, 100] 𝑐2 = [12, 12, 0] 

Fig. 2: A heterogeneous multi-resource system with four users and two
servers.
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Fig. 3: PS-DSF allocation for the example in Figure 2.

Theorem 1. A feasible allocation {xn,i} based on RDM
satisfies PS-DSF if and only if there exists a bottleneck
resource for every user w.r.t. every eligible server.

Theorem 2. A feasible allocation {xn,i} based on TDM
satisfies PS-DSF if and only if (10) holds with equality, and

sn,i
φn
≥ sm,i

φm
, ∀n and ∀m such that xm,i > 0. (13)

The proofs are given in the appendix. These conditions will
be useful in determining a PS-DSF allocation (see Section
III-C). In the following we examine different sharing proper-
ties that are satisfied under PS-DSF. In case of a heterogeneous
system with placement constraints, we will need to extend the
notion of Sharing Incentive, Strategy Proofness and Bottleneck
Fairness. Other properties, Envy Freeness, Pareto Optimality
and Single Resource Fairness, will follow the same definitions
as described in Section II-A.

The generalization of sharing incentive property is straight-
forward. We consider a uniform allocation which allocates
φn/

∑
m φm portion of the resources on each server (whether

this server is eligible or not) to each user n. An allocation is
said to satisfy sharing incentive, when each user is able to run
more tasks compared to such uniform allocation.

For the strategy proofness property, we may note that we
assume each user to declare its demand vector and also the set
of eligible servers. We say that an allocation satisfies strategy
proofness when users may not increase their utilization by
lying about their resource demands or the set of eligible
servers.

Finally, a resource is considered as a bottleneck in the whole
system when it is dominantly requested by each user from
every eligible server. If there is a bottleneck resource, then the
allocation should satisfy max-min fairness w.r.t. such resource.

Theorem 3. PS-DSF allocation mechanism (whether based on
RDM or TDM) satisfies single resource fairness, bottleneck
fairness, envy freeness, and sharing incentive properties. It
also satisfies Pareto optimality and strategy proofness in case
of TDM.

The proof is given in the appendix. Unfortunately PS-DSF
does not satisfy Pareto optimality in case of RDM. This is
the reason why strategy proofness is not generally satisfied in
case of RDM. The following lemma describes the behaviour
of PS-DSF allocation mechanism from this respect.

Lemma 1. Assume that all users demand all type of resources,
that is dn,r > 0, ∀n, r. Under the PS-DSF allocation mecha-
nism with RDM, each user cannot decrease the utilization of
other users by lying about its resource demands or the set of
eligible servers, without decreasing its own utilization.

For the proof refer to the appendix.

C. PS-DSF Allocation Algorithm

In this subsection, we present an algorithm which realizes
the PS-DSF allocation in the case of RDM4. According to
Theorem 1, an allocation satisfies PS-DSF when every user
has a bottleneck resource w.r.t. every eligible server. Let Ni
denote the set of users for which γn,i > 0. The following
corollary describes a condition to check whether a saturated
resource serves as a bottleneck for user n w.r.t. server i.

Corollary 1. If r is saturated at server i and

n ∈ arg min
m∈Ni

{sm,i
φm
| dm,r > 0} (14)

Then, r is a bottleneck resource for user n at server i when:
sm,i
φm

>
sn,i
φn

, dm,r > 0 ⇒ xm,i = 0. (15)

To find a PS-DSF allocation, we may apply an iterative
algorithm beginning with an initial allocation. Assume that
servers are indexed from 1 to K. Starting from the first server,
the proposed algorithm sequentially updates the allocation for
different servers, so that at the end a bottleneck resource
is identified for every user w.r.t. every eligible server. In
the following we describe the procedure for updating the
allocation at each server.

Specifically, for each server i let Ni initially denote the
set of users for which γn,i > 0. Given a feasible allocation,
{xn,i}, find S∗i as the minimum VDS at server i:

S∗i := min
m∈Ni

{sm,i
φm
}. (16)

The set of users achieving the minimum in (16) is denoted by
N ∗i . Let R∗i denote the set of saturated resources at server i

4A simplified version of this algorithm can be used in the case of TDM.



for which dn,r > 0 for some user n ∈ N ∗i . These resources
are the potential bottleneck resources for users n ∈ N ∗i . If
the condition in Corollary 1 is satisfied for some resource
r∗ ∈ R∗i , then this resource serves as the bottleneck for users
n ∈ Ni with dn,r∗ > 0. In this case, we restrict our attention
to the users for which no bottleneck resource is identified w.r.t.
server i. Specifically, Ni is updated to:

Ni = Ni − {n | dn,r∗ > 0}. (17)

When the condition in Corollary 1 is not satisfied for any
resource r ∈ R∗i , the algorithm updates the allocation for
server i. Specifically, for every resource r ∈ R∗i , a user nr
is chosen such that:

nr ∈ arg max
n∈Ni

{sn,i
φn
| xn,idn,r > 0}. (18)

If we release the whole allocated resources to these users from
server i, the maximum potential increase in S∗i is given by z∗

(see the Update-Allocation subroutine in Algorithm II). To
make sure that S∗i is monotonically increasing, β ∈ (0, 1] is
chosen such that S∗i + βz∗ remains less than or equal to the
updated VDS w.r.t. server i for all users nr, r ∈ R∗i .

For each server i, the above procedure is repeated until Ni
becomes empty. At the end of this procedure, a bottleneck
resource is identified for every user eligible to be served by
server i. However, the subsequent updates for the next servers,
may violate this condition for server i and the previous servers.
Hence, we repeat the whole process for all servers, until no
more update is possible for any of the servers5. This process
is described in Algorithm I.

D. Distributed Implementation

One of the advantages of the PS-DSF allocation mechanism
is that it locally identifies the dominant resource for every
user w.r.t. each server, without any knowledge of the available
resources on the other servers, as opposed to existing allo-
cation mechanisms which need to globally identify dominant
resource and/or dominant share for each user. This is of great
importance from a practical point of view, as we may develop
a distributed algorithm to find the PS-DSF allocation.

Specifically, consider the inner while-loop in the main
sub-routine of Algorithm I which we refer to as “server
procedure”. According to this procedure the allocated tasks
to different users from each server i are updated only based
on the knowledge of the available resources on server i and the
total allocated tasks to each user. Accordingly, we may come
up with a distributed version of Algorithm I where each server
individually (and even asynchronously) executes the server
procedure every T seconds. When T is chosen sufficiently
smaller than period of changes in a cluster (like changes
in the set of active users and/or servers), such distributed
algorithm may dynamically achieve the PS-DSF allocation.
We implement this algorithm in our experiments in Section V.

5Convergence properties of this algorithm will be studied in our future
work.

Algorithm I: PS-DSF Allocation Algorithm

Initialization
Initially allocate available resources by applying DRF individually to

each server.
The main subroutine

while (1)
Last-round-flag := 1
for (i = 1; i ≤ K; i++)
Ni := {n ∈ N | γn,i > 0}.
while (Ni 6= ∅)

Find S∗i according to (16).
Identify N ∗i as the set of users achieving the minimum

in (16).
Identify R∗i as the set of saturated resources at server i

for which
dn,r > 0 for some n ∈ N ∗i .
If (S∗i = maxn∈Ni

{ sn,i

φn
| xn,idn,r∗ > 0}, for r∗ ∈

R∗i )
Update Ni = Ni − {n | dn,r∗ > 0}

else
Last-round-flag = 0
Call Update-Allocation(x, i).

If (Last-round-flag = 1)
break;

Update-Allocation(x, i) subroutine
Identify fi = [fi,r] as the amount of unallocated resources under x.
for (r ∈ R∗i )

Choose nr ∈ argmaxn∈Ni
{ sn,i

φn
| xn,idn,r > 0}.

Update fi = fi + xnr,idnr .

Find D∗i :=
∑
n∈N∗i

φnγn,idn.

Find z∗ := minr
fi,r
D∗i,r

.

Choose β ∈ (0, 1] such that: S∗i + βz∗ ≤ xnr−βxnr,i

φnrγnr,i
, ∀r ∈ R∗i .

Update xn,i = xn,i + βφnγn,iz
∗, ∀n ∈ N ∗i .

Set xnr,i = (1− β)xnr,i ∀r ∈ R∗i .

IV. EXTENSIONS

In this section we present an extension which directly fol-
lows from our proposed approach in Section III. Specifically,
consider the case where the effective capacity of resources on
each server may vary for different users. In this case, that is
unclear how to define a global dominant resource for each
user even when there are no placement constraints. However,
according to the formulation in Section III, we may define
γn,i as the number of tasks which could be executed by user
n when monopolizing server i. We may also define the VDS
for every user w.r.t. each server in the same way, and then find
an allocation which satisfies PS-DSF. To gain more intuition,
we consider two specific example scenarios in the following.

Example scenario 1: First consider a simple scenario where
only one type of resource, notably bandwidth, is available
on different servers. Specifically, we may consider different
servers as different frequency channels which are subject
to multi-user diversity in a wireless system. For instance,
consider the example in Figure 4 where two users share
three wireless channels. Without the insight of our proposed
approach, that is unclear how to allocate the capacity of servers



among different users in a fair manner, as we may not weigh
different servers with respect to each other.

Let define the utility of each user, xn, as the number of
bits which are given service in one second (i.e. the service
rate). Also define γn,i as the achievable service rate by user n
when monopolizing server i. For the example in Figure 4 PS-
DSF results in allocating the first channel (the third channel
respectively) to the first user (second user), while the second
channel is equally shared between the two users. Accordingly,
user 1 gets a service rate of 1.5Mb/s while user 2 gets 1Mb/s.
It can be observed that xn can not be increased for any user
without decreasing xm,i while xm/γm,i ≤ xnγn,i.

1 2 

1.2 

0.6 

0.4 0.8 

0.4 

0.4 

Fig. 4: An example with two equally weighted users sharing
three frequency channels. The achievable service rates by each
user over different channels are shown beside the arrows (in
Mb/s).

Example scenario 2: Consider a set of heterogeneous
servers in a computing cluster, where each server consists of
different types of resources, such as CPU, RAM, bandwidth,
etc. Although the CPU on each server has a fixed physical
capacity, different users may experience different effective
processing capacities when specific co-processors are available
at a server. Coprocessors are supplementary processing units
which are specialized for specific arithmetics or other process-
ing purposes. As a result, they might be useful only for some
users, for which they accelerate processing performance.

Our approach in Section III could be readily extended to in-
corporate the effect of coprocessors. Assume that dn = [dn,r]
describes the demand of user n from each type of resource
when no co-processor is utilized. Let γn,i denote the maximum
number of tasks which could be executed by user n when
monopolizing server i and utilizing any available co-processor.
Given the insight of PS-DSF, we may find an allocation,
{xn,i}, such that for every user, xn cannot be increased while
maintaining feasibility without decreasing xm,i for some user
m and sever i with xm/φmγm,i ≤ xn/φnγn,i. This problem
will be studied in more details in our future work.

V. NUMERICAL RESULTS

In this section we evaluate performance of the PS-DSF
allocation mechanism through some numerical experiments.
In our simulations, we consider a cluster with four different

classes of servers (120 servers in total), where the configu-
ration of servers are drawn from the distribution of Google
cluster servers [18]. It is assumed that the available resources
over each server can be partitioned in any arbitrary way. We
consider four users where the last two users may run their
tasks only by the last two classes of servers (see Figure 5).

 

Class A (8 servers) 

𝒅3 = [0.2, 0.1] 

𝒅4 = [0.2, 0.3] 

User 3 (𝜙3 = 1) 

User 4 (𝜙4 = 1) 

… 

… 

Class B (68 servers) 

… 

Class C (33 servers) 

… 

Class D (11 servers) 

 

𝒅1 = [0.1, 0.1] 

𝒅2 = [0.1, 0.2] 

User 1 (𝜙1 = 2) 

User 2 (𝜙2 = 2) 

Fig. 5: A cluster with four classes of servers (120 servers in total) and four
users. The weight of the first two users is twice the weight of the last two
users. The configurations of resources (CPU and memory respectively) for
servers of each class are as follows: CA = [1, 1], CB = [0.5, 0.5], CC =
[0.5, 0.25], CD = [0.5, 0.75], where CPU and memory units for each server
are normalized w.r.t. the servers of the first class.

The number of tasks that each user may run when monop-
olizing each class of servers are given in Table III. Assume
that all users are active. The PS-DSF (based on RDM) and
the TSF allocations in this case are given in Table IV. Under
both allocations the servers of the first two classes (the second
two classes respectively) are allocated to the first (the last) two
users. According to the PS-DSF allocation, the servers of the
third class (the fourth class respectively) are entirely allocated
to the third user (the fourth user), which results in maximizing
the minimum VDS w.r.t. these servers.

Intuitively, PS-DSF tries to allocate each server to the most
efficient users. Therefore, we expect that PS-DSF results in
greater utilization for different resources of a server compared
to other allocation mechanisms such as TSF and C-DRFH. To
observe this, we have executed these algorithms over the in-
terval (0, 300) sec for the cluster in Figure 5. For the PS-DSF,
we start with an initial allocation and update the allocation
every second according to the servers’ procedure (see our
discussions in Section III-D on distributed implementation).
For TSF and C-DRFH mechanisms we precisely find these
allocations every second.

It is assumed that all users except User 4 are continuously
active during the simulation interval. User 4 is inactive during
interval (100, 250) sec, and is active elsewhere. The utilization



TABLE III: The total number of tasks that each user may run
when monopolizing each class of servers.

γn,i Class A Class B Class C Class D
User 1 80 340 82.5 55
User 2 40 170 41.25 41.25
User 3 0 0 82.5 27.5
User 4 0 0 27.5 27.5

TABLE IV: The total number of tasks allocated to each user
from each class of servers under PS-DSF and TSF allocations.

PS-DSF Class A Class B Class C Class D
User 1 40 170 0 0
User 2 20 85 0 0
User 3 0 0 82.5 0
User 4 0 0 0 27.5

TSF Class A Class B Class C Class D
User 1 35 170 0 0
User 2 22.5 85 0 0
User 3 0 0 58.33 0
User 4 0 0 8.05 27.5

that is achieved under any of these allocation mechanisms for
the CPU at the third and the fourth classes of servers are
shown respectively in Figure 6 (The CPU on the first two
classes of servers and also the memory on all servers are
fully utilized under any of the allocation mechanisms). It can
be observed that the PS-DSF allocation mechanism results in
greater utilization compared to the two other mechanisms in
this example. Furthermore, it may be observed that the dis-
tributed version of the PS-DSF allocation algorithm promptly
converges when changes occur in the set of active users.

VI. CONCLUSION

In summary, we studied the problem of multi-resource fair
allocation for heterogeneous servers while respecting place-
ment constraints. We identified important shortcomings in
existing multi-resource fair allocation mechanisms when used
in such environments. Hence, we proposed a new allocation
mechanism, called PS-DSF. We discussed how our proposed
allocation mechanism achieves different sharing properties
which are satisfied under DRF in the case of one resource-
pool/server. Furthermore, we discussed how PS-DSF could
be implemented in a distributed manner. The performance of
the PS-DSF allocation mechanism was compared against the
existing allocation mechanisms and its enhanced performance
was demonstrated through the numerical experiments. Further
studies are under way and they will appear in future work.
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APPENDIX

Proof of Theorem 1. First consider a feasible allocation
{xm,i} for which there exists a bottleneck resource for every
user w.r.t. every eligible server. Let b(n, i) denote the bot-
tleneck resource for user n w.r.t. server i. That is, b(n, i) is
saturated, dn,b(n,i) > 0, and

sn,i
φn
≥ sm,i

φm
, ∀m such that xm,idm,b(n,i) > 0. (19)

Given that b(n, i) is saturated, it is not possible to in-
crease xn,i, unless decreasing xm,i for some user m with
xm,idm,b(n,i) > 0. On the other hand, (19) implies that
sm,i/φm ≤ sn,i/φn for any user m with xm,idm,b(n,i) > 0.
Hence, we may not increase the allocated tasks to user n from
any server i unless decreasing xm,i for some user m with
sm,i/φm ≤ sn,i/φn. This implies that {xm,i} satisfies PS-
DSF.

Now consider an allocation {xm,j} which satisfies PS-DSF.
Let Rn,i denote the set of demanded resources by user n
which are saturated at an eligible server i under the allocation
{xm,j}, that is:

Rn,i := {r | dn,r > 0 and
∑
m

xm,idm,r = ci,r}. (20)

This set includes the potential bottleneck resources for user n
w.r.t. server i. First we prove thatRn,i may not be empty under
a PS-DSF allocation. By contradiction, assume that Rn,i = ∅,
that is none of the demanded resources by user n are saturated
at server i. In this case, we may increase xn,i by:

zn,i := min
r:dn,r>0

ci,r −
∑
m xm,idm,r
dn,r

> 0, (21)

without decreasing xm,i for any user m. However, this con-
tradicts to the fact that {xm,j} satisfies PS-DSF.

Next, we show that there exists some resource r ∈ Rn,i
which serves as a bottleneck for user n w.r.t. server i. By
contradiction, assume that none of the resources in Rn,i is
a bottleneck. That is, for any resource r ∈ Rn,i we may
find some user p with xp,idp,r > 0 such that sn,i/φn <
sp,i/φp. Hence, we can increase xn,i by decreasing xp,i for
some user(s) p with sn,i/φn < sp,i/φp. That is, xn,i could
be increased without decreasing xm,i for any user m with
sm,i/φm ≤ sn,i/φn. However, this contradicts to the fact that
{xm,j} satisfies PS-DSF.

Proof of Theorem 2. Consider a feasible allocation {xn,i} for
which (10) holds with equality, and the condition in (13) is
established. Since (10) holds with equality, it is not possible
to increase xn,i, unless decreasing xm,i for some user m with
xm,i > 0. On the other hand, (13) implies that sm,i/φm ≤
sn,i/φn for any user m with xm,i > 0. Therefore, we may

not increase the allocated tasks to any user n from any server
i unless decreasing xm,i for some user m with sm,i/φm ≤
sn,i/φn. This implies that {xn,i} satisfies PS-DSF.

Now assume that {xn,i} satisfies PS-DSF. By contradiction,
assume that (10) holds with inequality for some server i. In
this case we may increase xn,i by:

zn,i = γn,i[1−
∑
m

xm,i
γm,i

] > 0, (22)

without decreasing xm,i for any user m. However, this con-
tradicts to the fact that {xn,i} satisfies PS-DSF. Next, we
show that (13) is established under the PS-DSF allocation.
By contradiction, assume that we can find some user p with
xp,i > 0 such that sp,i/φp > sn,i/φn. Hence, we can increase
xn,i by decreasing xp,i for user p with sp,i/φp > sn,i/φn.
That is, xn,i could be increased without decreasing xm,i
for any user m with sm,i/φm ≤ sn,i/φn. However, this
contradicts to the fact that {xn,i} satisfies PS-DSF.

Proof of Theorem 3. We prove single resource fairness, bot-
tleneck fairness, envy freeness, and sharing incentive proper-
ties for the more complicated case of RDM. The proofs of
these properties follow the same line of arguments in case of
TDM, so we do not repeat them here.
Single resource fairness: When there is only one type of
resource, then dn = dn,1, ∀n and γn,i = δn,ici,1/dn,1, ∀n, i.
As a result:

sn,i =
xn
γn,i

=
xndn,1
ci,1δn,i

=
an

ci,1δn,i
, (23)

where an is the allocated resource to user n from all servers.
According to the PS-DSF allocation, we may not increase
xn (or equivalently an) while maintaining feasibility without
decreasing xm,i for some user m with sm,i/φm ≤ sn,i/φn
(or am/φm ≤ an/φn). Therefore, the allocated resource to
different users, {an} satisfies (constrained) weighted max-min
fairness.
Bottleneck fairness: Assume that there is one resource,
say r∗, which is dominantly requested by every user from
every eligible server. By definition, r∗ is considered as the
dominant resource for every user n w.r.t. every eligible server
i. Accordingly, γn,i is given by γn,i = δn,ici,r∗/dn,r∗ , and the
VDS for user n w.r.t. server i is given by:

sn,i =
xn
γn,i

=
xndn,r∗

ci,r∗δn,i
=

an,r∗

ci,r∗δn,i
. (24)

where an,r∗ is the amount of the bottleneck resource allocated
to user n from all servers. According to the PS-DSF allocation,
we may not increase xn (or equivalently an,r∗ ) while main-
taining feasibility without decreasing xm,i for some user m
with sm,i/φm ≤ sn,i/φn (or am,r∗/φm ≤ an,r∗/φn). Hence,
the allocated bottleneck resource to different users, {an,r∗}
satisfies (constrained) weighted max-min fairness.
Envy freeness: Given Un(a) as the utility function for user
n, Un(amφn/φm) gives the utility of user n of the allocated

http://code.google.com/p/googleclusterdata/


resources to user m (i.e., am = xmdm), when adjusted
according to their weights. According to (1):

Un(
φn
φm

am) =
φn
φm

min
r

am,r
dn,r

=
φnxm
φm

min
r

dm,r
dn,r

. (25)

We show that:

min
r

dm,r
dn,r

≤
dm,ρ(n,i)

dn,ρ(n,i)
=
γn,idm,ρ(n,i)

ci,ρ(n,i)
≤ γn,i
γm,i

, ∀i. (26)

As a result:

Un(
φn
φm

am) ≤ xm
φnγn,i
φmγm,i

, ∀i. (27)

According to Theorem 1, there exists a bottleneck resource
for every user w.r.t. every eligible server. Consider server i for
which xm,i > 0. Let b(n, i) denote the bottleneck resource for
user n w.r.t. server i. For Un(amφn/φm) to be greater than
zero (see (25)), we need dm,b(n,i) > 0. Given that b(n, i) is
the bottleneck for user n and xm,idm,b(n,i) > 0, it follows
that:

xm
φmγm,i

≤ xn
φnγn,i

. (28)

This along with (27) results in:

Un(
φn
φm

am) ≤ xn. (29)

Sharing Incentive: Without loss of generality assume that the
demand vector for every user n, dn, is normalized by

∑
i γn,i

(the number of tasks which could be executed by user n if
the whole system is allocated to it). In this case, xn and γn,i
will be normalized by the same factor and the VDS for user n
w.r.t. different servers and also the resulting PS-DSF allocation
won’t be changed. Specifically, define:

x̂n :=
xn∑
j γn,j

(30)

γ̂n,i :=
γn,i∑
j γn,j

(31)

For the uniform allocation:

x̂unifn =
φn∑
m φm

∑
i

γ̂n,i =
φn∑
m φm

,

where the second equality follows from the fact that
∑
i γ̂n,i =

1. We assert that x̂n/φn is greater than or equal to 1/
∑
m φm

for all users under the PS-DSF allocation.
The proof is by induction on the number of users, N .

Specifically, for N = 2 consider two users, n and m. To
consider the worst-case, assume that both users have the same
bottleneck w.r.t. each server. Assume that servers are indexed
in increasing order of γ̂n,j/γ̂m,j . Let j0 denote the least
indexed server from which some tasks are allocated to user
n under the PS-DSF allocation, that is x̂n,j0 > 0. Given that
xn,j0 > 0 and both users have the same bottleneck w.r.t. server
j0, it follows that (see Definition 6):

sm,j0/φm ≥ sn,j0/φn. (32)

Without loss of generality assume that γ̂n,j/γ̂m,j >
γ̂n,j0/γ̂m,j0 , for j > j0. For these servers it follows that
sm,j/φm > sn,j/φn. This along with the assumption that user
m has the same bottleneck as user n imply that x̂m,j = 0
for j > j0. Therefore, server j0 is the only server for which
x̂n,j x̂m,j could be greater than zero. Accordingly:

x̂n = αn,j0 γ̂n,j0 +

K∑
j=j0+1

γ̂n,j , (33)

x̂m = αm,j0 γ̂m,j0 +

j0−1∑
j=1

γ̂m,j , (34)

where αn,j0 (αm,j0 respectively) denotes the portion of the
DR for user n (user m) w.r.t. server j0 that is allocated to
it under PS-DSF. Substituting x̂n and x̂m from (33) and (34)
into (32) results in:

αm,j0
φm

+

j0−1∑
j=1

γ̂m,j
φmγ̂m,j0

≥ αn,j0
φn

+

K∑
j=j0+1

γ̂n,j
φnγ̂n,j0

≥ 1− αm,j0
φn

+

K∑
j=j0+1

γ̂n,j
φnγ̂n,j0

,

where the second inequality follows from the fact that αm,j0 +
αn,j0 ≥ 1. After some manipulations, it follows that αm,j0 ≥
(A+ φm)/(φm + φn), where:

A :=

K∑
j=j0+1

φm
γ̂n,j
γ̂n,j0

−
j0−1∑
j=1

φn
γ̂m,j
γ̂m,j0

. (35)

Applying the lower bound of αm,j0 into (34) and after some
manipulations, it follows that:

x̂m
φm

≥

∑j0
j=1 γ̂m,j +

∑K
j=j0+1

γ̂n,j

γ̂n,j0
γ̂m,j0

φm + φn

≥
∑K
j=1 γ̂m,j

φm + φn
=

1

φm + φn
(36)

where the second inequality follows from the fact that
γ̂n,j/γ̂m,j ≥ γ̂n,j0/γ̂m,j0 , j ≥ j0, and the last equality follows
from the fact that

∑
j γ̂m,j = 1. The lower bound in (36) could

be shown for x̂n/φn in the same way.
Assume that the statement is established for N = N0 users.

For the case that the set of all users, N , consists of N0 + 1
users, we may assume that N is comprised of a subset N0

of N0 users with the total weight of Φ0 :=
∑
n∈N0

φn and
a singular user n0 with the weight of φ0. We assume that
user n0 is chosen arbitrarily. We may consider φn/(Φ0 + φ0)
portion of the resources on every server as the share of each
user n. Assume that user n0 does not share its resources with
others. In this case, x̂n0 = φ0/(Φ0 + φ0).

User n0 would prefer to exchange all or part of its allocated
resources from server j with all or part of the allocated
resources to user m from server i, if

γ̂n0,i

γ̂m,i
>
γ̂n0,j

γ̂m,j
. (37)



In this case, the number of allocated tasks to both of them
could be increased compared to the generic uniform allocation.
We may repeat the same process, exchanging the allocated
resources to user n0 by that for other users, until no more
exchange is possible and x̂n0

cannot be further increased. After
that, we may freeze the allocated resources to user n0 and
allocate the remaining resources among other users according
to PS-DSF. Given that sharing incentive is provided by PS-
DSF for the set N0 with N0 users, it follows that:

x̂n ≥
Φ0

Φ0 + φ0

φn
Φ0

=
φn

Φ0 + φ0
, ∀n ∈ N0. (38)

If we allocate the whole resources among all users n ∈ N
according to PS-DSF allocation, the number of allocated tasks
to users n ∈ N0 may not be decreased compared to the above-
described allocation (because there is no reservation for user
n0 in this case). That is, (38) is established under the PS-
DSF allocation. Since n0 is chosen arbitrarily, we may repeat
the same discussions by choosing a different set N ′0 which
includes n0. Hence, we may conclude that the lower bound in
(38) is established for all users.
Pareto optimality: Consider an allocation, {xn,i}, satisfying
PS-DSF based on TDM. For such an allocation, Theorem 2
implies that (10) holds with equality for each server i. Hence,
we may not increase xn,i without decreasing xm,i for some
user m with xm,i > 0. Furthermore, according to Theorem 2,
for any user m and server i with xm,i > 0:

xm,i > 0 ⇒ sm,i/φm = min
n
sn,i/φn. (39)

In fact, PS-DSF allocation mechanism maximizes xm for each
user m subject to (39). The following lemma shows that this
condition is not restricting, as we may not increase xn without
decreasing xm for some user m, even when violating the
condition in (39). This means that PS-DSF allocation is Pareto
optimal in case of TDM.

Lemma 2. Assume that {xn,i} satisfies PS-DSF based on
TDM. Consider two arbitrary users, n and m, for which
xn,i > 0 and xm,j > 0. If user n exchanges all or part of its
allocated tasks from server i with all or part of the allocated
tasks to user m from server j, then the allocated tasks to at
least one of them will be decreased compared to the PS-DSF
allocation.

Proof. Given that xm,j > 0 and xn,i > 0, we may decrease
xm,j and xn,i, and increase xn,j and xm,i. Let ∆xn,i, ∆xm,i
and ∆xn,j , ∆xm,j denote a feasible change in the number of
allocated tasks to users n and m while (10) holds with equality
for both servers i and j. For (10) to hold with equality we have:

∆xn,j = −∆xm,j
γn,j
γm,j

(40)

∆xm,i = −∆xn,i
γm,i
γn,i

(41)

Assume that ∆xn,i + ∆xn,j > 0 or −∆xn,i < ∆xn,j . This
along with (40) and (41) results in:

∆xm,i < ∆xn,j
γm,i
γn,i

(42)

< −∆xm,j
γn,j
γm,j

γm,i
γn,i

. (43)

The fact that xm,j > 0 and xn,i > 0 along with (13) result in:

γm,i
γn,i

≤ φn
φm

xm
xn

(44)

γn,j
γm,j

≤ φm
φn

xn
xm

(45)

Combining (43) with (44) and (45) results in ∆xm,i <
−∆xm,j . This means that the number of allocated tasks to
user m is decreased compared to PS-DSF allocation.

Strategy proofness: Let A := {am,i} (and A′ := {a′m,i},
respectively) denote the resulting PS-DSF allocation when
user n trustfully declares dn and δn = [δn,i] (non-trustfully
declares d′n and δ′n). Users other than n take the same
actions in both cases (whether trustful or non-trustful). Hence,
γ′m,i = γm,i for m 6= n. The number of tasks that user n
may actually execute under the allocation A′ (i.e., by using
a′n = x′nd

′
n) is given by:

Un(a′n) = min
r

a′n,r
dn,r

= x′n min
r

d′n,r
dn,r

. (46)

As in (26), we can show that minr
d′n,r

dn,r
≤ γn,i

γ′n,i
, ∀i. Hence:

Un(a′n) = x′n min
r

d′n,r
dn,r

≤ x′n
γn,i
γ′n,i

. (47)

For strategy proofness we need to show that Un(a′n) ≤ xn.
By contradiction, assume that Un(a′n) > xn. It follows that:

sn,i =
xn
γn,i

<
Un(a′n)

γn,i
≤ x′n
γ′n,i

= s′n,i, ∀i. (48)

That is, the VDS for user n is increased w.r.t. all servers
under the allocation A′ compared to the allocation A, provided
that Un(a′n) > xn. Let U denote the set of users for which
Um(a′m) > xm. For users m ∈ U , m 6= n, it follows that

sm,i =
xm
γm,i

<
Um(a′m)

γm,i
=

x′m
γ′m,i

= s′m,i, ∀i. (49)

We define:

si := min
n

sn,i
φn

(50)

as the Virtual Dominant Share Level, VDSL, at server i under
the allocation A. In the same way, we define s′i as the VDSL
at server i under the allocation A′. For any user m ∈ U ,
Theorem 2 implies that s′i = s′m,i/φm provided that x′m,i > 0.
It follows that:

s′i =
s′m,i
φm

>
sm,i
φm
≥ si. (51)



That is, the VDSL is increased at all servers for which x′m,i >
0 for some m ∈ U . Let define:

S := {i | x′m,i > 0 for some m ∈ U}. (52)

Accordingly, no tasks are allocated under the allocation A′

from servers j /∈ S to users m ∈ U , i.e., x′m,j = 0, m ∈
U , j /∈ S . Hence, VDSL at servers j /∈ S may not be
decreased under the allocation A′ compared to allocation A,
that is s′j ≥ sj for servers j /∈ S . Therefore, s′i ≥ si, ∀i,
which in turn implies that Um(a′m) = x′m ≥ xm for m 6= n.
This along with the assumption that Un(a′n) > xn contradict
to Pareto optimality of the allocation A.

Proof of Lemma 1. The proof follows the same line of argu-
ments as the proof of strategy proofness in case of TDM.
Specifically, when all users demand all types of resources, the
same resource serves as the bottleneck for all users w.r.t. each
server. Hence, we may define the VDSL at each server i as in
(50). With the same line of arguments we may conclude that
the VDSL is not decreased at any server i under the allocation
A′ compared to allocation A, provided that Un(a′n) ≥ xn.
That is, s′i ≥ si, which in turn implies that Um(a′m) ≥ xm
∀m. Therefore, user n may not decrease the utilization of other
users, by lying about its resource demands or the set of eligible
servers, unless decreasing its own utilization.
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