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Abstract—We propose a novel joint user and full-duplex (FD)
relay selection (JUFDRS) scheme to enhance physical layer
security in a multi-user multi-relay network. In this scheme, the
user and the FD decode-and-forward relay are selected such
that the capacity of the end-to-end channel (i.e., the user-relay-
destination channel) is maximized to ensure the highest quality of
cooperative transmission. In order to fully examine the benefits
of the JUFDRS scheme, we derive a new closed-form expression
for the secrecy outage probability. We show that the JUFDRS
scheme significantly outperforms the joint user and half-duplex
relay selection (JUHDRS) scheme when the self-interference at
the FD relay can be reasonably suppressed. This result indicates
that adopting the FD technique at relays can effectively enhance
the physical layer secrecy performance in the multi-user multi-
relay network.

I. INTRODUCTION

The security of wireless communication is a pivotal issue
that needs to be addressed in the future ubiquitous wire-
less world. As a complimentary approach to the traditional
cryptographic techniques, physical layer security has been
recognized as a key solution to safeguarding wireless data
transmissions and therefore, attracted numerous research in-
terest due to its unique advantages [1–3].

Recently, relay-aided physical layer security has been ex-
amined to facilitate the secrecy enhancement in cooperative
wireless networks, e.g., [4–9]. Among different relay-aided
techniques, relay selection [5–7] has been acknowledged as a
promising technique in both amplify-and-forward (AF) and
decode-and-forward (DF) relay networks. In AF relay net-
works, relay simultaneously amplifies the information signal
and noise as well as interference. In this context, the intercept
probability of the multi-relay network was derived in [5] and
the opportunistic relaying technique was used to achieve the
full diversity gain. Also, the secrecy outage probability (SOP)
of the AF relay network with multiple users and multiple half-
duplex (HD) relays was examined in [7], in which several
joint user and HD relay selection (JUHDRS) schemes were
proposed to enhance physical layer security. Differing from AF
relay networks, the relay in DF relay networks first decodes
the received signals and then retransmits the recovered signals
to the destination. The secrecy performance of the DF relay
network was studied in [5], where opportunistic relaying was
used to exploit the channel fluctuation among relays, which
achieves the full diversity gain of the network.

In the aforementioned studies, the relay is operating at the

HD mode, which suffers from spectral inefficiency due to the
separate listening and retransmitting phases. Fortunately, full-
duplex (FD) technique, which was previously considered as
impractical due to the limited performance of self-interference
cancelation techniques, has now been proved to be feasible in
practice to offer spectrum efficiency. Against this background,
the secrecy performance of the FD relay network was evalu-
ated in the literature. For example, the secrecy rate achieved
by FD relays subject to a total transmit power constraint was
derived in [13]. In [10], the secrecy performance of a FD
relay network was investigated in terms of the SOP, where
a FD relay jamming scheme was proposed to improve the
secrecy performance. The studies conducted in [10] and [11]
showed that the FD relay can significantly outperform the HD
relay in the context of relay networks. However, the secrecy
performance achieved by FD relays in multi-user multi-relay
networks has not been examined in the literature.

In this work, we exploit the use of FD relays to enhance the
secrecy in multi-user multi-relay networks. This exploitation
is motivated by the potential benefits offered by multi-user
multi-relay networks, e.g., enabling reliable communications
among multiple users in cellular networks and wireless sensor
networks. Specifically, we propose a novel joint user and FD
relay selection (JUFDRS) scheme. In this scheme, the user and
the FD relay are selected to perform cooperative transmission
such that the end-to-end channel capacity from the user to
the destination via the relay is maximized. To disclose the
benefits of the JUFDRS scheme relative to the JUHDRS
scheme, we derive a new closed-form expression for the SOP
of the JUFDRS scheme. We also derive the SOP of the JUH-
DRS scheme as a benchmark. Our analysis demonstrates that
the JUFDRS scheme significantly outperforms the JUHDRS
scheme by achieving a lower SOP when the self-interference at
the FD relay can be reasonably suppressed. We also determine
the self-interference cancellation requirement to guarantee the
performance advantage of the JUFDRS scheme relative to the
JUHDRS scheme. This provides useful insights into designing
a secure multi-user multi-relay network.

II. PROPOSED JUHDRS SCHEME IN MULTI-USER
MULTI-DF-RELAY NETWORK

We consider a secure multi-user multi-relay network, as
illustrated in Fig. 1, in which the communication between
M users Sm,m ∈ {1, · · · ,M}, and the destination D is
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Fig. 1. The model of the multi-user multi-FD-relay network in the presence
of an eavesdropper.

assisted by N FD DF relays Rn, n ∈ {1, · · · , N}. In practice,
this model represents the uplink of a multi-user cellar system
with multiple relays, which assist the user-destination trans-
mission [7, 15]. We assume that an eavesdropper (E) exists in
this network and overhears the transmission. Similar to [5],
we also assume that the direct links from users to D and E
are not available due to the strong path-loss and attenuation
between them. We further assume that the relays operate in
the FD mode with two antennas, i.e., one antenna used for
transmission and the other one used for reception. Each of the
other nodes is equipped with a single antenna.

In this work, we denote fSm,Rn
, gRn,D, and lRn,E as the

channel coefficients of the Sm − Rn, Rn − D, and Rn − E
links, respectively. We also denote hn,n as the self-interference
channel after imperfect self-interference cancellation. We as-
sume that all channels experience block Rayleigh fading such
that the channels remain constant over one block but vary
independently from one block to another [15, 16]. We denote
PS and PR as the transmit power at Sm and Rn respectively.
We then denote that nR ∼ CN (0, σ2

R), nD ∼ CN (0, σ2
D), and

nE ∼ CN (0, σ2
E) as the complex additive white Gaussian

noise components at Rn, D, and E, respectively. Without
losing generality, we normalize the transmit powers such that
PS = PR = 1 [16].

Suppose that the user Sm and the relay Rn are selected for
the information transmission, the received signals at Rn, D,
and E at the time t are given by yRn(t) = fSm,Rnx(t) +
hn,nx(t − L) + nR(t), yD(t) = gRn,Dx(t − L) + nD(t),
and yE(t) = lRn,Ex(t − L) + nE(t), respectively, where L
is the transmission delay at Rn, relative to that of Sm in
symbol times [16]. Based on the received signals, the channel
capacities of the Sm − Rn, Rn − D, and Rn − E links are
given by

CSmRn = log2

(
1 +

|fSm,Rn |2

|hn,n|2 + σ2
R

)
= log2

(
1 +

um,n

vn,n + 1

)
= log2(1 + γm,n), (1)

CRnD = log2

(
1 +

|gRn,D|2

σ2
D

)
= log2(1 + γn), (2)

and

CRnE = log2

(
1 +

|lRn,E |2

σ2
E

)
= log2(1 + wn), (3)

respectively, where umn = |fSm,Rn |2, γn = |gRn,D|2, and
wn = |lRn,E |2 are the channel gains of the Sm − Rn link,
Rn − D link, and Rn − E link, respectively, vnn = |hn,n|2
is the channel gain of self-interference, and γm,n − um,n

vn,n+1

is the received signal-to-interference-plus-noise ratio (SINR)
at Rn. We assume that um,n, γn, wn, and vnn follow the
exponential distribution with the mean of πSR, πRD, πRD,
and πRR. Therefore, the SOP is given by [5]

Pout,m,n = Pr [min(CSmRn , CRnD)− CRnE < RS ] , (4)

where RS denotes the secrecy information rate.
If the capacity of Rn−E link is not available, we select the

relay and user pair that minimizes the SOP. Mathematically,
the index of the optimal relay, m∗, and the index of the optimal
user, n∗, can be determined through

(m∗, n∗) = argmax
m=1,··· ,M

max
n=1,··· ,N

min (CSmRn , CRnD)

= argmax
m=1,··· ,M

max
n=1,··· ,N

min (γm,n, γn) . (5)

III. SECRECY PERFORMANCE ANALYSIS OF JUFDRS
SCHEME

In this section we derive the secrecy outage probabilities
achieved by the JUFDRS scheme in closed-from expressions,
which allow us to examine the benefits it offers. To this end,
we first present some preliminary results in the following
subsection.

A. Preliminaries

The CDFs of γn∗ and γm∗,n∗ are given by (6) and (7),
respectively, shown at the top of next page, where we define
the following notations:
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and

Γ (k + 1, x)

=


e−x, k = 0,
E1(x), k = −1,
(−1)−k+1

(−k−1)!

[
E1(x)− e−x

∑−k−2
i=0

(−1)ii!
xi+1

]
, k ≤ −2,

(8)

Here, E1(x) denotes the exponential integral of first order [17].
Proof: The proof is presented in Appendix A.

Based on the preliminary results, we obtain the CDF of Z
as

FZ(z) =Pr
(
min(γm∗,n∗ , γn∗) < z

)
=1− Pr(γm∗,n∗ ≥ z) Pr(γn∗ ≥ z)

=1−
[
1− Fγm∗,n∗ (z)

]
[1− Fγn∗ (z)] . (9)

Applying the preliminary results into (9), the CDF of Z can
be expressed as (10), which shown at the top of next page.

In the following, we provide three lemmas to facilitate our
analytical derivations.

Lemma 1: Let C1(x) = E1(αx + β), the combination of
exponential integral with exponentials is given by

Π1(α, β, µ) =

∫ ∞

0

E1 (αx+ β) e−µxdx

=
1

µ

[
E1 (β)− e

β
αµE1

((
1 +

µ

α

)
β
)]
, (12)

where α > 0, β > 0, and µ > 0, respectively.
Proof: We obtain (12) by applying [17, Eq.(5.231.1)] and

[17, Eq.(6.224.1)].
Based on (12), we obtain

Π2 (k, α, β, µ) =

∫ ∞

0

Γ (k + 1, αx+ β) e−µxdx

=


1

α+β exp(−β), k = 0,

Π1(α, β, µ), k = −1,

Π1(α,β,µ)
(−1)k−1(−k−1)!

−
−k−2∑
i=0

(−1)ii!Ξ1(i+1,α,β,α+µ)
(−1)k−1(−k−1)!

, k ≤ −2,

(13)

with

Ξ1(i, α, β, µ) =

∫ ∞

0

e−µx

(αx+ β)i
dx

=


1
αe

βµ
α E1

(
βµ
α

)
, i = 1,

i−1∑
n=1

(n− 1)!ω
(
− α

βµ

)n
+ ωe

βµ
α E1

(
βµ
α

)
, i ≥ 2.

(14)

and ω = (−µ)i−1

(i−1)!αi .
Lemma 2: Let C2(x) = E1(αx + β), the combination of
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+ x
πRD

)

(πSR + πRRx)m2

]
, (10)
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exponential integral with exponentials is given by

Π3 (k, α, β, µ) =
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0

e−µx

(αx+ β)
k
E1 (αx+ β) dx

=
M∑
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wlf(yl), (15)

where
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2y
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(
αy2

µ
+ β

)(
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µ
+ β

)−k

,

the weights wl and the abscissas yl are real numbers given in
[14] for M = 2, · · · , 15, α > 0, β > 0, µ > 0, and k > 0,
respectively.

Proof: The proof is presented in Appendix B.
Based on (15), we obtain Π4(k1, k2, α, β, µ) as (16), shown

on the next page.
Lemma 3: Let C3(x) = E1(α1x + β1)E1(α2x + β2), the

combination of exponential integral with exponentials is given
by

Π5(k, α1, α2, β1, β2, µ) =
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Proof: The proof is similar to that of Lemma 2.
Based on Lemma 3, we obtain (19), which is shown in the

next page.

B. Secrecy Outage Probability

We present the SOP of the JUFDRS scheme in the following
theorem.

Theorem 1: The SOP of the JUFDRS scheme is given by
(20), where ψni = pniπSR

πRR
+ pni(2

RS − 1), ϕni = pni2
RS ,

φni = pniπSR

πRR
, η1 = m2(2

Rs−1)
πSR

, η2 = m22
Rs

πSR
+ 1

πRE
, η3 =

(2Rs−1)
πRD

, η4 = 2RS

πRD
+ 1

πRE
, η5 = 2RS−1

πRD
+ m2(2

Rs−1)
πSR

, and
η6 = 2RS

πRD
+ m22

Rs

πSR
+ 1

πRE
.

Proof: Based on (1), (2), (3), and (4), the SOP of the
JUFDRS scheme can be expressed as

Pout = Pr[min(CSm∗Rn∗ , CRn∗D)− CRn∗E < RS ]

= Pr[min(γm∗,n∗ , γn∗) < 2RS (1 + wn∗)− 1]. (21)

Based on the preliminary results and Lemmas 1–3, and
performing some mathematical manipulations, we obtain (20),
which completes the proof of Theorem 1.

Following a similar procedure to derive the SOP of the
proposed JUFDRS scheme, we can obtain SOP of the JUH-
DRS scheme, which is used as a baseline to compare with
the proposed JUFDRS scheme. Specifically, the SOP of the
JUHDRS scheme is given by
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where
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(−1)i+ji!j!e−(β1+β2)
(

α2

α1

)i+1

Ξ1(k + i+ j + 2, α2, β2, α1 + α2 + µ)

−
−k1−2∑
i=0

(−1)ii!e−β1

(
α2

α1

)i+1

Π3(k + i+ 1, α2, β2, α1 + µ)

−
−k2−2∑
j=0

(−1)jj!e−β2

(
α1

α2

)k+j+1

Π3(k + j + 1, α1, β1, α2 + µ))
]
, k1 < −1, k2 < −1.
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τ2i = N(−1)m−1

(
M

m

)
mei

πSRp4ip1i
,

τ3i = N(−1)m−1

(
M

m

)
m

m+ eiπSR
,

τ4i = N(−1)m−1

(
M

m

)
1

1 + πRDei
,

Φ(x) = x22Rs + 1
πRE

and t = 22Rs − 1.
We note that HD relaying is known to suffer from a spectral

efficiency loss compared to FD relaying due to its time-
orthogonal relay listening/forwarding suffering, so half-duplex
suffer from 50% loss in data rate, there is 1/2 factor in both
data transmission and eavesdropping capacities [11].

IV. NUMERICAL RESULTS

In this section, we provide numerical results to examine the
secrecy performance of the JUFDRS scheme. The JUHDRS
scheme is also shown as benchmarks in the figures.

Fig. 2 plots the SOP versus SNR of the R-D link. We set
the average SNR of the R-E link as 5 dB, i.e., πRE = 5
dB, and the residual self-inference as 2 dB, i.e., πRR = 2
dB. The average SNR of the S-R link is the same as that
of the R-D link. It is observed from Fig. 2 that, both the
SOP of the JUFDRS scheme and the SOP of the JUHDRS
scheme decrease significantly as N increases. This indicates
that increasing the number of cooperative relays enhances the
physical layer security against eavesdropping attack. It is also
observed from Fig. 2 that the JUFDRS scheme significantly
outperforms the JUHDRS scheme, illustrating the security
benefits of exploiting the FD mode to prevent eavesdropping
attacks. Furthermore, we observe from the figure that the
SOP decreases as M increases. In addition, we note that this
improvement becomes marginal when the SNR is high, since
the Rn − D link becomes the bottleneck of the end-to-end
cooperative transmission.

Fig. 3 plots the SOP versus Rs with the residual self-
inference πRR = 2 dB and πRR = 4 dB. First, we see that



Pout =1−
M∑

m1=1

M∑
m2=1

∼∑
i

∼∑
j

[ q1i
πRE

(
q1jΠ6(0,−p3i,−p3j , ϕ1i, ϕ1j , ψ1i, ψ1j ,

1

πRE
) + q2jΠ6(0,−p3i,−p3j − 1, ϕ1i, ϕ1j , ψ1i, ψ1j ,

1

πRE
)

− q5je
−η1(

p4j
πRR

)m2
[
Π6(m2,−p3i,−fj , ϕ1i, ϕ4j , ψ1i, ψ4j , η2)− Γ(−fj + 1, φ4j)(

ϕ1i

ϕ4j
)m2Π4(−p3i,m2, ϕ1i, ψ1i, η2)

])
+

q2i
πRE

[
q2jΠ6(0,−p3i − 1,−p3j − 1, ϕ1i, ϕ1j , ψ1i, ψ1j ,

1

πRE
) + q1jΠ6(0,−p3i − 1,−p3j , ϕ1i, ϕ1j , ψ1i, ψ1j ,

1

πRE
)

− q5je
−η1(

p4j
πRR

)m2(Π6(m2,−p3i − 1,−fj , ϕ1i, ϕ4j , ψ1i, ψ4j , η2)− Γ(−fj + 1, φ4j)(
ϕ1i

ϕ4j
)m2Π4(−p3i − 1,m2, ϕ1i, ψ1i, η2))

]
− q3i
πRE

(
q1je

−η3
[
Π6(0,−p3i,−p3j , ϕ2i, ϕ1j , ψ2i, ψ1j , η4)− Γ(−p3j + 1, φ2i)Π4(−p3j , 0, ϕ1j , ψ1j , η4)

]
+ q2je

−η3
[
Π6(0,−p3i,−p3j − 1, ϕ2i, ϕ1j , ψ2i, ψ1j , η4)− Γ(−p3j + 1, φ2i)Π4(−p3j − 1, 0, ϕ1j , ψ1j , η4)

]
− q5j(

p4j
πRR

)m2e−η5
[
Π6(m2,−p3i,−fj , ϕ2i, ϕ4j , ψ2i, ψ4j , η6) + Γ(−p3i + 1, φ2j)Γ(−fj + 1, φ4j)Ξ1(m2, ϕ4j , ψ4j , η6)

− Γ(−p3i + 1, φ2j)Π4(−fj ,m2, ϕ4j , ψ4j , η6)− Γ(−fj + 1, φ4j)(
ϕ2i

ϕ4j
)m2Ξ4(−p3i,m2, ϕ2j , ψ2i, η6)

])
− q4i
πRE

(
q2je

−η3
[
Π6(0,−p3i − 1,−p3j − 1, ϕ2i, ϕ1j , ψ2i, ψ1j , η4)− Γ(−p3j + 1, φ2i)Π4(−p3j − 1, 0, ϕ1j , ψ1j , η4)

]
+ q1je

−η3
[
Π6(0,−p3i − 1,−p3j , ϕ2i, ϕ1j , ψ2i, ψ1j , η4) − Γ(−p3j , φ2i)Π4(−p3j , 0, ϕ1j , ψ1j , η4)

− q5j(
p4j
πRR

)m2e−η5Π6(m2,−p3i − 1,−fj , ϕ2i, ϕ4j , ψ2i, ψ4j , η6) + Γ(−p3i, φ2j)Γ(−fj + 1, φ4j)Ξ1(m2, ϕ4j , ψ4j , η6)

− Γ(−p3i, φ2j)Π4(−fj ,m2, ϕ4j , ψ4j , η6)− Γ(−fj + 1, φ4j)(
ϕ2i

ϕ4j
)m2Π4(−p3i − 1,m2, ϕ2i, ψ2j , η6)

])]
. (20)
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Fig. 2. The secrecy outage probability versus SNR of R-D with M = 2, 3,
N = 2, 3, and Rs = 2.

the SOP of the two schemes tend to increase with Rs, but
the proposed JUFDRS scheme achieves a better performance.
Second, we see that the SOPs of both schemes decrease when
N increases for any fixed Rs. Finally, we see that the secrecy
performance of the JUFDRS scheme relative to JUHDRS
scheme becomes more prominent as πRR decreases, e.g., from
πRR = 4 dB to πRR = 2 dB. This can be explained by the
fact that the JUFDRS scheme has a better secrecy performance
than the JUFHRS scheme when the self-interference is well
suppressed.
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V. CONCLUSIONS

In this paper, we proposed a new JUFDRS scheme in a
cooperative relay network in the presence of an eavesdropper.
To analyze the benefits of the JUFDRS scheme, we derive
its SOP in closed form. It was shown that the JUFDRS
scheme significantly outperforms the JUHDRS scheme by
achieving a lower SOP when the self-interference can be
reasonably suppressed. This result indicates that adopting the
FD technique at relays can greatly improve the physical layer
security in the multi-user multi-relay network.



APPENDIX A
PROOF OF PRELIMINARY RESULTS

The best user Sm∗
n

conditioned on a given Rn should be
selected to maximize γm,n, i.e., m∗

n = argmaxm=1,··· ,M γm,n.
For exponentially distributed link gains, the CDF of γm,n is
given by [15]

Fγm,n(x) = 1− πSRe
− x

πSR

xπRR + πSR
. (23)

Thus the CDF of γm∗
n,n

is given by Fγm∗
n,n

(x) = Fγm,n(x)
M .

The CDF of γn∗ is defined as

Fγn∗ (x) =Pr [γn∗ < x]

=N Pr
[
γ1 < x,min

(
γ1, γm∗

1 ,1

)
> θ
]
, (24)

where θ = maxn1=1,··· ,N,n1 ̸=n min
(
γn1 , γm∗

n1
,n1

)
. Based on

(23), we obtain the CDF and the PDF of θ as

Fθ(θ)

=

[
1− e

− θ
πRD

M∑
m=1

(−1)m−1

(
M

m

)(
πSRe

− θ
πSR

πSR + θπRR

)m]N−1

=

∼∑
i

diπ
fi
SRe

−eiθ,

(πSR + θπRR)
fi

(25)

and

fθ(θ) = −
∼∑
i

di
[(πRRθ + πSR) ei + πRRfi] e

−eiθ

(πSR + θπRR)
fi+1

, (26)

respectively, where
∑∼

i , di, fi, and ei are defined in Sec-
tion III.

To proceed with our analysis, we further express (24) as

Fγn∗ (x) = N Pr
(
θ < γ1 < x, γm∗

1 ,1
> θ, 0 < θ < x

)
= N

∫ x

0

∫ x

θ

∫ ∞

θ

fθ(θ)fγ1
(γ1)fγm∗

1 ,1
(γm∗

1 ,1
)dγm∗

1 ,1
dγ1dθ.

(27)

By substituting (23) and (26) into (27), and using [17, Eq.
(3.462.17)], we derive the CDF of Fγn∗ (x) as in (6), where we
have calculated the resultant integral using [17, Eq.(3.462.17)].
Similarly, we derive the CDF of γm∗,n∗ as in (7).

APPENDIX B
PROOF OF LEMMA 2

In order to derive the integral of Π3, we first define y2 = µx.
Thus, we express (15) as

Π3(k, α, β, µ) =

∫ ∞

0

E1 (αx+ β)
e−µx

(αx+ β)k
dx

=

∫ ∞

0

E1

(
α

µ
y2 + β

)
2y exp

(
−y2

)
µ
(
α y2

µ + β
)k dy.

(28)

We note that a simple closed form of the analytical re-
sult of (28) is difficult to obtain. Fortunately, the infinite
integral term involved in (28) has the structure, given by

∫∞
0
f(y) exp(−y2)dy, which can be evaluated accurately via

the one-sided Gauss-Hermite quadrature (GHQ) rule [14],
which completes the proof.

REFERENCES

[1] N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, and M. Di Renzo,
“Safeguarding 5G wireless communication networks using physical
layer security,” IEEE Commun. Mag., vol. 53, no. 4, pp. 20–27, Apr.
2015.

[2] Y. Zou, J. Zhu, X. Wang and L. Hanzo, “A survey on wireless security:
Technical challenges, recent advances, and future trends,” Proc. IEEE,
vol. 104, no. 9, pp. 1727–1765, Sept. 2016.

[3] Y. Liu, H.-H. Chen, L. Wang, “Physical layer security for next gener-
ation wireless networks: Theories, technologies, and challenges,” IEEE
Commun. Surveys Tuts., accepted to appear.

[4] Y. Zou, B. Champagne, W.–P. Zhu, and L. Hanzo, “Relay-selection
improves the security-reliability trade-off in cognitive radio systems,”
IEEE Trans. Commun., vol. 63, no.1, pp. 215–218 Jan. 2015.

[5] Y. Zou, X. Wang, and W. Shen, “Optimal relay selection for physical-
layer security in cooperative wireless networks,” IEEE J. Sel. Areas
Commun., vol. 31, no. 10, pp. 2099–2111, Oct. 2013.

[6] C. Kundu, S. Ghose, and R.Bose, “Secrecy outage of dual-hop regen-
erative multi-relay system with relay selection,” IEEE Trans. Commun.,
vol. 14, no. 8, pp. 4614–4625, Aug. 2015.

[7] L. Fan, X. Lei, T. Q. Duong, M. Elkashlan, and G. Karagiannidis,
“Secure multiuser communications in multiple amplify-and-forward
relay networks,” IEEE Trans. Commun., vol. 62, no. 9, pp. 3299–3310,
Sept. 2014.

[8] C. Liu, N. Yang, R. Malaney, and J. Yuan, “Artificial-noise-aided
transmission in multi-antenna relay wiretap channels with spatially
random eavesdroppers,” IEEE Trans. Wireless Commun., accepted to
appear.

[9] Y. Feng, Z. Yang, W.–P. Zhu, Q. Li, and B. Lv, “Robust cooperative
secure beamforming for simultaneous wireless information and power
transfer in amplify-and-forward relay networks,” IEEE Trans. Veh. Tech.,
accepted to appear.

[10] G. Zhen, I. Krikidis, J. Li, A. P. Petropulu, and B. Ottersten, “Improving
physical layer secrecy using full-duplex jamming receivers,” IEEE Trans.
Sig. Process., vol. 61, no. 20, pp. 4962–4974, Oct. 2013.

[11] G. Chen, Y. Gong, P. Xiao, and J. A. Chambers, “Physical layer network
security in the full-duplex relay system” IEEE Trans. Inf. Forensics
Security., vol. 10, no. 3, pp. 574–583, Mar. 2015.

[12] J. H. Lee, “Full-duplex relay for enhancing physical layer security in
multi-hop relaying systems,” IEEE Commun. Lett., vol. 19, no. 4, pp.
525–528, Apr. 2015.

[13] S. Parsaeefard and T. Le–Ngoc, “Improving wireless secrecy rate via
full-duplex relay-assisted protocols,” IEEE Trans. Inf. Forensics Secu-
rity., vol. 10, no. 10, pp. 2095–2107, Oct. 2015.

[14] N. M. Steen, G. D. Byrne, and E. M. Gelbard, “Gaussian quadratures
for the integrals

∑∞
0 e−−x2

f(x)dx and
∑b

0 e
−−x2

f(x)dx,” Math.
Comput., vol. 23, no. 107, pp. 661–671, 1969.

[15] Y. Tang, H. Gao, X. Su, and T. Lv, “Joint source-relay selection in
two-way full-duplex relay network,” in Proc. IEEE ICC 2016, Kuala
Lumpur, Malaysia, May 2016, pp. 577–582.

[16] M. G. Khafagy, M.–S. Alouini, and S. Aı̈ssa, “Full-duplex opportunistic
relay selection in future spectrum-sharing networks,” in Proc. IEEE ICC
2015 Wkshps, London, UK, June 2015, pp. 1196–1200.

[17] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products, 7th edition. Academic, 2007.


