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Abstract—The rise of Over The Top (OTT) content providers
and the introduction of numerous applications has been driving
the growth of mobile data traffic in the past few years. The
applications’ various Quality of Service (QoS) requirements as
well as the use of multiple devices per user have increased the
traffic heterogeneity, pressing the telecommunications industry to
the deployment of 5G networks in 2020. At the same time, the rise
of OTT providers has also led to the decrease of the Mobile Net-
work Operators’ (MNOs) revenues. Under these circumstances,
the MNOs need to guarantee the users’ Quality of Experience
(QoE) requirements, while ensuring the sustainability of a 5G
investment. To this end, we consider a 5G Heterogeneous Network
(HetNet) deployment where MNOs use a QoE-based charging
scheme. We propose a heuristic, QoE-aware user association
algorithm to maximize the MNO profit, while providing high
QoE. Simulation results show that the proposed algorithm can
handle traffic heterogeneity by achieving substantial profit and
QoE gains, compared to a baseline SINR-based scheme.

Index Terms—Association, Traffic Heterogeneity, QoE, 5G.

I. INTRODUCTION

The exponential increase in mobile data traffic is expected to

continue for the next few years. This traffic growth is mainly

the result of the emergence of OTT content providers, and

the continuous appearance of new applications. These new

applications are described by various QoS requirements, which

along with the use of multiple devices per user [1] increase

the heterogeneity of the traffic demand. As a response to

these challenges, the mobile industry has already established

the requirements of 5G networks, for their deployment in

2020 [2]. The aforementioned rise of OTT providers has

resulted in a growth of the traffic served by the MNOs.

Although it may seem contradictory, the described boost of the

traffic has increased the OTT profits while, simultaneously, has

diminished the MNOs’ revenues [3]. This occurs because the

usage of the MNO basic services (voice and messaging) has

been gradually replaced by their OTT counterparts. Moreover,

the MNOs’ data service prices have been decreasing over the

years, due to the market competition. However, despite these

conditions, the MNOs must provide seamless connectivity and

high QoE to their users, which is one of the key elements in

the design of 5G networks [2].

Therefore, MNOs face a two-fold challenge: meet the QoE

requirements and maximize the profit. It has been proven

that the relation between QoS and QoE has a non-linear

nature [4]. This means that small degradations in the received

QoS can impact significantly the perception of QoE. Yet,

QoE is influenced by other factors such as pricing or device

characteristics [5]. In this context, it is necessary to design

network functionalities adapted to the new requirements, such

as QoE-aware Radio Resources Management strategies or new

cell association algorithms, and always trying to maximize the

profit (to compensate the diminished MNOs’ revenues and the

increasing deployment investment).

Most works in the user association literature focus solely

on the maximization of the served traffic under particular

QoS/QoE constraints, without considering the economic ef-

fects of their proposal. The user-cell association problem in

small cell (SC) networks is solved with the use of matching

games with externalities in [6] and [7]. In [6], the proposed

algorithm combines the users’ context with predictions on

QoE, in order to minimize the relative error between the

actual and the predicted QoE. In [7], the objective is the

maximization of the users’ context-aware utility function,

which is defined by the service’s QoS metrics. The proposed

algorithms in these works achieve lower bandwidth utilization

[6], and higher user rates [7], when compared to traditional

association schemes.

The user association problem in a SC network operating in

the 60-GHz band is studied in [8]. The authors’ objective is

the minimization of the maximum resource utilization in the

system. A distributed association algorithm is proposed, based

on Lagrangian duality theory. The proposed algorithm is time

efficient and converges asymptotically to the optimal values,

utilizing substantially less resources compared to conventional

association algorithms. The problem of cell association and

transmission scheduling in a two-tier network is studied in

[9]. The authors propose three approximation algorithms and

a scheduling scheme for the sub-optimal solution of the

association problem, and the minimization of the delay.

In this paper we study the user association problem aiming

to maximize the MNO profit, while offering high QoE to

the users. We consider HetNets composed of macrocell base

stations (BSs) operating in the sub-6GHz microwave (μWave)

band and SCs operating in the mmWave band, dynamic traffic

described by numerous QoS/QoE demands, and diverse pric-

ing. In order to address the challenges of traffic heterogeneity

we propose a heuristic, QoE-aware user association algorithm

to maximize both QoE and MNO profit.



The rest of the paper is organized as follows. We present the

system model in Section II. Section III describes the MNO’s

objectives. In Section IV, the profit optimization problem

is formulated, and in Section V a QoE-aware association

algorithm is proposed. We validate our algorithm in Section

VI, and conclude the paper in Section VII.

II. SYSTEM MODEL

The considered network is composed of a set of macrocells

operating in the μWave band and a set of SCs operating in

the mmWave band, all of them deployed by a single MNO.

We denote this set of BSs, both macrocells and SCs, as

B={1, 2, . . . , NB}, where NB is the total number of BSs. The

bandwidth allocated to each BS i∈B is hereafter referred to as

bi (in Hz). The mmWave SC deployment has been extensively

addressed in the literature and proposed as a pivotal solution

in 5G for two main reasons. First, the bandwidth availability in

mmWave bands is higher than in the μWave bands, thereby al-

leviating the spectrum scarcity problem; second, thanks to the

limited interference realized by the use of highly directional

antennas, very dense deployments are feasible, thus enhancing

the network spectral efficiency [15].

The MNO serves a set of users U = {1, 2, . . . , NU}, where

NU is the total number of users. It is assumed that users are not

served by more than a single BS simultaneously, and therefore

we define the set of users served by BS i ∈ B as Ui, where

U = ∪i∈BUi and ∩i∈BUi = ∅. MNOs have put the focus on

the QoE as the target Key Performance Indicator (KPI) in the

design of 5G networks. Accordingly, in our model each user

has a contract with the MNO that specifies a desired QoE for

each service, denoted in the sequel as Service Profile (SP).

If we define the set of services as S = {s : s = 1 . . . S}
and the set of QoE classes as Q = {q : q = 1 . . . Q} (Q
is assumed to be a discrete and finite set), a generic service

profile can be defined as πk = (sk, qk, pk), where pk is the

price of the service (in e ), sk ∈ S and qk ∈ Q. Focusing

on pk, it is worth noting that its definition depends on the

service sk. Thus, some services are charged based on the

amount of transmitted/received data and some others are based

on the connection time. Let us define the price for a data-based

charged service as θBk (in e /MB) and for a time-based charged

service as θtk (in e /sec). The general expression of pk for a

time period T can be expressed as

pk =

{
Tθtk if sk is time-based charged
T ·r
8 θBk otherwise,

(1)

where r (in Mbps) is the transmission rate of the user. As

for the perceived QoE, in general any user with a service

profile πk has a target QoE level, Qtg
k , and a minimum QoE

level below which the session is dropped, Qdrop
k (in the MOS

scale). Although the perceived QoE is influenced by multiple

factors, as it will be detailed in Section III, we now focus on

the impact of the user device. Nowadays, a single user can get

connected to the network with different devices (tablet, laptop,

smartphone, etc), each one with specific characteristics. These

characteristics of the device, such as the screen quality or

screen size, are relevant since they may improve or worsen

the perceived QoE. For instance, to perceive similar QoE

levels, lower image resolution and hence lower transmission

bit rate is required for a user using a video service in a small-

size screen smartphone than for the same user with a large

screen tablet [10]. Therefore, we define the set of devices as

D = {d : d = 1 . . . D}, and the mapping function that links

the device-SP pair with the required transmission rate, rkd,

as f : (πk, d) → rkd. According to the definitions, the QoE

perceived by a user j ∈ U with a SP πk and using a device

d ∈ D, namely Qkd
j , will be higher than the target QoE Qtg

k

if the transmission rate from the serving BS to the user j is

higher than rkd. In other words, the target QoE is met at time

period t if rj(t) = wij(t)εij(t)bi ≥ rkd = f(πk, d), where

rj(t) is the actual transmission rate of user j ∈ Ui (in Mbps),

wij(t) ∈ [0, 1] is the portion of BS i ∈ B radio resources

allocated to user j, and εij(t) is the spectral efficiency of the

link between user j and BS i (in bps/Hz).

Note that the QoE classes differentiate the perceived quality

by offering different maximum rate values for the same service

(e.g. SD and HD video). That is, the user can opt between Q
quality levels for every service and create a user profile, since

each service may be of different importance to the user (e.g.

preference for high browsing speed, but SD video).

Based on the definitions stated above, it is clear that the

satisfaction of users is tightly coupled with the perceived QoE.

Specifically, if satisfaction of user j served by BS i, namely

σij(t) is defined within the interval [0,1], when Qkd
j (t) =

Qdrop
k , the session is dropped and the satisfaction is equal to

0. Conversely, when Qkd
j (t) ≥ Qtg

k , the satisfaction is equal

to 1. Thus, according to [5], the satisfaction can be defined as

σij(t) =

⎧⎪⎨⎪⎩
0 if Qkd

j (t) ≤ Qdrop
k

Qkd
j (t)−Qdrop

k

Qtg
k −Qdrop

k

if Qkd
j (t) ∈ (Qdrop

k , Qtg
k )

1 otherwise

(2)

III. MNO OBJECTIVES

MNOs have a two-fold objective. First, they must offer the

users the QoE agreed in the SP. Second, the network must

be managed so as to maximize their economic profit. In the

following, the analyses of the QoE and the profit are detailed.

A. User QoE

Based on the analysis described in [5], the perceived QoE

Qkd
j (t) can be divided into two components: the QoS-based

component (Q̂kd
j (t)) and the price-based component (Qp(pk)).

Qkd
j (t) = Q̂kd

j (t) ·Qp(pk) (3)

The QoS-based component, Q̂kd
j (t) ∈ [1, 5] (in the MOS

scale), shows the effect of QoS level on QoE. In the literature,

the connection between QoE and QoS is usually modelled

according to the IQX hypothesis [4], which defines it as an

exponential relationship. Using the transmission rate rj(t)



as the reference QoS metric, and according to the IQX

hypothesis, we can express Q̂kd
j (t) as

Q̂kd
j (t) = αkde

−βkdΔrj(t) + γkd, (4)

where Δrj(t) = rkd − rj(t) , and αkd > 0, γkd > 0 (both in

the MOS scale), βkd > 0 (in sec/bit) are SP-device dependent

constants. Regarding the price-based component, it captures

how the perception of the quality improves (or worsens) as

the price falls (or rises). As in [5], Qp(pk) is modelled as

Qp(pk) = 1− vkpk, (5)

where vk > 0 is an adjusting factor measured in e −1. As

it can be observed in (5), if the user does not pay for the

service (i.e. pk = 0), the price-based component reaches the

maximum value, Qp(0) = 1, thereby increasing the perceived

QoE stated in (3). That is, the more a user pays for a service,

the higher her expectations on the received quality are.

MNOs aim to offer fairness among users both when the

available resources suffice to provide them all with the target

QoE (i.e. Qkd
j = Qtg

k , for all j ∈ U ), and when not all of

them can be appropriately served (i.e. Qkd
j < Qtg

k for some

users). Similarly to the transmission rate proportional fairness

described in [11], resource allocation algorithms based on QoE

are intended to guarantee fairness among users in terms of

QoE. Thus, for the set of users served by BS i, QoE fairness

is achieved if σij(t) = σin(t) for any j, n ∈ Ui with service

profiles πkj = (skj , qkj , pkj ) and πkn = (skn , qkn , pkn), and

devices dj , dn ∈ D, respectively. When bi is not enough to

offer σij(t) = 1, ∀j ∈ Ui, all σij(t) are decreased (by reducing

wij(t)) until σij(t) = σin(t) ∀j, n ∈ Ui. If σij(t) = σin(t) is

only true for the trivial solution (i.e. σij(t) = 0), users with

σij(t) = 0 are dropped (i.e. wij(t) = 0).

B. MNO Profit

The objective of the MNO is the maximization of the profit

while satisfying the QoE required by the users. Specifically,

the total profit P (t) is the sum of the individual profits of each

BS Pi(t), i.e. P (t) =
∑

i∈B Pi(t). In [12], Pi(t) is expressed

as the revenue obtained from the traffic served at time t,
Ri(t), minus the cost incurred when serving the traffic. In

turn, the cost can be decoupled into the bandwidth utilization

cost, CBi(t), and the fixed cost, CFi(t). Therefore,

P (t) =
∑
i∈B

Pi(t) =
∑
i∈B

(Ri(t)− CBi(t)− CFi), [e ], (6)

The revenue of BS i, Ri(t), is usually the price of the services

paid by the users in Ui. That is, Ri(t)=
∑

j∈Ui
Rij(t), where

Rij(t) is the revenue paid by user j when connected to BS

i at time period t. In [5], the authors propose a QoE-based

charging policy where the price (and revenue) is reduced when

satisfaction is below 1. In other words, the price of the service

is reduced when σij(t)<1. Thus, based on [5], for a user j
served by BS i and with a SP πkj

, the BS i revenue is given

by

Rij(t) = σij(t) · pkj
(7)

With regard to CBi(t), it is a convex and increasing expo-

nential function of the total resources used by BS i, wi(t) =∑
j∈Ui

wij(t) [12], and it can be expressed as

CBi(t) = cie
hiwi(t)bi , (8)

where ci (in e ) and hi (in MHz-1) are adjusting factors that

capture the differences in the operational cost of the different

BSs (e.g. macrocells and SCs have different transmit power,

maintenance cost, site rent, etc.). Substituting (7) and (8) into

(6), and denoting the SP of a generic user j as πkj
, the profit

of BS i at time period t when Q
kjdj

j (t)∈(Qdrop
kj

, Qtg
kj
] is given

by

Pi(t) =
∑
j∈Ui

[(
αkjdj

e−βkjdj
Δrj(t) + γkjdj

)
(1− vkj

pkj
)

Qtg
kj

−Qdrop
kj

−
Qdrop

kj

Qtg
kj

−Qdrop
kj

]
pkj

− cie
hi

∑
j∈Ui

wij(t)bi − CFi (9)

It can be seen in (9) that the profit is impacted by multifarious

factors, such as the perceived QoE (which in turn depends on

multiple factors), the cost, the usage of the radio resources,

etc. In the subsequent Sections the optimization of the MNO

profit is stated and a low complexity algorithm is proposed,

also taking into account the users’ QoE.

IV. PROFIT OPTIMIZATION

As explained in the previous Section, the MNO aims to

maximize the profit P (t) while satisfying the required QoE

of all users. However, when not all users can be served with

the required QoE due to network congestion, the MNO must

ensure fairness among them. Let us define the association of

user j to BS i at time period t as xij(t), where xij(t) = 1
if user j is served by BS i and xij(t) = 0 otherwise. In

order to capture the impact of dynamic traffic demand and

channel conditions, the profit is maximized for a period of

NS subframes. The association problem is formulated as

max

NS∑
t=1

P (t) =

NS∑
t=1

∑
i∈B

∑
j∈U

xij(t)σij(t)pkj
(10a)

−
NS∑
t=1

∑
i∈B

cie
hibi

∑
j∈U xij(t)wij(t) −

∑
i∈B

CFi,

s.t.
∑
i∈B

xij ≤ 1, ∀i ∈ B, ∀j ∈ U , (10b)

wi ∈ [0, 1], ∀i ∈ B, (10c)

σij = σin, ∀i ∈ B, ∀j, n ∈ Ui, (10d)

In the optimization problem, users cannot be connected

to more than a single BS (10b), the maximum bandwidth

allocated by BS i is bi, that is
∑

j∈Ui
wij(t) = wi(t) ≤ 1

(10c), and QoE fairness must be guaranteed (10d). As this

maximization problem cannot be solved in polynomial time

(i.e. it is NP-hard), in the following section a heuristic, QoE-

aware association algorithm is proposed.



V. QOE-AWARE ASSOCIATION ALGORITHM

The proposed low complexity algorithm, O(n2), which

is presented in Algorithm 1, takes as input the user’s SP-

device pair (πkj , dj), as well as the BSs’ state in the previous

subframe (i.e. wij(t − 1), Rij(t − 1), ∀j ∈ Ui, ∀i ∈ B), to

maximize the MNO profit through the user association. At the

beginning of the subframe t, the algorithm creates the set A(t)
with all the users that, being served by a BS, had a satisfaction

below 1 at time t − 1, i.e. σij(t − 1) < 1, and the users

that consumed a lot of resources due to a Non-Line-Of-Sight

(NLOS) connection (line 1). If the set is not empty, all users

with σij(t− 1) = 1 are associated to the same BS they were

associated with at time t−1 (line 4). For the association of the

rest of the users, the algorithm makes use of the estimates of

wi(t), Pi(t) and Rij(t), denoted as wi(t), Pi(t) and Rij(t).
Users in A(t) are selected randomly, one by one, in order to

avoid the prioritization of users during the association proce-

dure, and hence guarantee fairness . Each user’s contribution

to the estimated BS profit, where the user was connected to at

time t− 1 is subtracted (lines 8-11). The algorithm estimates

the resources needed/available in each BS, ŵij(t), the expected

revenue, R̂ij(t), and the expected satisfaction, σ̂ij(t) (line 13).

Then, for all BSs, if there are BSs that provide satisfaction

equal to 1, the user will be associated to the BS that maximizes

the MNO profit while σ̂ij(t) = 1 (lines 18-21). If there are

not BSs that could provide σ̂ij(t) = 1, but σ̂ij(t) > 0, the

user will be associated with the BS that maximizes the MNO

profit with σ̂ij(t) > 0 (lines 22-25). The rest of users are not

associated to any BS, since there are not enough resources in

the neighbouring BSs or the channel between the user and the

BSs is in outage (line 27). The procedure is repeated for all

users in A(t).

Feasibility: The feasibility of the algorithm depends on the

availability of wij(t−1) and Rij(t−1), the users’ SINR, and

the information needed to calculate σ̂ij(t) and R̂ij(t). In LTE-

A, the SINR is calculated by the device and sent to the BS over

the PUCCH or PUSCH [13]. The necessary information for

σ̂ij(t) and R̂ij(t) can be obtained in real time with a module

such as the Policy and Charging Control (PCC) in LTE-A,

which can control the QoS on a per service data flow, apply

different charging models, as well as control usage monitoring

to make dynamic policy decisions [14].

VI. PERFORMANCE EVALUATION

The scenario used for the performance evaluation consists

of a cluster with 4 mmWave SCs deployed in the coverage

area of a macrocell eNB sector. The cluster is square shaped

and centred at location c = (xc, 0), as shown in the layout

depicted in Fig. 1. Along simulations, xc is randomly selected

according to a uniform distribution with xc ∈ [100, 190]m.

The mmWave channel is modelled as a three-states channel

[15], with LOS, NLOS and outage states. Although high

directivity of antennas compensates partially the path loss,

the probability of LOS communications falls rapidly as the

distance between transmitter and receiver increases. In the

Algorithm 1: QoE-Aware user Association Algorithm

1 Create A(t) as the set of users with σij(t− 1) < 1 or a

NLOS channel with serving BS.

2 if A(t) 
= ∅ then
3 for j ∈ U \ A(t) do
4 xij(t) = xij(t− 1), ∀i ∈ B
5 end
6 Initialize wi(t) = wi(t− 1); Pi(t) = Pi(t− 1);

Rij(t) = Rij(t− 1); ∀i ∈ B, ∀j ∈ Ui

7 while A(t) 
= ∅ do
8 Select user j randomly from A(t)
9 m = argmax

i∈B
xij(t− 1)

10 Pm(t) = Pm(t)−Rmj(t) +
+cmehmwm(t)bm

(
1− e−hmwmj(t−1)bm

)
11 wm(t) = wm(t)− wmj(t− 1)
12 for i ∈ B do
13 ŵij(t) = min

(
rkd

εij(t)bi
, 1− wi(t)

)
14 Calculate σ̂ij(t), R̂ij(t) according to (2),(7)

for ŵij(t)

15 P̂i(t) = Pi(t) + R̂ij(t)−
−cie

hiwi(t)bi(ehiŵij(t)bi − 1)
16 ŵi(t) = wi(t) + ŵij(t)
17 end
18 if ∃i ∈ B such that σ̂ij(t) = 1 then
19 m = argmax

i∈B:σ̂ij(t)=1

{P̂i(t) +
∑

v∈B\{i}
Pv(t)}

20 xmj(t) = 1; xvj(t) = 0, ∀v ∈ B \m
21 wm(t) = ŵi(t); Rmj(t) = R̂mj(t);

Pm(t) = P̂m(t)
22 else if ∃i ∈ B such that σ̂ij(t) ∈ (0, 1) then
23 m = argmax

i∈B:σ̂ij(t)∈(0,1)

{P̂i(t) +
∑

v∈B\{i}
Pv(t)}

24 xmj(t) = 1; xvj(t) = 0, ∀v ∈ B \m
25 wm(t) = ŵi(t); Rmj(t) = R̂mj(t);

Pm(t) = P̂m(t)
26 else
27 xvj(t) = 0, ∀v ∈ B
28 end
29 A(t) = A(t) \ {j}
30 end
31 end

scenario we define Rsc as the distance at which the probability

of having a LOS communication is 0.55. According to [15],

PLOS(Rsc) = 0.55 holds for Rsc=40m in the 28GHz band. In

the sequel the Inter-Site Distance (ISD) between SCs, RISD,

is expressed as a multiple of Rsc, i.e. RISD=nRsc, with n∈N.

Users are uniformly distributed within the cluster with a

speed of 5 km/h and the SP of each user is selected with

equal probability among the SPs defined in Table I. As it

can be observed in Table I, three services are considered,

each one with two QoE classes Q = {Basic, Premium}:



(0,0) (xc,0)

RISD

RISD = n·Rsc

2Rsc+RISD  

Fig. 1: Simulation scenario topology

TABLE I: Service Profiles’ parameters

Service QoE class {rk1, rk2, rk3} (Mbps) θtk or θBk
Service 1 Basic 80 3 · 10−4e /MB

(Data Based) Premium 100 4 · 10−4e /MB
Service 2 Basic {50, 65, 80} 3.5e /h

(Time Based) Premium {60, 75, 90} 5e /h
Service 3 Basic {70, 85, 90} 3.5e /h

(Time Based) Premium {80, 100, 120} 5e /h

TABLE II: BS parameters

Parameter Macrocell Small cell
ci (e ) 5 · 10−6 5 · 10−6

hi (MHz-1) 39 · 10−3 16 · 10−3

bi (MHz) 200 500
CFi (e ) [16] 2.41 · 10−4 14 · 10−4

Transmission Power (dBm) 43 37

Service 1 is a data-based charged service, and Services 2

and 3 are time-based charged services. Likewise, 3 different

devices are considered, and the corresponding transmission

rates associated to each SP, rkd, are also included in Table I.

Note that for each SP, rkd is the transmission rate required

to perceive a QoE equal to Qtg
k . In the simulations, the

transmission rate that results in a perceived QoE equal to

Qdrop
k is set to rdropkd = 0.7rkd for all SPs. Moreover, vk is

selected so as to have Qp(pk) = 0.9 in (5), and⎧⎪⎨⎪⎩
αkd =

Qtg
k

Qp(pk)
− γkd (11a)

βkd = − 1

Δrdropj

ln
(

Qdrop
k −γkdQp(pk)

Qtg
k −γkdQp(pk)

)
, (11b)

where Δrdropj = rkd − rdropkd , and γkd = 1, for all πk, d ∈
D and (Qtg

k , Qdrop
k ) = (3.5, 2.5) for Basic QoE class of all

services and (Qtg
k , Qdrop

k ) = (4.5, 3.5) for Premium QoE class

of all services .

Parameters used for the BSs, both eNBs and SCs, are

listed in Table II. For the bandwidth allocation in the two

tiers, we adopted the 5G configuration proposed by a leading

telecommunications vendor [17]. The 3GPP LTE-A channel

model used for macrocells is described in [13] and for SCs

(in the 28GHz band) in [15]. Antenna gains are set to 0 dB

and, due to high antenna directivity in the mmWave band,

SCs communications are assumed to be noise-limited. In

conventional cellular networks, the cell selection is based on

schemes that connect the users to the BS with the strongest

signal [18]. Hence, in the following we compare the proposed

Number of Users  N
U

40 50 60 70 80

Sy
ste

m
 S

pe
ct

ru
m

 U
til

iz
at

io
n 

W

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7 S-Alg:R
ISD

=2R
sc

S-Alg:R
ISD

=3R
sc

Q-AAA:R
ISD

=2R
sc

Q-AAA:R
ISD

=3R
sc

Fig. 2: Bandwidth utilization (W )

Number of Users N
U

40 50 60 70 80
P
er
ce
n
ta
g
e
o
f
ti
m
e
w
it
h
σ
ij
>

0
(%

)
40

50

60

70

80

90

100

S-Alg:R
ISD

=2R
sc

S-Alg:R
ISD

=3R
sc

Q-AAA:R
ISD

=2R
sc

Q-AAA:R
ISD

=3R
sc

81%

25%

Fig. 3: Percentage of time with a satisfaction above 0 (σij > 0)

QoE-aware Association Algorithm (denoted as Q-AAA) with

a SINR-based cell selection algorithm (referred to as SINR-

Alg)1. It should be noted that the resource allocation in

both algorithms satisfies the condition for QoE fairness (i.e.

σij(t) = σin(t) for any j, n ∈ Ui).

Fig. 2 shows the expected total utilization of the spectrum,

which is defined as W = E

[
W (t) =

∑
i∈B wi(t)bi∑

i∈B bi

]
. As it

can be observed, the proposed algorithm (Q-AAA) presents

higher bandwidth utilization than the cell association algorithm

based on the SINR (SINR-Alg) for both RISD = 2Rsc and

RISD = 3Rsc. As expected, SINR-Alg should always present

the best spectrum efficiency, and consequently, the lowest

bandwidth utilization, since users tend to use the most efficient

Modulation and Coding Scheme (MCS). Interesting enough, a

different behaviour can be noticed between the two algorithms

regarding NU and RISD. As it can be seen, for Q-AAA

utilization increases with NU , and is comparable regarding

RISD. As RISD rises, the average distance between BSs and

users grows as well. Thus, the probability of serving users

with NLOS links raises, increasing W . The broad difference

in W between the two RISD values observed for SINR-Alg

can be explained with the help of Fig. 3.

Fig. 3 shows the percentage of time during which the users

had a satisfaction above 0, i.e. σij>0. For both algorithms, the

users perceive σij>0 for less time as NU and RISD increase.

As the system’s bandwidth demands increase with both NU

and RISD, the system can accommodate a lower percentage

of users. We further observe that Q-AAA achieves gains up

1In the SINR-Alg, users are served by the BS with the highest SINR.
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Fig. 5: Total MNO profit (P )

to 25% and 81% for RISD={2,3}Rsc respectively. This can

be explained by the fact that Q-AAA prioritizes users that can

obtain an appropriate QoE over users that cannot, whereas

SINR-Alg connects users without considering the available BS

resources. Thus, SINR-Alg congests the BSs more frequently,

dropping users to satisfy the QoE fairness condition.

Fig. 4 presents the empirical CDFs of σij , for NU =
{40, 70} and RISD = {2, 3}Rsc. As it can be observed, σij

diminishes as NU and RISD increase and the system gets

congested more frequently. Hence, the QoE is degraded more

regularly, while the service time with σij > 0 decreases as

well (see Fig. 3). It can be deduced from Fig. 2-4 that Q-AAA

results in less frequent congestion of the BSs, and provides

higher QoE for longer time periods. The above explains why

P increases with Q-AAA, whereas it decreases for the SINR-

Alg not only with RISD, but also with NU , as shown in

Fig. 5. This happens because as Q-AAA offers higher user

satisfaction for longer time period, the MNO generates larger

revenue, compensating the higher bandwidth utilization.

Our proposed algorithm, Q-AAA, manages to offer higher

QoE to the users and profit to the MNO compared to the

reference algorithm, because it bases its decisions on both

the technological (i.e. QoS/QoE requirements) and economic

(i.e. pricing and profit) context of the network. This scheme

can guarantee the sustainability of a network, providing the

incentives for adoption in future 5G deployments.

VII. CONCLUSIONS

In this paper, we studied the user association problem in a

single MNO’s 5G HetNet described by traffic heterogeneity.

Our objective was the maximization of the MNO’s profit,

while providing high QoE to the users. Thus, we proposed a

heuristic user association algorithm, which bases its decisions

on the capability of the BSs to offer an acceptable QoE level to

the user, while at the same time maximizing the MNO profit.

We evaluated the performance of the proposed algorithm by

comparing it with a SINR-based algorithm. The simulation

results show the adaptability of the proposed algorithm to

traffic heterogeneity by achieving substantially higher profit

and QoE, in contrast to the SINR-based one.
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