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Abstract—A user wants to retrieve a file from a database
without revealing the identity of the file retrieved at the database,
which is known as the problem of private information retrieval
(PIR). If it is further required that the user obtains no informa-
tion about the database other than the desired file, the concept
of symmetric private information retrieval (SPIR) is introduced to
guarantee privacy for both parties. In this paper, the problem
of SPIR is studied for a database stored amongN nodes in a
distributed way, by using an (N,M)-MDS storage code. The
information-theoretic capacity of SPIR, defined as the maximum
number of symbols of the desired file retrieved per downloaded
symbol, for the coded database is derived. It is shown that the
SPIR capacity for coded database is1− M

N
, when the amount of

the shared common randomness of distributed nodes (unavailable
at the user) is at least M

N−M
times the file size. Otherwise, the

SPIR capacity for the coded database equals zero.

I. I NTRODUCTION

Considering the scenario that a user wants to retrieve a file
from a public database stored at a server, the identity of thefile
might be privacy-sensitive. In order to protect the identity of
requested files, private information retrieval (PIR) is studied
at first in [1] to guarantee user privacy. To further protect
the privacy of the database, symmetric private information
retrieval (SPIR) is introduced [2], such that in the processof
data retrieval the user obtains no more information regarding
the database other than the requested file. Inspired by [1], [2],
the problem of PIR has been widely studied in the theoretical
computer science literature, surveyed in [3]. In those works,
the problem is studied by considering a file as a single bit and
the database as a bit string. The retrieval process includesa
querying phase when the user sends queries to the nodes, and
a downloading phase when the nodes generate answers after
receiving the queries and send back to the user. The objective
is to minimize the total communication cost during both the
querying phase and the downloading phase.

Recently, a series of works studies the information-theoretic
limits of the communication cost of PIR problems [4]–[6].
These works focus on the scenario when the file size is
significantly large, and the target is to minimize the com-
munication cost of only the downloading phase. The metric
of the downloading cost is defined as the number of bits
downloaded per bit of the retrieved file, and the reciprocal
of which is named the PIR capacity [4]. The PIR capacity for
a replicated database is derived in [4], in which each of theN

(non-colluding) nodes stores a copy of the whole database. Its
subsequent work [5] derives the PIR capacity with colluding
nodes, in which case anyT out of N nodes may collude to

guess the identity of the requested file. Being the work most
related to our study, another subsequent paper [6] derives the
capacity of SPIR in the case of a replicated database.

Considering the aspect of cost in storage systems, replicat-
ing the database results in low repair cost for node damage,
but with the expense of high storage cost. Coded storage is
proposed to utilize the tradeoff between storage cost and repair
cost [7]. By using erasure codes, each node only stores a
fraction of the whole database, hence reducing the storage
cost. The first work on PIR for coded database known to us
appears in [8]. In [8], the authors show that by downloading
one extra bit besides the amount of the file size, user privacy
can be guaranteed. However, to achieve this low downloading
cost, the number of storage nodes needs to grow with the
file size, which can be impractical in some storage systems.
Later, [9] also considers PIR with coded storage, and focuses
on reducing the storage overhead. In [10], PIR for coded
databases is investigated, and the tradeoff between storage
cost and downloading cost is analyzed. Subsequently in [11],
explicite storage and communication schemes to achieve PIR
with MDS storage codes are presented, matching the tradeoff
derived in [10]. It is worth noting that in the recent work
of [12], the capacity of PIR for coded database is settled,
which improves the results in [10] and [11].

In this work, the problem of SPIR is studied for coded
databases, where the database is stored at the nodes by an
MDS storage code. We show that in order to guarantee SPIR
in the non-trivial context,e.g., the number of files in the
database is greater than or equal to two, nodes need to share
common randomness which is independent to the database and
meanwhile unavailable to the user. This result is in analogy
with that in [6] for the uncoded database. In particular, we
derive a lower bound on the amount of common randomness
needed to assure positive SPIR retrieval rate. Furthermore,
the capacity of SPIR for the(N,M)-MDS coded database
is found. We note that the replicated database is a special
case of the coded database with(N, 1)-MDS code. Therefore,
our result includes that in [6] for the replicated database as a
special case withM = 1.

II. M ODEL

A. Notations

Let [1 : N ] denote the set{1, 2, . . . , N} and[M,N ] denote
{M,M + 1, . . . , N} for M ≤ N . For the sake of brevity,
denote the set of random variables{X1, X2, . . . , XN} by
X[1:N ] . Let ei denote the unit vector with a one at theith
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entry, and zeros at all other entries, the length of which is not
specified when there is no ambiguity.

B. Problem Description

Database:A database comprisesK independent files, denoted
by W1, . . . ,WK . Each file consists ofL symbols drawn inde-
pendently and uniformly from the finite fieldFq. Therefore,
for any k ∈ [1 : K],

H(Wk) = L log q ; H(W1, . . . ,WK) = KL log q.

Storage:The database is stored in a distributed storage system
consisting ofN nodes by an(N,M)-MDS storage code. The
data stored at theN nodes are denoted byD1, . . . , DN . Note
that with an (N,M)-MDS storage code, for anyM nodes
{n1, . . . , nM} ∈ [1 : N ], the data they storeDn1 , . . . , DnM

are linearly and stochastically independent. Furthermore, every
M nodes can exactly recover the whole database,i.e.,

H(Dn1 , . . . , DnM
) = H(W1, . . . ,WK) = KL log q,

H(W1, . . . ,WK |Dn1 , . . . , DnM
) = 0.

User queries: A user wants to retrieve a fileWθ with index
θ from the database,θ ∈ [1 : K]. The MDS storage code
is known to the user. In addition to this, the user has no
knowledge of the stored data. Based on the desired file indexθ,
the user sends queries to all nodes, where the query received
by noden is denoted byQθ

n. Let Q = [Qθ
n]n∈[1:N ],θ∈[1:K]

denote the complete query scheme, namely, the collection of
all queries under all cases of desired file index.
Node answers:Based on the received queryQθ

n, the stored
dataDn, and some common randomnessS shared among all
nodes, each node sends an answerAθ

n to the user. The common
randomness is utilized to protect database-privacy (2) below.
SPIR: With the received answersAθ

[1:N ] = {Aθ
1, . . . , A

θ
N}

and based on the complete query schemeQ, the user shall
be able to decode the requested fileWθ with zero error. The
nodes do not communicate, that is, they share no information
regarding their stored data and the queries they receive. The
only information shared among the nodes is some common
randomness, denoted byS, which is independent of the
database and unavailable to the user. Two privacy constraints
must be satisfied for SPIR:

• User-privacy: the nodes shall not be able to obtain any
information regarding the identity of the requested file,
i.e.,

I(θ;Qθ
n, A

θ
n, Dn, S) = 0, ∀n ∈ [1 : N ]. (1)

• Database-privacy:the user shall learn no information
regarding other files in the database, that is, defining
Wθ̄ = {W1, . . . ,Wθ−1,Wθ+1, . . . ,WK},

I(Wθ̄;A
θ
[1:N ],Q, θ) = 0. (2)

We use the same definition of SPIR rate and capacity
as in [6] for characterization of the performance of SPIR
schemes.

Definition 1 (SPIR Rate and Capacity). The SPIR rate is the
number of information bits of the requested file retrieved per
downloaded answer bit, that is,

R
(N,M)−MDS
SPIR ,

H(Wθ)
∑N

n=1 H(Aθ
n)

.

The capacityC(N,M)−MDS
SPIR is the supremum ofR(N,M)−MDS

SPIR

over all SPIR schemes for(N,M)-MDS storage codes.

Definition 2 (Secrecy Rate). The secrecy rate is the amount
of common randomness shared by the storage nodes relative
to the file size, that is

ρ
(N,M)−MDS
SPIR ,

H(S)

H(Wθ)
.

III. M AIN RESULT

When there is only one file in the database,i.e. K = 1,
database-privacy is guaranteed automatically, because there is
no other file to protect from the user in the database. Therefore,
the SPIR problem reduces to PIR problem, and from [12],
the capacity is1 regardless of the rate of the MDS-storage
code. WhenK ≥ 2, SPIR is non-trivial and our main result
is summarized below.

Theorem 1. For symmetric private information retrieval from
a database withK ≥ 2 files which are stored atN nodes with
an (N,M)-MDS storage code, the capacity is

C
(N,M)−MDS
SPIR =

{

1− M
N
, if ρ(N,M)−MDS

SPIR ≥ M
N−M

0, otherwise
.

Remark: WhenM = 1, that is, every node stores the whole
database, our result reduces to Theorem 1 in [6] for replicated
databases. In [12], the authors show that the PIR capacity
with MDS storage codes is(1 + M

N
+ · · · + MK−1

NK−1 )
−1. (We

translate their result into our notation.) It can be observed that
as the number of filesK tends to infinity, their PIR capacity
approaches our SPIR capacity. The intuition is that, when the
number of files increases, the penalty in the downloading rate
to protect database-privacy decays. When there are asymp-
totically infinitely many files, the information rate the user
can learn about the database from finite downloaded symbols
vanishes.

IV. CONVERSE

In this section, we show the converse part of Theorem 1.
That is, to achieve SPIR with an(N,M)-MDS storage code,
the nodes need to share at leastM

N−M
L secrecy symbols

(Theorem 6), and the user needs to download at leastN
N−M

L

symbols (Theorem 5). Recall thatL is the file size. We first
show Lemmas 2-4 below, which will be used in the proofs of
Theorems 5 and 6.

Lemma 2. For anyM nodesn[1:M ] , {n1, . . . , nM} ⊂ [1 :
N ],

H(Ak
n[1:M]

|Q,Wk, Q
k
n[1:M]

) = H(Ak
n[1:M]

|Wk, Q
k
n[1:M]

).



Proof: We first show that H(Ak
n[1:M]

|Wk, Q
k
n[1:M]

) ≤

H(Ak
n[1:M]

|Q,Wk, Q
k
n[1:M]

), as follows

H(Ak
n[1:M]

|Wk, Q
k
n[1:M]

)−H(Ak
n[1:M]

|Q,Wk, Q
k
n[1:M]

)

= I(Ak
n[1:M]

;Q|Wk, Q
k
n[1:M]

)

≤ I(Ak
n[1:M]

,W1, . . . ,WK , S;Q|Wk, Q
k
n[1:M]

)

= I(W1, . . . ,WK , S;Q|Wk, Q
k
n[1:M]

)+

I(Ak
n[1:M]

;Q|W1, . . . ,WK , S,Wk, Q
k
n[1:M]

)

(a)
= I(W1, . . . ,WK , S;Q|Wk, Q

k
n[1:M]

)

≤ I(W1, . . . ,WK , S;Q) = 0,

where equality(a) holds because the answers are deterministic
functions of the database, the common randomness, and the
queries. In the last step,I(W1, . . . ,WK , S;Q) = 0 holds
because the queries do not depend on the database and the
common randomness.

On the other hand, it is immediate that
H(Ak

n[1:M]
|Wk, Q

k
n[1:M]

) ≥ H(Ak
n[1:M]

|Q,Wk, Q
k
n[1:M]

).
Therefore, H(Ak

n[1:M]
|Wk, Q

k
n[1:M]

) =

H(Ak
n[1:M]

|Q,Wk, Q
k
n[1:M]

). �

Lemma 3. For any M nodesn[1:M ] , {n1, . . . , nM} ⊂ [1 :
N ],

H(Ak
n[1:M]

|Qk
n[1:M]

) = H(Ak′

n[1:M]
|Qk′

n[1:M]
), (3)

H(Ak
n[1:M]

|Wk, Q
k
n[1:M]

) = H(Ak′

n[1:M]
|Wk, Q

k′

n[1:M]
). (4)

Proof: Proof of (3):
From user-privacy (1), I(θ;Aθ

n, Q
θ
n) = 0, hence

H(Ak
n, Q

k
n) = H(Ak′

n , Qk′

n ). Similarly, I(θ;Qθ
n) = 0, there-

fore H(Qk
n) = H(Qk′

n ). From the above, we have that
H(Ak

n|Q
k
n) = H(Ak′

n |Qk′

n ).
W.o.l.g., we choose the size-M node setn[1:M ] to be

{1, . . . ,M}. For an (N,M)-MDS storage code, the data
stored at any set ofM nodes are linearly independent. Fur-
thermore, because the files in the database are statistically
independent, the data stored at any set ofM nodes are also
statistically independent. (See Lemma 1 in [5] and Lemma
2 in [12] for a proof.) For any noden, the answerAk

n

is a deterministic function of the queryQk
n, the common

randomnessS, and the stored dataDk. Given the queries and
the common randomness, the randomness of theM answers
only lies in the stored data of theM nodes, which are
statistically independent. Hence,

H(Ak
[1:M ]|Q

k
[1:M ], S) =

M
∑

n=1

H(Ak
n|Q

k
n, S).

Because the user shall not obtain any information of
the common randomnessS from the queries and answers,
S should be independent of the queries and answers.
Therefore, H(Ak

[1:M ]|Q
k
[1:M ], S) = H(Ak

[1:M ]|Q
k
[1:M ]) +

H(S|Ak
[1:M ], Q

k
[1:M ]) − H(S|Qk

[1:M ]) = H(Ak
[1:M ]|Q

k
[1:M ]).

Similarly, we have thatH(Ak
n|Q

k
n, S) = H(Ak

n|Q
k
n) +

H(S|Ak
n, Q

k
n)−H(S|Qk

n) = H(Ak
n|Q

k
n). Hence,

H(Ak
[1:M ]|Q

k
[1:M ]) = H(Ak

[1:M ]|Q
k
[1:M ], S)

=

M
∑

n=1

H(Ak
n|Q

k
n, S) =

M
∑

n=1

H(Ak
n|Q

k
n)

=

M
∑

n=1

H(Ak′

n |Qk′

n ) = H(Ak′

[1:M ]|Q
k′

[1:M ]).

Proof of (4): Let the random variableDk
n denote the

randomness ofDn after fixing Wk̄, that is, the part of
randomness of fileWk stored at noden. By user-privacy (1),
I(θ;Qθ

n, A
θ
n, D

k
n) = 0, we have thatH(Qk

n, A
k
n, D

k
n) =

H(Qk′

n , Ak′

n , Dk
n) and H(Qk

n, D
k
n) = H(Qk′

n , Dk
n). Hence,

H(Ak
n|Q

k
n, D

k
n) = H(Ak′

n |Qk′

n , Dk
n).

The answerAk
n is a deterministic function of the query

Qk
n, the common randomnessS, and the stored dataDn. We

argue above that the data stored at any set ofM nodes are
statistically independent. After fixing the fileWk, the data
stored atM nodes, which depends only on the randomness of
the otherK − 1 files Wk̄, are still statistically independent.
Therefore,

H(Ak
[1:M ]|Q

k
[1:M ], D

k
[1:M ], S) =

M
∑

n=1

H(Ak
n|Q

k
n, D

k
n, S).

The randomness relating to fileWk stored inM nodes recovers
Wk, i.e., Dk

[1:M ] = Wk.
Because the common randomness is independent of the

queriesQ, answersAk
[1:N ], andWk which the user can decode,

with similar calculations as in the proof for (3), we can elim-
inate S in the conditions. Hence,H(Ak

[1:M ]|Q
k
[1:M ],Wk) =

∑M

n=1 H(Ak
n|Q

k
n, D

k
n).

To show that H(Ak′

[1:M ]|Q
k′

[1:M ],Wk) =
∑M

n=1 H(Ak′

n |Qk′

n , Dk
n), notice that because all the files

are statistically independent, by fixingWk, it is equivalent
to reducing the database toK − 1 files. Hence, the equality
holds by (3). Therefore,

H(Ak
[1:M ]|Q

k
[1:M ],Wk) =

M
∑

n=1

H(Ak
n|Q

k
n, D

k
n)

=

M
∑

n=1

H(Ak′

n |Qk′

n , Dk
n)

= H(Ak′

[1:M ]|Q
k′

[1:M ],Wk).

�

Lemma 4. For anyM nodesn[1:M ] , {n1, . . . , nM} ⊂ [1 :
N ],

H(Ak
n[1:M]

|Wk, Q
k
n[1:M]

) = H(Ak′

n[1:M]
|Qk′

n[1:M]
).

Proof: By database-privacy (2),I(Wk̄′ ;Ak′

[1:N ],Q) = 0. For
k 6= k′, Wk ∈ Wk̄′ . W.o.l.g., choose the size-M node set to
be {1, . . . ,M},

0 = I(Wk;A
k′

[1:M ], Q
k′

[1:M ])



= I(Wk;A
k′

[1:M ]|Q
k′

[1:M ]) + I(Wk;Q
k′

[1:M ])

(a)
= I(Wk;A

k′

[1:M ]|Q
k′

[1:M ])

= H(Ak′

[1:M ]|Q
k′

[1:M ])−H(Ak′

[1:M ]|Wk, Q
k′

[1:M ])

(b)
= H(Ak′

[1:M ]|Q
k′

[1:M ])−H(Ak
[1:M ]|Wk, Q

k
[1:M ]),

where equality(a) holds becauseWk is independent of the
queries, and equality(b) follows by (4) in Lemma 3. �

Theorem 5. The SPIR rate for a database stored with an
(N,M)-MDS storage code is bounded from above by

R
(N,M)−MDS
SPIR ≤ 1−

M

N
.

Proof: For any fileWk, k ∈ [1 : K],

H(Wk) = H(Wk|Q)

(a)
= H(Wk|Q)−H(Wk|A

k
[1:N ],Q)

= I(Wk;A
k
[1:N ]|Q)

= H(Ak
[1:N ]|Q)−H(Ak

[1:N ]|Wk,Q)

≤ H(Ak
[1:N ]|Q)−H(Ak

n[1:M]
|Wk,Q, Qk

n[1:M]
)

(b)
= H(Ak

[1:N ]|Q)−H(Ak
n[1:M]

|Wk, Q
k
n[1:M]

)

(c)
= H(Ak

[1:N ]|Q)−H(Ak′

n[1:M]
|Qk′

n[1:M]
)

(d)
= H(Ak

[1:N ]|Q)−H(Ak
n[1:M]

|Qk
n[1:M]

)

≤ H(Ak
[1:N ]|Q)−H(Ak

n[1:M]
|Q)

≤ H(Ak
n[1:M]

|Q) +
∑

n∈[1:N ]\n[1:M]

H(Ak
n|Q)−

H(Ak
n[1:M]

|Q)

≤
∑

n∈[1:N ]\n[1:M]

H(Ak
n)

(e)
=

N −M

N
·

N
∑

n=1

H(Ak
n)

Equality (a) holds because from all the answers and the
queries, the user should be able to decodeWk, hence
H(Wk|A

k
[1:N ],Q) = 0. Equalities(b) and (c) follow from

Lemma 2 and Lemma 4. Equality(d) follows from (3)
in Lemma 3. Step(e) is because{n1, . . . , nM} can be
any sizeM index set from[1 : N ]. Hence by symmetry,
∑

n∈[1:N ]\n[1:M]
H(Ak

n) =
N−M

N
·
∑N

n=1 H(Ak
n).

Therefore,R(N,M)−MDS
SPIR = H(Wk)∑

N
n=1 H(Ak

n)
≤ 1− M

N
. �

Theorem 6. The secrecy rate for SPIR with an(N,M)-MDS
storage code needs to be at least

ρ
(N,M)−MDS
SPIR ≥

M

N −M
.

Proof: By database-privacy (2),

0 = I(Wk̄;A
k
[1:N ],Q)

= I(Wk̄;A
k
[1:N ]|Q) + I(Wk̄;Q)

= I(Wk̄;A
k
[1:N ]|Q)

= H(Wk̄|Q)−H(Wk̄|A
k
[1:N ],Q)

(a)
= H(Wk̄|Q,Wk)−H(Wk̄|A

k
[1:N ],Q,Wk)

= I(Wk̄;A
k
[1:N ]|Q,Wk)

≥ I(Wk̄;A
k
n[1:M]

|Q,Wk)

(b)
= H(Ak

n[1:M]
|Q,Wk)−H(Ak

n[1:M]
|Q,W[1:K])+

H(Ak
n[1:M]

|Q,W[1:K], S)

= H(Ak
n[1:M]

|Q,Wk)− I(S;Ak
n[1:M]

|Q,W[1:K])

≥ H(Ak
n[1:M]

|Q,Wk, Q
k
n[1:M]

)−H(S)

(c)
= H(Ak

n[1:M]
|Wk, Q

k
n[1:M]

)−H(S)

(d)
= H(Ak′

n[1:M]
|Qk′

n[1:M]
)−H(S)

(e)
= H(Ak

n[1:M]
|Qk

n[1:M]
)−H(S)

≥ H(Ak
n[1:M]

|Q)−H(S)

Equality (a) holds becauseWk is independent of other files
Wk̄, and from all the answersAk

1 , . . . , A
k
N and the queriesQ

the user can decodeWk. Equality (b) holds because the an-
swersAk

n1
, . . . , Ak

nM
are deterministic functions of the queries

Q, the databaseW1, . . . ,WK , and the common randomness
S. Equalities(c) and(d) follow from Lemma 2 and Lemma 4.
Equality (e) follows from (3) in Lemma 3.

Because{n1, . . . , nM} can be any sizeM index set from
[1 : N ],

(

N

M

)

H(Ak
n[1:M]

|Q) ≥

(

N − 1

M − 1

)

H(Ak
[1:N ]|Q),

henceH(Ak
[1:N ]|Q) ≤ N

M
· H(Ak

n[1:M]
|Q). From Theorem 5,

H(Wk) ≤ H(Ak
[1:N ]|Q)−H(Ak

n[1:M]
|Q), thereforeH(Wk) ≤

(N
M

− 1)H(Ak
n[1:M]

|Q).

Hence,H(S) ≥ H(Ak
n[1:M]

|Q) ≥ M
N−M

· H(Wk) and

ρ
(N,M)−MDS
SPIR = H(S)

H(Wk)
≥ M

N−M
. �

V. ACHIEVABILITY

In this section, we present a scheme which achieves the
maximum SPIR rate and lowest secrecy rate in Section IV.
Specifically, the user is able to decode the desired file suc-
cessfully and privately by downloadingN

N−M
L symbols, and

obtains no further information regarding the database with
M

N−M
L uniformly random symbols shared among the nodes.

The achievable scheme is revised from the scheme in [11] by
adding common randomness. We reprise the details with our
notations. The main concepts used in the construction are,

• The user hides the identity of the desired file in randomly
generated queries, such that the queries appear statisti-
cally uniformly random to the nodes.

• The nodes add shared random symbols that are inde-
pendent of the database and unavailable to the user in
the answers to protect the content of other files. The



node1 node2 . . . nodeM nodeM + 1 . . . nodeN
D1 D2 . . . DM DM+1 . . . DN

W1







w1
1,1 w1

1,2 . . . w1
1,M LCM+1(w1

1,[1:M ]) . . . LCN(w1
1,[1:M ])

...
...

...
...

...
...

...
wN−M

1,1 wN−M
1,2 . . . wN−M

1,M LCM+1(wN−M
1,[1:M ]) . . . LCN(wN−M

1,[1:M ])
...

...
...

...
...

...
...

WK







w1
K,1 w1

K,2 . . . w1
K,M LCM+1(w1

K,[1:M ]) . . . LCN (w1
K,[1:M ])

...
...

...
...

...
...

...
wN−M

K,1 wN−M
K,2 . . . wN−M

K,M LCM+1(wN−M
K,[1:M ]) . . . LCN (wN−M

K,[1:M ])

TABLE I
SYSTEMATIC (N,M)-MDS STORAGE CODE.

random symbols are added according to the storage code
construction for successful decoding.

• The user downloads the lowest possible number of sym-
bols to construct a linear system that is solvable. The
unknowns are symbols of the requested file, and some
function outputs generated from queries, stored data and
common randomness.

Database:W.o.l.g, assume each file consists ofL = (N −
M)M symbols. Specifically,

Wk =











w1
k,1 w1

k,2 . . . w1
k,M

w2
k,1 w2

k,2 . . . w2
k,M

...
...

. . .
...

wN−M
k,1 wN−M

k,2 . . . wN−M
k,M











,

wherewj
k,n denotes thejth symbol in the part of fileWk that

is stored at node-n in the systematic storage code, which is
described in more detail below.
Storage: We use a systematic(N,M)-MDS storage code, as
presented in Table I. The firstM nodes are systematic nodes
which store independent pieces of the files. The remaining
N−M nodes are parity nodes which store linear combinations
of the symbols at systematic nodes. In Table I, forn ∈ [M +
1, N ], LCn(·) denotes the linear combination at the parity
noden, the input of which arewj

k,[1:M ] = {wj
k,1, . . . , w

j
k,M}.

The vector stored at noden is denoted byDn.
Common randomness:All nodes shareM2 uniformly ran-
dom symbols fromFq, denoted by

S =







S1,1 S1,2 . . . S1,M

...
...

. . .
...

SM,1 SM,2 . . . SM,M






,

which are independent of the database and unavailable to the
user.

For the details of the queries and answers, w.o.l.g, assume
the desired file isW1. The user generatesM uniformly random
vectors U1, . . . , UM of length (N − M)K over Fq. The
detailed achievable scheme is presented in two orthogonal
cases as follows.

• Case 1(N −M ≤ M )
Queries: The query to each node consists ofM vectors
over Fq as shown in Table II. Recall thatei denotes
the unit vector with a one at theith entry, and zeros
at all other entries. Specifically, for systematic nodes,

N −M out of theM query vectors retrieve theN −M

symbols ofW1 stored at each node by adding the unit
vectors, in a shifted way among all systematic nodes. The
queries to the parity nodes are just theM random vectors
U1, . . . , UM . It can be observed that each node receives
statistically uniformly random query vectors. Hence, user-
privacy is guaranteed.
Answers: Each node receivesM query vectors, and for
each forms the inner product with the stored data vector,
resulting inM symbols. Next, they add shared random
symbolsSi,j to the resultingM symbols according to
the storage code construction, and send the results to
the user. LetXi,j = UjDi + Si,j , where i ∈ [1,M ]
denotes the index of systematic nodes andj ∈ [1,M ]
denotes the index of query vectors for each node, there
are M2 unknowns generated from queries, stored data,
and common randomness as follows,
[

X1,1 . . . X1,M

.

.

.
. . .

.

.

.
XM,1 . . . XM,M

]

=

[

U1D1 + S1,1 . . . UMD1 + S1,M

.

.

.
. . .

.

.

.
U1DM + SM,1 . . . UMDM + SM,M

]

.

The user receivesM answers from each node, as shown
in Table III. Note that there areNM unknowns, among
which M2 unknowns are theXi,j ’s and (N − M)M
unknowns are symbols of the requested file. It can be
observed that there areNM linearly independent equa-
tions. Hence, the linear system is solvable. Furthermore,
because the user has no information regarding the com-
mon randomness, database-privacy is guaranteed.

• Case 2(N −M > M )
Queries:Let β = N−M (modM), andN−M = αM+
β. The queries are as shown in Table IV. Specifically, for
systematic nodes,β out of theM query vectors retrieve
thefirst β symbols of the requested file, in a shifted way
among all systematic nodes. The remainingαM symbols
at each systematic node are retrieved at the parity nodes.
Since everyM symbols needM independent linear
equations, they are retrieved atM parity nodes. Similar
as in Case 1, user-privacy is guaranteed because nodes
receive statistically uniformly random query vectors.
Answers: The answers are generated in the same way
as in Case 1, that is, by forming inner products of
the received query vectors and the stored data vectors,
and then adding shared random symbols. Similarly as in
Case 1, the linear system is solvable, henceW1 can be
decoded. Besides, database-privacy is guaranteed by the
common randomness.

VI. CONCLUSION

We study the SPIR problem for coded databases, where
a database ofK files (K ≥ 2) is stored atN nodes based
on an (N,M)-MDS storage code. A user wants to retrieve
one file without revealing the identity of the requested file to
the nodes. At the same time, the user shall obtain no more
information regarding the database other than the requested
file. We derive the SPIR capacity for coded databases to be



Q1
1 : Q1

2 : . . . Q1
M : Q1

M+1 : . . . Q1
N :

U1 + e1 U1 U1 + e2 U1 U1

U2 + e2 U2 + e1 U2 + e3 U2 U2

...
...

...
...

...
UN−M−1 + eN−M−1 UN−M−1 + eN−M−2 UN−M−1 + eN−M UN−M−1 UN−M−1

UN−M + eN−M UN−M + eN−M−1 UN−M UN−M UN−M

UN−M+1 UN−M+1 + eN−M UN−M+1 UN−M+1 UN−M+1

UN−M+2 UN−M+2 UN−M+2 UN−M+2 UN−M+2

...
...

...
...

...
UM−1 UM−1 UM−1 UM−1 UM−1

UM UM UM + e1 UM UM

TABLE II
QUERIES WHEN USER WANTSW1 AND N −M ≤ M .

A1
1 : A1

2 : . . . A1
M : A1

M+1 : . . . A1
N :

X1,1 + w1
1,1 X2,1 XM,1 + w2

1,M LCM+1(X[1:M ],1) LCN(X[1:M ],1)

X1,2 + w2
1,1 X2,2 + w1

1,2 XM,2 + w3
1,M LCM+1(X[1:M ],2) LCN(X[1:M ],2)

...
...

...
...

...
X1,N−M−1 + wN−M−1

1,1 X2,N−M−1 + wN−M−2
1,2 XM,N−M−1 + wN−M

1,M LCM+1(X[1:M ],N−M−1) LCN(X[1:M ],N−M−1)

X1,N−M + wN−M
1,1 X2,N−M + wN−M−1

1,2 XM,N−M LCM+1(X[1:M ],N−M ) LCN (X[1:M ],N−M )

X1,N−M+1 X2,N−M+1 + wN−M
1,2 XM,N−M+1 LCM+1(X[1:M ],N−M+1) LCN (X[1:M ],N−M+1)

X1,N−M+2 X2,N−M+2 XM,N−M+2 LCM+1(X[1:M ],N−M+2) LCN (X[1:M ],N−M+2)
...

...
...

...
...

X1,M−1 X2,M−1 XM,M−1 LCM+1(X[1:M ],M−1) LCN (X[1:M ],M−1)
X1,M X2,M XM,M + w1

1,M LCM+1(X[1:M ],M ) LCN(X[1:M ],M )

TABLE III
ANSWERS RECEIVED BY USER WHENW1 IS DESIRED ANDN −M ≤ M .

Q1
1 : Q1

2 : . . . Q1
M : Q1

M+1 ∼ Q1
2M : Q1

2M+1 ∼ Q1
3M : . . . Q1

αM+1 ∼ Q1
(α+1)M : Q1

(α+1)M+1 ∼ Q1
N :

U1 + e1 U1 U1 + e2 U1 + eβ+1 U1 + eM+β+1 U1 + e(α−1)M+β+1 U1

U2 + e2 U2 + e1 U2 + e3 U2 + eβ+2 U2 + eM+β+2 U2 + e(α−1)M+β+2 U2

...
...

...
...

...
...

...
Uβ−1 + eβ−1 Uβ−1 + eβ−2 Uβ−1 + eβ Uβ−1 + e2β−1 Uβ−1 + eM+2β−1 Uβ−1 + e(α−1)M+2β−1 Uβ−1

Uβ + eβ Uβ + eβ−1 Uβ Uβ + e2β Uβ + eM+2β Uβ + e(α−1)M+2β Uβ

Uβ+1 Uβ+1 + eβ Uβ+1 Uβ+1 + e2β+1 Uβ+1 + eM+2β+1 Uβ+1 + e(α−1)M+2β+1 Uβ+1

Uβ+2 Uβ+2 Uβ+2 Uβ+2 + e2β+2 Uβ+2 + eM+2β+2 Uβ+2 + e(α−1)M+2β+2 Uβ+2

...
...

...
...

...
...

...
UM−1 UM−1 UM−1 UM−1 + eβ+M−1 UM−1 + e2M+β−1 UM−1 + eαM+β−1 UM−1

UM UM UM + e1 UM + eβ+M UM + e2M+β UM + eαM+β UM

TABLE IV
QUERIES WHEN USER WANTSW1 AND N −M > M .

1 − M
N

, where M
N

is the rate of the MDS storage code. To
achieve this capacity or any positive rate for SPIR, the storage
nodes need to share common randomness that is unavailable
to the user and independent of the database, with amount at
least M

N−M
times the file size.
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