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Abstract—In this paper, we introduce a new uplink visible
light indoor positioning system that estimates the position of the
users in the network-side of a visible light communications (VLC)
system. This technique takes advantage of the diffuse components
of the uplink channel impulse response for positioning, which
has been considered as a destructive noise in existing visible
light communication positioning literature. Exploiting the line of
sight (LOS) component, the most significant diffusive component
of the channel (the second power peak (SPP)), and the delay
time between LOS and SPP, we present a proof of concept
analysis for positioning using fixed reference points, i.e. uplink
photodetectors (PDs). Simulation results show the root mean
square (RMS) positioning accuracy of 25cm and 5cm for one
and 4 PDs scenarios, respectively.

Index Terms—Visible light indoor positioning, visible light
communications (VLC), multipath reflections.

1. INTRODUCTION

Ubiquitous use of light-emitting diodes (LEDs) alongside
their fast modulation capability paves the way for introducing
new indoor services such as internet of things, visible light
communications (VLC) and positioning through lighting. In
comparison with radio-frequency (RF) indoor networks, visi-
ble light communication systems are considered as a viable
approach for indoor wireless data access providing higher
security and larger multiuser capacity [1]. Indoor positioning
is difficult to achieve because the signals from GPS satellites
can be blocked in indoor areas and underground facilities.
VLC systems can provide centimeter accuracy in finding
the location [2]. Various positioning algorithms have been
proposed using visible light signals that demonstrate higher
accuracy compared to conventional RF techniques [3], [4].

The main approaches for estimating the users’ location
in visible light positioning systems generally rely on three
features of the received signals: time of arrival (TOA), angle
of arrival (AOA), and received signal strength (RSS). RSS-
based techniques use the intensity of the signal to estimate the
distance from the transmitter to the receiver. These techniques
have the potential to achieve a high accuracy in visible
light positioning systems because of the strong line of sight
(LOS) signals, which are often not available in RF systems.
However, the accuracy of the RRS techniques that rely on LOS
signals is limited due to the shadowing and multi-path effects,
which make the relationship between the distance and RSS
unpredictable [2], [5], [6]. In TOA-based systems, the position

978-1-4673-8999-0/17/$31.00 ©2017 IEEE

of the receiver is estimated by measuring the arrival time of
the signal from different transmitters, and hence, it requires
perfect synchronization between the transmitters, which can
limit the application of these systems. Theoretical limits have
been presented on the accuracy of the TOA-based [4] and RSS-
based [7] positioning techniques. TOA and RSS locate users
using triangulation, trilateration, and/or fingerprinting and in
general, require at least two LEDs when the height of the
user is known, and three LEDs when it is unknown. AOA
has been used with imaging receivers to locate the users by
measuring the angle at which the line-of-sight (LOS) signal
from the transmitter is received. Shadowing can interrupt the
performance of this type of positioning system. AOA-based
techniques can estimate the user’s location using one imaging
receiver when the height of the user is known and two imaging
receivers when it is not [2].

In this paper, we propose a new positioning technique for
indoor visible light systems that uses the characteristics of the
channel impulse response to locate users. This method exploits
the multipath signals to get a better estimate of the user’s
position rather than considering them as noise. While most of
the research on visible light positioning has concentrated on
downlink and user-side positioning, the proposed algorithm is
developed for the infrared (IR) uplink of a VLC system. This
localization algorithm provides the network the information
needed for communications purposes, such as resource alloca-
tion and hand-off where the network monitors the number and
position of the users. For this purpose, less complex algorithms
are preferred over more accurate ones. In the proposed algo-
rithm, one reference point, i.e., one uplink receiver, suffices for
estimating the user’s position. However, adding more reference
points enhances the positioning accuracy.

The rest of the paper is organized as follows. In Section II,
the system model and measurement scenario are discussed.
The positioning algorithm is presented in Section III. The
numerical results are presented and discussed in Section IV.
Finally, the paper is concluded in Section V.

II. SYSTEM DESCRIPTION
A. Fingerprint Definition

In a typical visible light communication system, there
are usually multiple white LED fixtures on the ceiling that
transmits downlink data and multiple infrared photo-detectors
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IR receivers

Fig. 1. System configuration for visible light communication uplink system

(PDs) that capture uplink signals as shown in Fig. 1. In this
paper we propose a technique to find the position of the users
using only one transmitter-receiver pair. We further, extend this
algorithm to multiple receivers for the sake of accuracy. The
idea in this work is to use the channel impulse response of the
uplink channel to locate the user, and map the characteristics
of the impulse response to the location of the user. Fig. 2
illustrates the room configuration considered for the proposed
uplink positioning system. In this model, a PD is assumed to
be installed on the ceiling at the point (2,5 1)) facing
vertically downwards, and the user at coordinates (z,y,h) is
assumed to have an infrared LED transmitter that is facing
vertically upwards.

To develop the proposed positioning algorithm, we first
divide the indoor area into a grid and then create a database
of the channel impulse responses for different positions of the
user on the grid, Cx, = (g, yx), k € {1,2,...,MN}, for
a known height h. We consider an N x M grid, as shown
in Fig. 2. We focus on the main features of the impulse
response, which give sufficient information about the user
location. For the proof of concept, we consider the LOS
peak power Prog, the second power peak (SPP) term Pspp,
i.e., the first peak of the diffuse term, and the arrival time
difference between these two components A7. The vector
St = [Pros, Pspp,At] ,k € {1,2,..., M N}, represents
the constellation vector corresponding to the kth point on the
measurement grid for one PD. For the multiple PDs scenario,
the feature space is simply expanded to ) x 3 dimensions,
where () is the number of PDs.

B. Channel Model

In indoor environments, the channel response of optical
wireless systems includes both LOS and diffuse components
that are caused by multipath reflections. For simplicity, in our
simulation we consider only the first bounce of the channel’s
diffuse components. This approximation has a small error
since the first bounce is the strongest component of the diffuse
part. In addition, considering that the paths with more bounces
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Fig. 2. Birds-eye view of the room.

—TX Pos.: (150 cm, 150 cm)
—--=-TX Pos.: (150 cm, 250 cm)
6 - - TX Pos.: (250 cm, 250 cm)
107 F 108
32
Q
= 7
E107¢ 2 3
=
g
<
1
10°E :
i 0 = g
10 20
I
]0-9 I : L L L L
0 10 20 30 40 50 60
Time (ns)
Fig. 3. Impulse response of the channel for different locations of the

transmitter when the receiver is located at (150 cm, 150 cm, 300 cm) and
the simulation parameters are as in Table L.

have larger delays, neglecting the paths with more than one
reflection does not have significant impact on the second power
peak [8]. The impulse response is captured in simulation
through ray tracing, presented in [9]. Fig. 3 illustrates the
impulse response for three different user locations. For a fixed
IR receiver position on the ceiling, each point of the room has
a unique channel response and the LOS peak power, SPP, and
their time delay can uniquely characterize the user’s position.
Table I presents the simulation parameters considered for this
work.
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TABLE 1

SIMULATION PARAMETERS OF RAY TRACING CHANNEL MODEL [9].
Transmitter Parameters Value
Height 0.85 m
Wavelength 950 nm
Lambertian Mode (m) 1
LED transmit power, Pr 10 mW
Receiver Parameters Value
Surface area of the PD, App | 1 cm?
Height 3 m
Field of View (Half Angle) 70°
Wall reflectance coefficient, p | 0.8
Reflecting element area, Ar | 2 cm
Room Parameters Value
Room Size 5x5x3m3

III. POSITIONING ALGORITHM

In this section, we describe our indoor positioning algo-
rithm. Given that the transmitter sends an ideal delta function
d(t), the received signal is the channel impulse response with
additive white Gaussian noise (AWGN) that can be defined as

v(6,) = h(8,t) + n(t) (1)

where h(0,t) is the corresponding channel impulse response
and n(t) is AWGN. In this algorithm, the user’s position is
estimated using features captured from v(0,t): the received
peak power from LOS, and SPP components of the impulse
response, and the time delay between LOS and SPP compo-
nents. These three observations can be expressed as

v1(0) = PrLos(0) + 11,
1}2(0) = Pspp(e) + nao,
v3(0) = AT(0) + n3. ()

where 8 = (x,y) is the two dimensional coordinates of the
user to be estimated, and n; and n» are independent Gaussian
noises with variance o2. ns is the time delay noise between
LOS and SPP which is modeled as a Gaussian noise with
variance af and assumed independent from n, and n,. Let
V(0) = [v1(0),v2(0),v3(0)]T be the observation vector.

A. Calculation of Time Jitter Noise o2 for Peak Detector

In real applications, the observation components defined in
(2) are the output of a peak detector. The variance o? of
peak amplitude noises, namely, n; and no, are the same as
the received signal variance. However, the variance of time
delay noise ng, the time jitter noise of a peak detector, is a
function of ¢2. To figure out the relation between the time
jitter and amplitude noise, we can simplify the problem to
the relation of amplitude noise and time noise of the zero
crossing, when the amplitude noise distribution is Gaussian.
The first derivative of the received signal in (1), v'(t) = avéZ’t)
crosses zero at the times near the LOS and SPP peaks, with the
same amplitude noise variance. At these zero crossing times,

the function v’(¢) can be approximated as linear with constant
slope 3 = dv'(t)/dt|, (t)—o. Thus, the amplitude noise can
be translated to jitter noise ngz. This linear approximation is
accurate for high SNR scenarios. Considering this approxima-
tion, the distribution of the jitter noise remains Gaussian. The
corresponding noise variance can be written
2
= 3)

In this paper, we use 32 = 30, based on our numerical results.

B. Maximum Likelihood Estimation

Maximum likelihood estimation is employed for position-
ing, where the algorithm looks for the constellation point
Sk(e) = [PLos(O),PSPp(O), AT(G)], k € {1, ey MN} that
has the minimum Euclidean distance to the observation vector
V (8) € observation plane. @ € room plane corresponding to
this constellation point is considered as the estimated location.
Fig. 4 illustrates an example of mapping between some region
close to V(0) in the observation plane onto the room plane.
The decision regions are depicted based on the minimum
Euclidean distance criterion. In this example, 0 = C; is the
estimated location since V() is located in the S; decision
region (see Fig. 4).

C. Calculation of the Positioning Error

Considering the minimum distance algorithm, the probabil-
ity of choosing S;(80) given the position of @ is denoted by

e; = Pr{S,_;(6)(6}, “4)
where

~ . ~ 12
i = argmin V(O)fSi(B)‘ ie{1,2,....NM} (5

is the index of the selected center point, Sz(é) The root mean
square (RMS) positioning error can be calculated as

NxM

drms = | Eg Z 60— C;l¢ ©)
=1

where Eg{-} denotes the expectation over different locations
6.

Due to the complex shapes of the decision regions, a
derivation of the exact value of ¢; is not trivial. In this case,
a reasonable approach, especially for high SNR scenarios, is
to calculate a lower-bound (LB) on the estimation error [10].
To that end, we consider only ¢;’s that correspond to the two
closest center points to the observation point, V' (). Then, (4)
evaluated at these center points can be rewritten

Ti,—l,i
& = Q(/ LB L@y

T =-LL(i @)
v =1— Q(\/@).

where L(7) is the distance vector between V'(6) and the
boundary between the two closest center points, named ¢ and
i’ (see Fig. 4). The covariance matrix can be defined as

S = diag(o?, 02, 03). 8)
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Fig. 4. Mapping the room plane onto the observation plane. The S;, S;/, and
Sy, are three typical observation points, close together in observation space
and, the C;, C;/, and C}, are corresponding center points in the room plane.

The o2 and o2 are the variances of the noises on the obser-
vation vector defined in (2). For the multiple PDs scenario,
the observation space vectors are simply expanded to @ x 3
dimensions by concatenating the corresponding vectors from
different PDs. In this case, X is the 3Q) X 3() covariance matrix
formed by values of o and o2 in the appropriate places on
the diagonal.

IV. NUMERICAL RESULTS

In order to model the multipath signals in a typical room,
simulations are done in an empty cubicle of size 5 x 5 x 3 m3.
Table I summarizes the parameters used in the simulations. In
these simulations, we assume the single PD to be located at
point (1.5,1.5,3) on the ceiling. For multiple PDs scenarios,
the other PDs are located at points (3.5,1.5,3), (1.5,3.5,3),
and (3.5,3.5,3). The transmitter is assumed to be at 85 cm
from the floor.

Fig. 5 demonstrates the contour plots for the three obser-
vation components, namely, P os, Pspp and A7. Based on
previously presented positioning methods, like trilateration,
given enough power measurements (three in trilateration), the
user position can be estimated to be at the intersection point
of power observation contour plots. As an intuition for the
proposed algorithm, here the user position can be estimated
as the intersection of three observation contours P os, Pspp,
and Ar.

Fig. 6-(a), and (b) illustrate the constellation points in
the room plane and in the corresponding observation plane,
based on two observations components, P, os and Pgpp. The
corresponding points in both planes are denoted with markers
of the same size and color. As shown in Fig. 6-(b), the
mapping to the observation plane maintains the same room
plane pattern, i.e., almost all the point on the observation plane
are surrounded by the mapping of its corresponding neighbors
in the room plane. Hence, maximum likelihood estimation,
i.e., the minimum Euclidean distance in the observation plane,
leads to the closest measurement point on the room plane.
Adding the third observation component, A7, we can see in
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Fig. 5. Contour plots in room space: a) LOS component of received power
(dB), b) SPP component of received power (dB), c) Time delay between the
LOS and SPP components (ns).
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Fig. 6-(c) that the distances between the points are increased,
which brings higher positioning accuracy.

In order to determine the estimation error, we run a Monte
Carlo (MC) simulation by randomly choosing the location of
the user and estimating the closest grid point on the room
plane using the proposed algorithm. The RMS positioning
error is a representation of the probability of choosing a
constellation point by the algorithm and the mapping cost
of that decision. However, given that the algorithm tries to
find the closet grid point, the larger the grid step size, the
worse the absolute positioning accuracy becomes, and yet
the lower the probability of mapping to some far bin in
the room. Therefore, there is a trade off between the room
plane absolute grid accuracy and the cost of wrong mapping.
Figs. 7-(a) and 7-(b) demonstrate the RMS positioning errors
for the 2 and 3 observations algorithms, respectively. For a
different number of PDs, the MC simulations converge to the
LB results (calculated in section III-C) at high SNR, which
verifies the simulation results. Deploying more PDs leads
to higher accuracy level: for 4 PDs we reach the minimum
error that is inevitable due to quantization on a grid. As
expected, for the same SNR and number of PDs, the 3
observations algorithm provides better accuracy compared to
the 2 observations algorithm.

Fig. 8 shows the RMS positioning error versus grid step
for a high SNR scenario. There is a nearly linear relation
between accuracy and the grid step size for all multiple PDs
scenarios. In addition, for a larger number of PDs, the RMS
error gets closer to the RMS quantization error, where the
estimated location is mapped to the closest grid point in the
room, in the high SNR case.

A. Addressing Practical Challenges

The performance of the proposed algorithm tightly depends
on the channel model. Therefore, the features extracted from
the impulse response are different for real indoor spaces con-
taining furnishings, surfaces with different reflection factors,
specular reflections from windows, etc. In real scenarios, it is
only a matter of defining the fingerprint database: the actual
impulse response can be learned once for a specific grid, and
then the algorithm can be deployed. The other practical con-
cern has to do with the shadowing effect, which is inevitable
when there are moving users and/or objects in the room. In
this case, installing multiple PDs on the ceiling can address the
problem. Tracking the movement path of the users can increase
the accuracy of the proposed algorithm by limiting the number
of constellation points for the user’s location. The positioning
error can also be reduced by redesigning the grid in the
room plane and optimizing the observation constellation using
irregular points in the room, and more regular constellations
in the observation space.

V. CONCLUSION

In this paper, an infrared uplink positioning algorithm is
proposed that takes advantage of the user location information
embedded in the multipath reflections. Using the LOS, SPP
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Fig. 6. a) Anchor points in room plane, b) Corresponding fingerprints in
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AT.
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Fig. 7. RMS distance error for a grid step of 14 cm and multiple PDs
scenarios: a) Two observations, b) Three observations.

and the time delay between these two components, a database
of room fingerprints on a grid is created. The performance of
the maximum likelihood estimation algorithm is evaluated for
several different grid steps and multiple PDs scenarios. The
results show a RMS positioning error of 5 cm using 4 PDs, a
SNR of 50 dB, and grid step of 14 cm.
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