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Abstract—It is well-known that wireless channel reciprocity
together with fading can be exploited to generate a common
secret key between two legitimate communication partners. This
can be achieved by exchanging known deterministic pilot signals
between both partners from which the random fading gains
can be estimated and processed. However, the entropy and thus
quality of the generated key depends on the channel coherence
time. This can result in poor key generation rates in a low
mobility environment, where the fading gains are nearly constant.
Therefore, wide-spread deployment of wireless channel-based
secret key generation is limited. To overcome these issues, we
follow up on a recent idea which uses unknown random pilots and
enables “on-the-fly” key generation. In addition, the scheme is
able to incorporate local sources of randomness but performance
bounds are hard to obtain with standard methods. In this paper,
we analyse such a scheme analytically and derive achievable key
rates in the Alice-Bob-Eve setting. For this purpose, we develop
a novel approximation model which is inspired by the linear
deterministic and the lower triangular deterministic model. Using
this model, we can derive key rates for specific scenarios. We
claim that our novel approach provides an intuitive and clear
framework to analyse similar key generation problems.

Index Terms—Physical-layer security, secure key generation,
deterministic models

I. INTRODUCTION

New application scenarios such as the Internet of Things
(IoT) and the Tactile Internet [1] have sparked interest in new
security paradigms which are related to the physical layer. A
typical security challenge e.g. in IoT is the design of efficient
and usable key management schemes for devices with high
resource constraints [2], [3]. A famous problem in this context
is the key-agreement between two parties, Alice and Bob,
while being intercepted by an eavesdropper called Eve. The
objective is to generate a key with a rate as large as possible
while preventing Eve to get information about the key. The
key must be the same for both Alice and Bob to be useful
and thus forming a key-agreement problem. Systematic study
of key-agreement and common randomness started with the
work of [4] and [5], where upper and lower bounds were found
as well as insight which remained important. In [4], the key-
agreement problem was split into two models, the source-type
model and the channel-type model. In the former, each of the
two terminals, Alice and Bob, has access to one component of

This work was carried out within DFG grant WU 598/8-1 (DFG Priority
Program on Compressed Sensing).

a two component random source. In the later, both terminals
exchange information via a wireless channel. In both cases, the
terminals try to decode and compute a common key from their
observations. Recent advances exploit the wireless channel to
generate a common randomness at both terminals. In [6], [7]
the concept of reciprocity was used to gain an advantage over
Eve. Reciprocity refers to the phenomenon that the channel
gain and therefore the channel, between two terminals, is
nearly the same in both directions. If one considers a fading
channel, then the channel gain represents another source of
randomness. This can be estimated at both terminals with pilot
signalling. Alice and Bob can agree on the same randomness,
as long as perfect reciprocity and perfect estimation is as-
sumed. These schemes even work under imperfect conditions,
as long as both observations are correlated, by using Slepian-
Wolf coding schemes over a public channel. However, the
fading gain needs to provide sufficient randomness, which
is dependent on the coherence time. A slow varying channel
therefore results in a lower key-rate, which can even go to zero
in the limit. Recent works on the subject try to overcome this
problem by using relay-assisted schemes or mixed schemes,
where the model is considered as source and channel-type
dependent on the situation [8], [7]. Another approach was
used in [9], which utilized local randomness sources with a
product signalling scheme to overcome the problem. However,
the resulting rate expressions are non-trivial and closed-form
solutions could not be obtained.

Contributions: We develop a model, closely related to
the linear deterministic model [10] and the lower triangular
deterministic model [11], to approximate the Gaussian channel
model of [9]. The new approximate model has several advan-
tages due to its properties, e.g. public communication being
obsolete and build-in quantization. Using this model, we derive
key rate results for several special cases of [9]. Moreover, one
can compare the new method of product signalling with the
classical pilot signalling. Specifically, we show that product
signalling offers a more robust key generation in comparison
to pilot signalling, since local randomness can be utilized
to compensate the lack of randomness in the channel gain.
Finally, we believe that the approximation model can be useful
in other scenarios too, e.g multi-user key generation.
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Figure 1. Illustration of the system model with (dashed communication) and
without side information at Eve

II. GAUSSIAN SYSTEM MODEL

Alice communicates with Bob in a two-way non-duplex
fashion. Looking at n total channel uses, both alternate in
receive and transmit mode such that Alice sends signals to
Bob at the odd channel uses while, Bob utilizes the even
channel uses. We denote the channel gain from Alice to
Bob with K and from Bob to Alice with K ′. We assume
reciprocity, meaning that within one communication round
(i and i + 1), both K and K ′ are the same. Moreover, we
assume that the channel gain is a fading parameter, changing
randomly with a Gaussian distribution K ∼ N (0, σ2

K) after
a full communication round (channel use i and i + 1). Alice
and Bob have an additional local source of randomness, ωA
and ωB , respectively, which can be used for the inputs. Both
communication channels are in presence of a wire-tapper Eve,
which can receive Alice’s input through a channel H1 and
Bob’s input through a channel H2. We can therefore write the
channel equations in the following way

YB = KXA + Z1

YA = KXB + Z2

and

YE =

{
H1XA for n odd
H2XB for n even.

(1)

The system model is illustrated in Fig. 1. The figure also
depicts the public noiseless channels Φ and Ψ, which are
available for both Alice and Bob. We have t time instances
in which we use the wireless channels n times and the public
noiseless channels k = t− n times, where n ≤ t.

There are n rounds of wireless communication,
where in each round i Alice (Bob) sends a codeword
X1(ωA, i) (X2(ωB , i)) over the channel. We denote
Xn

1 = (X1(1), · · · , X1(n)) and Xn
2 = (X2(1), · · · , X2(n)).

Moreover, let fA and fB denote the key generation func-
tions at Alice and Bob, respectively. We therefore have that
the keys for Alice and Bob, are SA = fA(Xn

A, Y
n
A ,Φ

k) and
SB = fB(Xn

B , Y
n
B ,Ψ

k), respectively.
We define an achievable key rate Rkey if for every ε > 0

and sufficiently large n there exists a strategy such that SA
and SB satisfy

Pr{SA 6= SB} < ε, (2)

1
nI(Φk,Ψk, Y nE ;SA) < ε, (3)

1
nH(SA) > Rkey − ε, (4)

1
n log |SA| < 1

nH(SA) + ε, (5)

where |SA| denotes the alphabet size of the discrete key
random variable SA, see also [4].

It was shown in [4] that if both terminals observe correlated
source outputs Xn and Y n from a discrete memoryless multi-
ple source with generic sources (X,Y ), a secrecy key rate of
I(X;Y ) can be achieved. The proof uses only a single forward
or backward transmission of the public channel along with an
extended Slepian-Wolf coding scheme. While the result was
originally proved for discrete sources, it can be extended to
continuous sources as well [12], [13]. Moreover, the result
can be extended to the case of a pair of sources, for example
(XA, YA, XB , YB). To see this, one can use the same idea
as in [4], in conjunction with the Slepian-Wolf theorem for
multiple sources.

III. A DETERMINISTIC MODEL FOR KEY GENERATION

The idea in [9] was to utilize the local randomness ωA
and ωB such that Alice and Bob send random signals over
the channel. Therefore, instead of measuring the channel gain
K with pilot signalling alone, one gets a channel output YA
and YB at Alice and Bob, respectively. Both of these are
correlated via channel gain. To get some gain out of the local
randomness, one also considers the local source of the sender.
This means that Alice and Bob virtually receive (YA, XA) and
(YB , XB), respectively. Now both sources are correlated in K,
XA and XB and the following theorem was shown in [9].

Theorem 1. For general observations YA = KXB + Z2 and
YB = KXA+Z1, of the products KXB and KXA, with input
XA, XB ∼ N (0, P ), channel gain K ∼ N (0, σ2

K) and noise
Z1, Z2 ∼ N (0, σ2

Z) it holds that

I(YA, XA;YB , XB)

≥ EK [log(1 + |k|2P
σ2
Z

)]

− 1
2EXA

[log(1 +
|xA|2σ2

K

σ2
Z

)]− 1
2EXB

[log(1 +
|xB |2σ2

K

σ2
Z

)]

+ 1
2EXA,XB

[
log

(
1 +

x2Ax
2
Bσ

4
K

(x2A + x2B)σ2
Kσ

2
Z + σ4

Z

)]
.

The theorem shows that the new scheme splits its key
generation gain between the sources of local randomness and
the channel gain. The channel gain contribution is in the last
line of theorem 1 and corresponds to state-of-the-art results.
This shows that if the key generation rate from the channel
gain is low, due to a long coherence time and therefore nearly
constant channel gain, it is still possible to extract a non-zero
key rate through the local randomness sources.

The proof for the achievability depends on classical typi-
cality arguments and therefore lacks of simple ways to im-
plement. The main challenge was a practical way to reconcile
observations of both Alice and Bob. A simple solution to this



problem, also presented in [9], was to multiply the observa-
tions with the respective mutual local sources to produce cor-
related observations of a source (XAYA, XBYB). This would
yield a secure key rate of I(YAXA;YBXA). However, exact
calculation of the mutual information term I(YAXA;YBXA)
is involved, even for Gaussian signals. This is due to the
multiplication operations which yield Bessel functions and to
the best of our knowledge there is no known closed form
solution for this term. However, we will approximate the term
with our novel deterministic model to gain insights into its
nature.

A. The Linear Deterministic Model

Lets look at a Gaussian point-to-point channel

y = xh+ z (6)

where z ∼ N (0, 1) is Gaussian white noise and the input
signal x has an average input power constraint E[|x|2] ≤ 1.
Both, the noise power and the input power are normalized to
1. Therefore, the instantaneous channel gain h, is scaled to
|h| =

√
SNR. For the deterministic model, it is now assumed

that the input signal x and the noise z have a peak power of
one. Now one can represent both by a binary expansion which
yields the following system model

y = 2
1
2 log SNR

∞∑
i=1

x(i)2−i +

∞∑
i=1

z(i)2−i. (7)

One can group the bits under the decimal point together which
yields

y ≈ 2N
N∑
i=1

x(i)2−i +

∞∑
i=1

(x(i+ n) + z(i))2−i, (8)

where N = d 12 log SNRe+1. Which is an approximation due to
ignoring the 1-bit carry-over and due to restricting the channel
gain to powers of two. The second sum can be cut-of since
those bits are compromised by noise and it therefore yields a
deterministic approximation. This means that the model takes
an input x = 0.b1b2b3 · · · and shifts the bits for N positions
over the decimal point 2Nx = bNbN−1 · · · b1.b0b−1 · · · . The
noise just impairs the bits on the right of the decimal point
2Nx + z = bNbN−1 · · · b1.b̃0b̃−1 · · · , denoted as b̃. A deter-
ministic approximation is achieved by cutting of the bit chain
at the decimal point y ≈ bNbN−1 · · · b1. The resulting model
can be written in an algebraic fashion as

y = Sq−Nx, (9)

where x ∈ Fq2 is a bit vector and Sq−N is a q×q−shift matrix

S =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (10)

1For a complex Gaussian model, one can use the correspondence N =
dlog SNRe+

With S an incoming bit vector can be shifted for q − N
positions. Note that we have used the approximation in (8)
that h = 2N ĥ ≈ 2N for ĥ ∈ [1, 2). However, we want
to use the decimal bits of the channel gain as a source
of randomness. Lets call 2N the coarse channel gain and
ĥ the fine channel gain. The lower triangular model from
[11] incorporates the fine channel gain into the model and
represents it as a binary expansion, too. This yields a cauchy-
product or discrete convolution between the bits of x and
ĥ in (8). It was proposed to use lower triangular toeplitz
matrices to represent the fine channel gain, therefore the
normal matrix-vector multiplication can represent the discrete
convolution of the channel. As before, the resulting binary
vector y gets cut off at noise level. We therefore have the
following deterministic model

y = Hx (11)

with all operations over F2, x represents a bit vector and H
is a square lower triangular Toeplitz matrix

H =


1 0 · · · 0 0
h1 1 · · · 0 0
...

...
. . .

...
...

hN−2 hN−3 · · · 1 0
hN−1 hN−2 · · · h1 1

 . (12)

where the hi represent the N − 1 bits behind the decimal
point of ĥ = 1.h1h2 · · ·hN−1. We introduce the function
Tlt(x) = X which maps a vector x to its square lower triangu-
lar Toeplitz matrix X and we introduce T−1lt (X) = Xe1 = x
which maps a lower triangular Toeplitz matrix back to its
vector. Here we used e1 to indicate the first column vector
of the identity matrix with dimension dim(X).

B. A Deterministic Model for Key Exchange

Let Alice send a real number xA(ωA) over the channel,
while Bob sends xB(ωB) over the channel, where ωA and
ωB represent local sources of randomness. We assume that
both input signals have a unitary normalized power constraint
E[|xA|2], E[|xB |2] ≤ 1. We denote the channel gain between
Alice and Bob by k. While keeping the coarse channel gain 2N

fixed, we let the fine channel gain k̂ be uniformly distributed
over the interval [1, 2) for all channel uses n. Note that
this ensures that our generated key has maximal entropy and
satisfies (5). It is important to emphasize that we assume
reciprocity between Alice and Bob only in the fine channel
gain k̂ and not in the coarse channel gains. The reason to
allow differences in the coarse gain is to capture input power
differences at the transceivers. We therefore denote the channel
gain matrix from Bob to Alice by K′. We can model the
system (fig. 1) in a deterministic way as

yB = KxA

yA = K′xB

yE = (H1x
′
A,H2x

′
B)



where yB , xA ∈ FNA
2 , K ∈ FNA×NA

2 , yA, xB ∈ FNB
2 , K′ ∈

FNB×NB
2 . Note that we assume a time division in which a

transceiver can either receive or transmit. Both Alice and Bob
alternate in receive and transmit mode. Alice uses the odd
n channel uses for transmission, while Bob uses the even n
channel uses for transmission. Therefore Eve observes

yE =

{
H1x

′
A for n odd

H2x
′
B for n even

(13)

and so we have that yE ∈ FN1
2 and yE ∈ FN2

2 for n odd
and even, respectively. Moreover, H1 ∈ FN1×N1

2 , x′A ∈ FN1
2

and H2 ∈ FN2×N2
2 , x′B ∈ FN2

2 . Note that we assume
N1, N2 ≤ min{NA, NB} which is the same as assuming a
channel advantage in case of classical wiretap models. We
therefore guarantee a positive secure key rate in certain cases.
Moreover, we have introduced a cut-off version of xA and xB ,
denoted by x′A and x′B , limited to N1 and N2 bits, respectively.

C. Deterministic Security Constraints

Due to the deterministic nature of the model for key
exchange we can make simplifications on the security con-
straints. We define an achievable deterministic key rate Rd if
for every ε > 0 and sufficiently large n there exists a strategy
such that both generated keys at Alice and Bob, denoted by
sA and sB , respectively, satisfy

Pr{sA 6= sB} = 0, (14)
1
nH(sA) > Rd − ε, (15)

1
n log |sA| < 1

nH(sA) + ε, (16)

where |sA| counts the bits in the binary random vector sA.
Moreover, we define a secure deterministic key rate Rsd as
the key rate Rd with the following security constaint

1
nI(ynE ; sA) = 0. (17)

Note that we put a stricter notion on the difference between
both keys. Moreover, we do not need a public communication
channel. At last, Eq. (17) evokes a so-called perfect secrecy
condition in contrast to weaker standard notions. All of these
changes can be achieved with no further struggles due to
the lack of noise in the model, which explains the modified
security condition.

D. Key Exchange by Pilot Signalling

The state-of-the-art method for key exchange is to send
a pilot signal over the channel. With the help of the pilot
signal, one can measure the channel gain between Bob and
Alice to extract a common key from these measurements. We
can represent such a pilot signal by sending a basis vector
e1 over the channel with power N . We therefore have that
yB = KxA = Ke1 = T−1lt (K) and yB therefore contains
the bits of K. Sending a pilot signal to Alice results in her
observation yA containing the bits of K′ as well. Note that
yA and yB just differ in the number of bits NA and NB2. We

2Note that our model assumes perfect CSI. Therefore, Alice and Bob know
which bits are the same.

can use the observations as a key and get a deterministic key
generation rate

Rd =
1

2
min{NA, NB}, (18)

where the factor of 1
2 is due to time-division, where both

Alice and Bob need to transmit once to achieve the key rate.
Linking the model back to the Gaussian model, using the
correspondence N = d 12 log SNRe+, we get that the key rate 3

is
R = 1

4 min{log SNRA, log SNRB}, (19)

where SNRA represents the signal-to-noise ratio from Alice
to Bob, and SNRB from Bob to Alice. Note that due to the
independence of the channel gain between Alice and Bob,
and both gains from Alice and Bob to Eve, the key generation
rate is also a secure key generation rate Rd = Rsd. We see
that using the deterministic model has two advantages. The
first one is that due to the deterministic nature, no public
communication is needed to reconcile the keys. The second
advantage is that the binary expansion introduces a natural
quantization which is fine enough to combat the noise. As a
result, the observations at Alice and Bob can be used as a key
without further post-processing.

E. Key Exchange by Product Signalling

Assume that we do not send pilot signals over the channel,
but generate a random number which is send over the channel.
In that case both Alice and Bob receive a y which is the
discrete convolution between the bits of a signal x and the
bits of the channel gain T−1lt (K). Generating a signal xA and
xB and sending it over the respective channel produces two
different observations yA and yB. However, since the receivers
Alice and Bob, know their own signal, they can multiply
the observation from the left with Tlt(xA) and Tlt(xB),
respectively. This yields the following two observations

Tlt(xB)yB = Tlt(xB)KxA

Tlt(xA)yA = Tlt(xA)K′xB .

The following lemma will show, that both modified obser-
vations are the same.

Lemma 1. For arbitrary binary vectors xA,yA ∈ Fn2 and
xB ,yB ∈ Fm2 , and truncated vectors x̄A, ȳA, x̄B , ȳB ∈
Fmin{n,m}
2 we have that Tlt(x̄B)ȳB = Tlt(x̄A)ȳA.

Proof. First of all we note that the product of a lower triangu-
lar Toeplitz matrix with a vector is commutative. The operation
mimics the product of two polynomials, where the result
follows from the commutativity of the product of polynomials.
Alternatively, one can think about this product as a discrete
convolution, which is also commutative. Truncating the matrix
such that it has the same dimension as the vector squared

3This result resembles the one from [8] for the high power regime in which
P →∞ results in the key rate Rkey ∼ 1

2T
logP for T = 2.



does not change this fact. This means that for arbitrary binary
vectors x,y ∈ Fq2 we have that

Tlt(x)y = Tlt(y)x. (20)

We know that Tlt(x)y = Tlt(x)Tlt(y)e1 and that Tlt(y)x =
Tlt(y)Tlt(x)e1 and we therefore have that

Tlt(x)Tlt(y)e1 = Tlt(y)Tlt(x)e1, (21)

which shows that

Tlt(x)Tlt(y) = Tlt(y)Tlt(x) (22)

since the first column of a lower triangular Toeplitz matrix
determines the whole matrix. This shows the commutativity
of the squared lower triangular matrices. Now we can proceed
to show the lemma. We have that

Tlt(x̄B)ȳB = Tlt(x̄B)K̄x̄A
(a)
= Tlt(x̄B)Tlt(x̄A)T−1lt (K̄)
(b)
= Tlt(x̄A)Tlt(x̄B)T−1lt (K̄)
(c)
= Tlt(x̄A)Tlt(x̄B)T−1lt (K̄′)

= Tlt(x̄A)K̄′x̄B

= Tlt(x̄A)ȳA,

where (a) is due to eq. (20), (b) is due to eq. (22) and (c)
is due to reciprocity of the fine channel gain. Note that the
coarse channel gains match as well, since we are looking at a
truncated channel gain matrix.

This shows that we get the same observation at both
receivers. We can therefore use the observation as a common
key. The key rate is Rd = 1

2 min{NA, NB}. However, the
secure key rate will be lower because Eve can receive a
part of the locally generated randomness through her channel
observations. We will consider some special cases of static
channel gain to simplify the model and gain more insights.

1) Static Channel Gain at all Transceivers: We assume
that all parties, Alice, Bob and Eve know the channel gains.
Moreover, we assume that the channel gain is given by
an identity matrix with dimension N , where the dimension
represents the coarse channel gain. This means that the locally
generated bit-vectors are received with a cut-off respective to
the coarse channel gain. The intended case to model is, where
all channels have a random but fixed (over n) channel gain,
which is generated at the beginning of the n channel uses.
Note that modelling the channel gain by the identity matrix
does not change the entropy of the observations in comparison
to a fixed (constant) one, since fixed lower triangular toeplitz
matrices are bijective mappings. The model is the following

yB = INA
xA

yA = INB
xB

yE = (IN1x
′
A, IN2x

′
B),

where yB , xA ∈ FNA
2 , INA

∈ FNA×NA
2 , yA, xB ∈ FNB

2 ,
INB
∈ FNB×NB

2 and yE ∈ FN1
2 and yE ∈ FN2

2 for n odd and

even, respectively. Moreover, IN1 ∈ FN1×N1
2 , x′A ∈ FN1

2 and
IN2 ∈ FN2×N2

2 , x′B ∈ FN2
2 . We use product signalling, and

Alice and Bob generate the keys Tlt(xB)yB and Tlt(xA)yA,
respectively. Both keys are the same due to Lemma (1). It
can be easily seen that the deterministic key generation rate
is again

Rd = 1
2 min{NA, NB}. (23)

However, Eve can also observe both signals. The secure key
rate is therefore dependent on the channel gain to Eve and
resembles a wiretap scenario. Both signal sources are needed
to construct the key, and the difference is inherently included
in the bit-levels. It is therefore easy to see that the secure key
rate is

Rsd = 1
2 (min{NA, NB} −min{N1, N2}). (24)

Linking the key rate to the Gaussian model gives

Rs = 1
4 min{log SNRA, log SNRB}
−min{log SNRE1, log SNRE2},

where SNRE1 and SNRE2 denotes the channel gain to Eve at
odd and even time slots, respectively.

2) Static Channel Gain at Eve: A natural extension to
the previous case is to look into a model where we have a
random varying channel gain in the legitimate channel and a
constant gain for Eve. This is the worst case scenario from a
physical layer security perspective, since Eve can receive all
communication in plain, while Alice and Bob need to handle
the channel gain as well. The model is the following

yB = KxA

yA = K′xB

yE = (IN1x
′
A, IN2x

′
B),

where yB , xA ∈ FNA
2 , K ∈ FNA×NA

2 , yA, xB ∈ FNB
2 ,

K′ ∈ FNB×NB
2 . Moreover, IN1

∈ FN1×N1
2 , x′A ∈ FN1

2 and
IN2
∈ FN2×N2

2 , x′B ∈ FN2
2 . It is easy to see that we cannot

achieve a higher rate Rd than the previous cases with pilot
signalling or static channel gain, since the maximum number
of bits in the key vector is upper bounded by the mutual coarse
channel gain min{NA, NB}. However, calculating the secure
key generation rate is more involved, and one needs to look
into the term I(ynE ; sA). We investigate the mutual information
for a specific time step: I(x′A,x

′
B ;Tlt(xB)yB). If we assume

that NA = NB = N1 = N2, we can show the following:

I(x′A,x
′
B ;XByB) = h(XByB)− h(XByB |x′B ,x′A)

(a)
= h(XByB)− h(XBXAk|xB ,xA)

= h(XBXAk)− h(k),

where we denote Tlt(xB) = XB , Tlt(xA) = XA and
T−1lt (K) = k. Note that (a) is due to (20) and the assumptions
on N1, N2, NA, NB . The multiplication by XBXA is an
bijection in the case of known xB and xA. In that case
we would have that I(x′A,x

′
B ;Tlt(xB)yB) = 0, fulfilling

the secrecy constraint. This suggest a secrecy protocol which



only uses local bit-levels as additional source of randomness,
if those bit-levels are not received at Eve. For this purpose
we can divide the local randomness vectors xA and xB in
common and private parts, where the common part can be
received by the legitimate receiver, as well as by Eve. The
private part on the other hand is only received by the legitimate
receiver. Both signals can then be partitioned into two parts
xA = xpA + xcA and xB = xpB + xcB , where xpA,x

p
B > 0 if

and only if NA > N1 and NB > N2. We can design the send
signal such that we only use the private part of the signal to
send random bits, and the common part for pilot signalling,
for example

xA = 100 · · · 0
xp
A

b1b2 · · · bNA−N1

NA bits

.

Due to the lower triangular structure of the channel gain
operation, the private bits only get down-shifted in the obser-
vations. One can then split I(x′A,x

′
B ;XByB) into a common

I(x′A,x
′
B ;kc) and a private part I(x′A,x

′
B ;XByB |kc) =

I(x′A,x
′
B ; (XByB)p) and show that both are zero. In this way

we have exploited the structure of the deterministic model
to design a scheme which uses a form of mixed signalling,
where the common parts utilize pilot signalling and the private
parts utilize product signalling. Due to the assumption that
Eve has a static channel gain and can therefore see the local
contribution in plain, we have obtained a worst-case scenario
with a minimal achievable secure key rate.

F. Discussion

We have analysed both, the state-of-the-art pilot signalling
scheme and the new product signalling with a deterministic
model. We have shown that the general key generation rate
is the same for both schemes for a perfect channel gain
behaviour, i.e. uniformly distributed with short coherence time.
This is due to the fact that the overall size of the bit-vectors
stays the same. Therefore, product signalling would have no
advantage compared to pilot signalling. Moreover, the secure
key rate for product signalling can be even worse because Eve
can listen to both Alice and Bob, and therefore gets parts of the
local randomness sources. This means that there is a trade-off
which closely resembles that of a wiretap scenario and we have
proposed a scheme to exploit the created algebraic structure.
Product signalling begins to shine in cases with long coherence
time. Here, one can compensate the lack of randomness in
the channel gain, by feeding in the local sources. Product
signalling would therefore yield a more robust key generation
technique.

IV. CONCLUSIONS

Motivated by an open problem in [9], we have developed a
deterministic model for secure key rate analysis of Gaussian
models. The approximation is used to show secure key gener-
ation rate results on a product signalling scheme, developed in
[9]. The proposed approximate model provides insights which
were out-of-reach within the classical Gaussian model. An
advantage of the new model is that, due to its deterministic

nature (i.e. absence of noise), the key rate can be achieved
without a public communication channel. Moreover, the model
has an inherent quantization, which makes it possible to
directly derive key rates from the equations. An interesting
part is the additional algebraic structure. It was shown in
the past, that algebraic structures can be exploited in several
ways to gain unexpected results, especially for multi-user
networks. Future research could therefore look into application
of our model to analyse multi-user key generation scenarios.
Furthermore, there is a need to investigate the exact gap
between the approximate rate and the corresponding Gaussian
model. We expect that this gap is within a few bits, due to
similar results in several works on the linear deterministic
model, e.g. [14]. Moreover, rate leakage in the noise effected
part of the signal could lead to an adjustment of the secure key
rate of the corresponding Gaussian model. Nonetheless, we
believe that the proposed model can unlock some previously
out-of-reach results and therefore act as a powerful tool for
the analysis of secure key generation problems.
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