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Abstract—This paper optimizes the pilot assignment and pilot
transmit powers to mitigate pilot contamination in Massive
MIMO (multiple-input multiple-output) systems. While prior
works have treated pilot assignment as a combinatorial problem,
we achieve a more tractable problem formulation by directly
optimizing the pilot sequences. To this end, we compute a
lower bound on the uplink (UL) spectral efficiency (SE), for
Rayleigh fading channels with maximum ratio (MR) detection
and arbitrary pilot sequences. We optimize the max-min SE
with respect to the pilot sequences and pilot powers, under power
budget constraints. This becomes an NP-hard signomial problem,
but we propose an efficient algorithm to obtain a local optimum
with polynomial complexity. Numerical results manifest the near
optimality of the proposed algorithm and show significant gains
over existing suboptimal algorithms.

I. INTRODUCTION

Massive MIMO has recently emerged as a key technology
for 5G communications [1]–[3], since it can bring significant
improvements to the spectral and energy efficiency of cellular
networks [4]. By equipping the base stations (BSs) with a large
number of antennas, the mutual interference, thermal noise,
and small-scale fading can be almost eliminated by virtue of
the channel hardening and favorable propagation phenomena
[5], [6]. The BS utilizes estimated channel state information
(CSI) to achieve these gains, which is generally acquired using
UL pilot signals.

To achieve the maximum CSI quality, mutually orthogonal
pilot sequences are desirable, but this is impractical since the
pilot overhead would be proportional to the total number of
users in the entire system. The size of the channel coherence
block limits the number of orthogonal pilots, and at most half
the block should be used for pilots [7]. The consequence is
that the pilots need to be reused across cells, which creates
so-called pilot contamination [1], [8], where users with the
same pilot cause large interference to each other. A pilot
reuse factor can be applied to not use the same pilots in
neighboring cells, which reduces the pilot contamination at
the cost of extra pilot overhead [7], [9]. However, some pilot
contamination still remains and its impact strongly depends on
which users that have the same pilot. The pilot assignment is
a combinatorial problem, thus finding the optimal assignment
is generally NP-hard [10]. This has motivated the design of
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suboptimal greedy pilot assignment algorithms, which utilize
statistical information such as the large-scale fading [10], [11].
Another way to improve the channel estimation quality is to
optimize the transmit powers used for the pilots [12], [13].

In this paper, we consider joint optimization of the pilot
assignment and pilot powers in Massive MIMO, in contrast to
previous works that focused on only one of these components.
In particular, we obtain ergodic achievable SE expressions
for MR detection and arbitrary pilot sequences. The pilot se-
quences are treated as optimization variables and we formulate
a max-min SE optimization problem, which becomes a signo-
mial program. Due to NP-hardness of signomial programs, we
propose a suboptimal approach that finds a local optimum in
polynomial time. Numerical results show that this solution is
close to the global optimum and can provide great performance
improvements over prior works.

Notations: The lower bold letters are used for vectors and
the upper bold are for matrices. (·)T and (·)H stand for
the transpose and conjugate transpose, respectively. In is the
n × n identity matrix. E{·} denotes expectation, ‖ · ‖ is
the Euclidean norm, and CN (·, ·) is the circularly symmetric
complex Gaussian distribution.

II. PILOT DESIGNS FOR MASSIVE MIMO SYSTEMS

We consider the UL of a multi-cell Massive MIMO system
with L cells. Each cell consists of a BS equipped with M
antennas which serves K single-antenna users. All tuples of
cell and user indices belong to the set

S = {(i, t) : i ∈ {1, . . . , L}, t ∈ {1, . . . ,K}} . (1)

The radio channels vary over time and frequency. We divide
the time-frequency plane into coherence blocks, each contain-
ing τc samples, such that the channel between each user and
each BS is static and frequency flat. In each coherence block
the users transmit pilot sequences of length τp symbols, while
the remaining τc− τp symbols are used for data transmission.
In this paper, we focus on the UL, so the fraction (1− τp/τc)
of the coherence block is dedicated to UL data. We assume
τp ≥ 1 to keep the estimation process feasible and stress that
the practical case τp < KL is of key importance since it gives
rise to pilot contamination.

A. Proposed Pilot Design
We aim at optimizing the pilot sequence collection
{ψψψ1,1, . . . ,ψψψL,K}, where ψψψl,k ∈ Cτp is the pilot sequence
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assigned to user k in cell l. To this end, let us define the
τp mutually orthonormal basis vectors {φφφ1, . . . ,φφφτp}, where
φφφb ∈ Cτp , ∀b = 1, . . . , τp. The corresponding basis matrix is

ΦΦΦ = [φφφ1, . . . ,φφφτp ], (2)

and it satisfies ΦΦΦHΦΦΦ = Iτp . We assume that each pilot
sequence is spanned by these basis vectors. In particular, the
pilot sequence of user k in cell l is

ψψψl,k =

τp∑
b=1

√
p̂bl,kφφφb, ∀l, k, (3)

where p̂bl,k ≥ 0 is the power assigned to the bth basis
vector. We stress that the pilot construction in (3) can create
arbitrarily many different orthogonal or non-orthogonal pilots,
with arbitrary total pilot power ‖ψψψl,k‖2 =

∑τp
b=1 p̂

b
l,k. We

assume that the average pilot power of user k in cell l satisfies
the power constraint

1

τp

τp∑
b=1

p̂bl,k ≤ Pmax,l,k, ∀l, k, (4)

where Pmax,l,k is the maximum pilot power for user k in cell l.
The inner product of two pilot sequences ψψψl,k and ψψψi,t is

ψψψHl,kψψψi,t =

τp∑
b=1

√
p̂bl,kp̂

b
i,t. (5)

These pilot sequences are orthogonal if every term in the sum
is zero, which only happens when the two users allocate their
pilot power to disjoint subsets of the basis vectors. Otherwise,
the sequences are non-orthogonal and the two users will cause
pilot contamination to each other. If the square roots of the
powers allocated to the K users in cell l are gathered in matrix
form as

PPP l =



√
p̂1l,1

√
p̂1l,2 · · ·

√
p̂1l,K√

p̂2l,1

√
p̂2l,2 · · ·

√
p̂2l,K

...
...

. . .
...√

p̂
τp
l,1

√
p̂
τp
l,2 · · ·

√
p̂
τp
l,K

 ∈ Rτp×K+ , (6)

then the users in cell l utilize a pilot matrix defined as

Ψl = [ψψψl,1, . . . ,ψψψl,K ] = ΦΦΦPPP l. (7)

We now describe the difference between this general pilot
structure and the prior works, for example [11]–[14].

B. Other Pilot Designs

The works [11], [14] considered the assignment of τp
orthogonal pilot sequences using equal pilot power p̂ ≤
τpPmax,l,k for every user. Using our notation, the pilot matrix
in cell l is

Ψ̂ΨΨl = [ψ̂ψψl,1, . . . , ψ̂ψψl,K ] =
√
p̂ΦΦΦΠΠΠl, (8)

where ΠΠΠl ∈ Rτp×K+ is a permutation matrix. This matrix
is optimized in [11], [14] to assign the pilots to users to

minimize a metric of mutual interference. This pilot design is
a special case of our proposed design, since (8) assumes the
use of orthogonal pilot sequences and equal power allocation.
These assumptions might be suboptimal in systems with large
pathloss differences. The selection of the optimal permutation
matrix for cell l is a complicated combinatorial problem, so
[11], [14] only study the special case of τp = K.

The previous work [12] optimized the pilot powers to
maximize functions of the SE, but the paper only considers a
single cell with orthogonal pilot sequences, i.e., τp ≥ KL with
L = 1. Besides, the authors of [13] optimized the pilot powers
to maximize the energy efficiency of a multi-cell system. That
paper assumed τp = K and a fixed pilot assignment. If pl,k is
the pilot power of user k in cell l, then the square root of the
power matrix allocated to the K users in cell l is a diagonal
matrix defined as

P̃PP l = diag
(√

p̂l,1, . . . ,
√
p̂l,K

)
. (9)

The pilot used for the users in cell l is then formulated as

Ψ̃l = ΦΦΦP̃PP l. (10)

Similar to (4), the pilot power at user k in cell l is limited as

0 ≤ p̂l,k ≤ τpPmax,l,k. (11)

This is also a special case of our proposed pilot design, since
(10) assumes orthogonal pilots and fixed pilot assignment.

If we combine the pilot structure in (10) with the permu-
tation matrix approach from (8), the pilot sequences of the
K users in cell l become˜̃

Ψl = [
˜̃
ψψψl,1, . . . ,

˜̃
ψψψl,K ] = ΦΦΦΠΠΠlP̃PP l. (12)

In principle, we can now consider all possible permutation ma-
trices and optimize the pilot power for each one, based on the
algorithms in previous work. This approach is computationally
heavy, but will serve as a benchmark in Section V.

III. UL MASSIVE MIMO WITH ARBITRARY PILOTS

This section provides ergodic SE expressions with the new
pilot sequences in (7), which will be used for optimized pilot
design and power control in Section IV.

A. Channel Estimation

During the UL pilot transmission, the received signal Yl ∈
CM×τp at the BS of cell l is

Yl =
∑

(i,t)∈S

hli,tψψψ
H
i,t + Nl, (13)

where hli,t ∈ CM denotes the channel between user t in cell i
and BS l. Nl ∈ CM×τp is the additive noise with independent
elements distributed as CN (0, σ2). Correlating Yl in (13) with
pilot sequence ψψψl,k of user k in cell l, we obtain

yl,k = Yl,kψψψl,k =
∑

(i,t)∈S

hli,tψψψ
H
i,tψψψl,k + Nlψψψl,k. (14)



SINRl,k =

M(βll,k)2pl,k

(
τp∑
b=1

p̂bl,k

)2

( ∑
(i,t)∈S

βli,t

(
τp∑
b=1

√
p̂bi,tp̂

b
l,k

)2

+ σ2
τp∑
b=1

p̂bl,k

)( ∑
(i,t)∈S

pi,tβli,t + σ2

)
+M

∑
(i,t)∈S\(l,k)

pi,t(βli,t)
2

(
τp∑
b=1

√
p̂bi,tp̂

b
l,k

)2

(23)

We consider independent Rayleigh fading where the channel
between user t in cell i and BS l is distributed as

hli,t ∼ CN
(
0, βli,tIM

)
, (15)

where the variance βli,t determines the large-scale fading,
including geometric attenuation and shadowing. By using
minimum mean squared error (MMSE) estimation, the dis-
tributions of the channel estimate and estimation error are as
follows.

Lemma 1. If the system uses the pilot structure in (7), the
channel estimate is distributed as

ĥll,k ∼ CN
(
0, γll,kIM

)
, (16)

where

γll,k =

(βll,k)2
(
τp∑
b=1

p̂bl,k

)2

∑
(i,t)∈S

βli,t

(
τp∑
b=1

√
p̂bi,tp̂

b
l,k

)2

+ σ2
τp∑
b=1

p̂bl,k

.

The estimation error ell,k = hll,k − ĥll,k is independent of the
channel estimate and distributed as

ell,k ∼ CN
(
0,
(
βll,k − γll,k

)
IM
)
. (17)

Proof. This result follows directly from standard MMSE es-
timation in [15].

Lemma 1 provides the MMSE estimator for the general pilot
structure in (7). The pilot powers as well as the inner products
between pilot sequences appear explicitly in the expressions.

B. UL Data Transmission

In the UL data transmission, user t in cell i transmits the
signal xi,t ∼ CN (0, 1). The M × 1 received signal vector at
BS l is the superposition of the transmitted signals

yl =
∑

(i,t)∈S

√
pi,th

l
i,txi,t + nl, (18)

where pi,t is the transmit power corresponding to the signal
xi,t and the additive noise is nl ∼ CN (0, σ2IM ). To detect the
transmitted signal, BS l selects a detection vector vl,k ∈ CM
and applies it to the received signal as

vHl,kyl =
∑

(i,t)∈S

√
pi,tv

H
l,kh

l
i,txi,t + vHl,knl. (19)

A general lower bound on the UL ergodic capacity of user k
in cell l is computed in [7] as

Rl,k =

(
1− τp

τc

)
log2 (1 + SINRl,k) , (20)

with SINRl,k given by

pl,k|E{vHl,khll,k}|2∑
(i,t)∈S

pi,tE{|vHl,khli,t|2} − pl,k|E{vHl,khll,k}|2 + σ2E{‖vl,k‖2}
.

(21)
As a contribution of this paper, we compute a closed-form

expression for this lower bound in the case of MR detection
with vl,k = ĥll,k. This is a highly scalable detection method
suitable for practical Massive MIMO systems.

Lemma 2. If the system uses the pilot structure in (7) and
MR detection, the SE in (20) for user k in cell l becomes

Rl,k =

(
1− τp

τc

)
log2 (1 + SINRl,k) , (22)

where SINRl,k is shown in (23) at the top of this page.

Proof. The SINR value in (23) is obtained by computing
the moments of Gaussian distributions, similar to [16]. The
detailed proof is omitted due to space limitations.

Inspecting (23), we notice that it is always advantageous
to add BS antennas since the numerator grows linearly with
M . The first term in the denominator represents non-coherent
interference from all users in the system, and it is independent
of M . The second term in the denominator represents coher-
ent interference caused by pilot contamination and it grows
linearly with M . We stress that a proper pilot design and
power control p̂bl,k,∀l, k, b, can improve the SE by enhancing
the channel estimation quality and reducing the coherent
interference caused by pilot contamination.

IV. MAX-MIN FAIRNESS OPTIMIZATION

In this section, we utilize the SE expression in Lemma 2
to formulate a max-min SE pilot optimization problem. We
further demonstrate that the optimization problem is NP-hard,
and therefore instead of seeking the global optimum, a local
solution with polynomial complexity is derived.

A. Problem Formulation

One of the key visions of Massive MIMO is to provide
uniformly good service for everyone in the system, which
is known as max-min fairness. In this paper, we investigate
how to optimize the pilot sequences to achieve this goal.
We consider the pilot powers (over the basis vectors) as
optimization variables while the data powers are assumed to



S̃INRl,k =

M(βll,k)2pl,k
τp∏
b=1

(
p̂bl,k/α

b
l,k

)2αb
l,k

( ∑
(i,t)∈S

βli,t

(
τp∑
b=1

√
p̂bi,tp̂

b
l,k

)2

+ σ2
τp∑
b=1

p̂bl,k

)( ∑
(i,t)∈S

pi,tβli,t + σ2

)
+M

∑
(i,t)∈S\(l,k)

pi,t(βli,t)
2

(
τp∑
b=1

√
p̂bi,tp̂

b
l,k

)2

(31)

be predetermined. The max-min SE optimization problem is
formulated for the proposed pilot design as

maximize
{p̂bl,k≥0}

min
(l,k)

log2 (1 + SINRl,k)

subject to
1

τp

τp∑
b=1

p̂bl,k ≤ Pmax,l,k,∀l, k.
(24)

Note that this optimization problem jointly generates the pilot
sequences and performs pilot power control. An equivalent
epigraph-form representation of (24) is

maximize
ξ,{p̂bl,k≥0}

ξ (25a)

subject to SINRl,k ≥ ξ,∀l, k, (25b)

1

τp

τp∑
b=1

p̂bl,k ≤ Pmax,l,k,∀l, k. (25c)

From the expression of the SINR constraints in (25), we
realize that the proposed max-min SE optimization problem is
a signomial program.1 Therefore, the max-min SE optimiza-
tion problem is NP-hard in general and seeking the optimal
solution has very high complexity in any non-trivial setup
[17]. However, the power constraints (25c) ensure a compact
feasible domain and make the SINRs continuous functions so
that the optimal solution to (25) always exists.

B. Local Optimality Algorithm

This subsection provides an algorithm to approximate the
optimization problem (25) as a geometric program. In detail,
the signomial SINR constraints are converted to corresponding
monomial constraints by using the weighted arithmetic mean-
geometric mean inequality [18] as in Lemma 3.2

Lemma 3. [18, Lemma 1] Assume that a posynomial
function g(x) is defined from the set of τp monomials
{u1(x), . . . , uτp(x)}

g(x) =

τp∑
b=1

ub(x), (26)

1A function f(x1, . . . , xN1
) =

∑N2
n=1 cn

∏N1
m=1 x

an,m
m defined in RN1

+
is signomial with N2 terms (N2 ≥ 2) if the exponents an,m are real numbers
and the coefficients cn are also real but at least one of them must be negative.
In case of all cn, ∀n, are positive, f(x1, . . . , xN1

) is a posynomial function.
2 A function f(x1, . . . , xN1

) = c
∏N1

m=1 x
am
m defined in RN1

+ is
monomial if the coefficient c > 0 and the exponients am, ∀m, are real
numbers.

then this posynomial function is lower bounded by a monomial
function g̃(x) as

g(x) ≥ g̃(x) =

τp∏
b=1

(ub(x)/αb)
αb , (27)

where αb is a non-negative weight value corresponding to
ub(x). We say that g̃(x0) is the best approximation to g(x0)
near the given point x0 in the sense of the first order Taylor
expansion, if the weight αb is defined as

αb = ub(x0)
/ τp∑
b=1

ub(x0). (28)

Using this lemma, the max-min SE optimization problem
(25) is converted to a geometric program by bounding the
term

∑τp
b=1 p̂

b
l,k in the numerators of the SINR constraints:

τp∑
b=1

p̂bl,k ≥
τp∏
b=1

(
p̂bl,k/α

b
l,k

)αb
l,k , (29)

where αbl,k is the weight value corresponding to p̂bl,k. It leads
to a lower bound on the SINR value for user k in cell l as

SINRl,k ≥ S̃INRl,k, (30)

where S̃INRl,k is presented in (31) at the top of this page.
The solution to the max-min SE optimization problem (25)

is lower bounded by the following geometric program

maximize
ξ,{p̂bl,k≥0}

ξ

subject to S̃INRl,k ≥ ξ,∀l, k,

1

τp

τp∑
b=1

p̂bl,k ≤ Pmax,l,k,∀l, k.

(32)

By virtue of the successive approximation technique [19], a
local solution to the original optimization problem (25) is
obtained if we solve (32) iteratively as follows.

Theorem 1. Selecting a feasible starting point p̂b,(0)l,k ,∀l, k, b,
and solving (32) in an iterative manner via consecutively
updating the weight values αbl,k, the solution will converge
to the Karush-Kuhn-Tucker (KKT) local point to (25).

Proof. The proof is adapted from the general framework
in [19]. We first prove that the procedures in Theorem 1
guarantee that the solution converges to a limit point. This
point is further proved to be a KKT local point to (25). The
detail proof is omitted due to space limitations.



After selecting the initial powers p̂b,(0)l,k ,∀l, k, b, we compute
the weight values by applying (28). Furthermore, in each
iteration, the SINR constraints are converted to the monomials
by bounding the pilot power of user k in cell l as in (31)
with noting that the weight values are computed based on
the optimal powers of the previous iteration using (28). The
solution is then obtained by solving the geometric program
(32). At the end of each iteration, the weight values are
updated for the next iteration. We repeat the procedure until the
algorithm converged to a KKT local point. The convergence
can be declared, for example, when the variation between two
consecutive iterations is sufficient small. The proposed local
optimality approach is summarized in Algorithm 1.

Algorithm 1 Successive approximation algorithm for (25)
Input: Set i = 1; Select the data powers pl,k for
∀l = 1, . . . , L; k = 1, . . . ,K; Select the initial values
of powers p̂

b,(0)
l,k for ∀l = 1, . . . , L; k = 1, . . . ,K, and

b = 1, . . . , τp; Compute the weight values: α
b,(1)
l,k =

p̂
b,(0)
l,k /

∑τp
b=1 p̂

b,(0)
l,k ,∀l, k, b.

1. Iteration i:
1.1. Solve the geometric program (32) with αbl,k = α

b,(i)
l,k

to get the optimal values ξ(i),∗ and p̂b,(i),∗l,k ,∀l, k, b.
1.2. Update the weight values: α

b,(i+1)
l,k =

p̂
b,(i),∗
l,k /

∑τp
b=1 p̂

b,(i),∗
l,k ,∀l, k, b.

2. If Stopping criterion satisfied → Stop. Otherwise, go to
Step 3.

3. Set ξ∗ = ξ(i),∗ and p̂b,∗l,k = p̂
b,(i),∗
l,k ,∀l, k, b; Set i = i+ 1,

go to Step 1.
Output: The solutions ξ∗ and p̂b,∗l,k ,∀l, k, b.

V. EXPERIMENTAL RESULTS

A Massive MIMO system with coverage area 1 km2 com-
prising of 4 square cells is considered for simulation. In each
cell, a BS is located at the center, while K users are uniformly
distributed at distance greater than 35 m from the BS. To even
out the interference, the coverage area is wrapped around,
and therefore one BS has eight neighbors. We assume that
the coherence block contains τc = 200 symbols. The system
operates over a 20 MHz bandwidth and the corresponding
noise variance is −96 dBm, including a noise figure of
5 dB. The large-scale fading coefficient βli,t is computed as
βli,t = −148.1− 37.6 log10 d

l
i,t + zli,t [dB], where dli,t denotes

the distance [km] between user t in cell i and BS l. The shadow
fading zli,t is created by a Gaussian distributed with zero mean
and standard derivation 7 dB.3 The payload data symbols have
equal power, pl,k = 200 mW, ∀l, k and the maximum pilot
power constraints Pmax,l,k = 200 mW, ∀l, k.

For Algorithm 1, we observed better performance with
a hierarchical initialization of p̂b,(0)l,k than with an all-equal

3 Shadow fading realizations were sometimes regenerated to ensure that
the home BS has the largest large-scale fading to its users (i.e., βl

l,k is the
maximum over all βl

i,k, i = 1, . . . , L.)
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Fig. 1. Cumulative distribution function (CDF) of the max-min SE [b/s/Hz]
with K = τp = 2 and M = 300.

initialization. Consequently, we initialize p̂b,(0)l,k as uniformly
distributed over the range [0, Pmax,l,k]. Algorithm 1 converges
quite fast, so the stopping criteria can be easily specified in
the number of iterations (e.g., 15 iterations). The proposed
algorithm is compared with related works and brute-force:
(i) Universal random pilot assignment, as considered in [7],

[8]. The same pilots are reused in every cell and assigned
randomly to the users within the cell. Equal pilot power
p̂ = 200 mW is used by all users.

(ii) Smart pilot assignment, as proposed in [11]. Orthogonal
pilot sequences are assumed in every cell and are assigned
to the users based on the mutual interference, determined
by the large-scale fading coefficients. Equal pilot power
p̂ = 200 mW is used by all users.

(iii) Pilot power control with brute-force search utilizes the
pilot structure in (12). A brute-force search over all per-
mutation matrices ΠΠΠl is performed, and for each matrix
the optimum pilot powers are computed.

SE is measured over different random user locations and
shadow fading realizations. The SE achieved by (i) − (iii)
and Algorithm 1 are also averaged over different pilot reuse
locations and initializations of p̂

b,(0)
l,k ,∀l, k, b, respectively.

Additionally, the solutions to the optimization problems are
obtained by utilizing the MOSEK solver [20] with CVX [21].

Fig. 1 shows the cumulative distribution function (CDF)
of the max-min SE [b/s/Hz] for the case K = τp = 2
and M = 300. Universal random pilot assignment yields the
worst SE, because of the pilot contamination and mutual in-
terference. At the 95%-likely SE point, smart pilot assignment
brings significant enhancement: it is about 4.75× better than
universal random pilot assignment thanks to exploitation of
the mutual interference between the users [11]. Although the
performance of smart pilot assignment is very close to optimal
pilot assignment with brute-force search for a fixed power level
[11], by jointly optimizing the power and pilot assignment,
the proposed method outperforms smart pilot assignment by
providing a 1.6× gain in average max-min SE. Furthermore,
the similar performance of the proposed pilot design and pilot
power control with brute-force search confirms effectiveness
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Fig. 3. Max-min SE [b/s/Hz] vs. the number of BS antennas, K = τp = 4.

of the proposed local optimality algorithm.
Due to huge computational complexity, the brute-force

search is not considered hereafter when we increase the
number of users. Fig. 2 plots the average max-min SE as a
function of the number of users per cell, assuming τp = K.
The proposed pilot design provides the highest SE over
all tested scenarios. Specifically, in comparison to universal
random pilot assignment, the improvement varies from 2.73×
to 5.22× with K = 2 to K = 10, respectively. Even
though smart pilot assignment performs better than universal
random pilot assignment, the proposed method still provides
SE improvements of up to 1.88× at K = 10. Moreover, we
observe a dramatic reduction of the max-min SE when the
number of users increases due to stronger mutual interference.

Fig. 3 shows the average max-min SE versus the number of
BS antennas. Among the three pilot assignment techniques,
we again observe the worst SE with universal random pilot
reuse. The max-min SE increases from 0.08 [b/s/Hz] to 0.22
[b/s/Hz] from M = 100 to M = 900. Our proposed pilot
design always yields the highest SE and the gap to the smart
pilot assignment reaches up to 2.16× at M = 900.

VI. CONCLUSION

This paper proposed a new methodology for joint opti-
mization of the pilot assignment and pilot power control in

Massive MIMO systems. The key difference from prior work
is to treat the pilot sequences as continuous optimization
variables, instead of predefined vectors that should be assigned
combinatorially. A new SE expression was computed for
the proposed pilot structure and it was used to formulate
a max-min SE optimization problem. Finding the globally
optimal solution is NP-hard, but we obtained an efficient
local optimum that outperforms the previous state-of-the-art
methods for pilot assignment. Large gains in max-min SE can
be achieved by the proposed pilot assignment.
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