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Abstract—Maulti-agent systems (MAS) communicate over a
wireless network to coordinate their actions and to report
their mission status. Connectivity and system-level performance
can be improved by channel gain prediction. We present a
distributed Gaussian process regression (GPR) framework for
channel prediction in terms of the received power in MAS. The
framework combines a Bayesian committee machine with an
average consensus scheme, thus distributing not only the memory,
but also computational and communication loads. Through
Monte Carlo simulations, we demonstrate the performance of
the proposed GPR.

I. INTRODUCTION

While on mission, Multi-agent systems (MAS) employ the
wireless channel to coordinate among themselves and to report
back to the command center (CC). By its nature, MAS have
potential to aid humans in situations such as natural and urban
disasters, bomb disposal, surveillance, remote surgery, etc.,
where steady wireless connectivity with the command center
is crucial for communication and control. Hence, the ability
to predict the channel gain in terms of received power can
improve system performance. Typical application scenarios in
MAS include formation control [1] and connectivity mainte-
nance [2]. Channel prediction is also applicable to resource
allocation in anticipatory networks [3], [4], routing in ad-hoc
networks [5], interference management in HetNets [6] and
spectrum sensing in cognitive radio [7]. The received power
in a wireless channel is mainly affected by deterministic path-
loss, random shadowing and random small-scale fading [8].
Since the channel gain is location-dependent (i.e., dependent
on the location of the the transmitters (TX), receivers (RX),
and environment), standard regression tools can be used for
channel prediction, provided a training database of channel
measurements is available.

Gaussian process regression (GPR) [9] has been adopted
as a tool for channel prediction [10], even in the presence
of location uncertainty [11], [12]. GPR can harness both the
deterministic components of the channel (path-loss), as well as
the spatially correlated random components (shadowing) [13],
using well-established correlation models [14]. A drawback of
GPR is a computing complexity that is cubic in the number of
measurements in the training database. Furthermore, channel
prediction is centralized, meaning that full knowledge of the
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Fig. 1. Example realization of the received power (in dBm) with respect to
a transmitter located in the origin.

training database is required to perform a channel prediction
at an unvisited test location. To remedy the first deficiency,
sparse GPR has been proposed to limit computing complexity
with increasing size of the training dataset [15]. To address
the second deficiency, a different approach was taken in [16],
[17], where prediction is distributed among many computation
units, all part of a (wired) computation network. With the
help of a specialized covariance function, [18] and [19] are
able to perform distributed GPR based on a consensus scheme
and a sparse GPR approximation, respectively, allowing their
application in a MAS setting. In [20], a distributed GPR is
proposed for the problem of area coverage, where each robot’s
predictions are centrally fused to obtain a global prediction.
In this paper, we propose a distributed GPR framework to:
(i) perform distributed channel prediction when there is no
pre-existing communication infrastructure and (ii) reduce the
computational complexity of GPR. We build on the work of
[16], [17] to develop a distributed GPR, suitable for wireless
communication between training databases, as is the case
in MAS. The proposed GPR is capable of handling large
training databases, by distributing the computations among the
independent mobile agents. In particular, each agent performs



predictions independently on its own local database. The
individual predictions are then combined using distributed
consensus to obtain a global prediction. In doing so, we
ensure that computation complexity at every agent is kept
low. Furthermore, the proposed method is neither restricted
to any type of covariance function, nor the structure of the
MAS network itself. Moreover, it operates on the full dataset
in contrast to sparse GPR [16]. As part of our analysis, we
assess the impact of how the training database is distributed
and how location uncertainty impacts predictions.

II. SYSTEM MODEL

A. Network and Channel Model

Consider a geographical area A C R? with a single
transmitter (TX) and N mobile agents (RXs) located at x; and
X;, respectively, where ¢ = 1,2,..., N. The mobile agents
are modeled as a connected undirected graph G = (V,€),
with vertices V = {1,2,..., N} representing N agents and
edges £ C V x V representing the links among the agents. We
assume that the number of agents IV in the network is known to
every agent. Let A be the adjacency matrix of graph G. Agent
1 at location x; can communicate with agent j at location x;
only if [A];; = 1.

Let Prx denote the power transmitted through a wireless
propagation channel. The channel gain can be decomposed
into path-loss, shadowing and small-scale fading [8]. Assum-
ing that the small-scale fading is averaged out by the RX, the
received power in dBm can be expressed as

Prx(xi) = Prx + Go — 107 logyq [|x: — x| + ¥ (x;), (1)

where Gy is a constant that captures antenna and other
propagation gains, 7 is the path-loss exponent and ||x; — x;||
is the Euclidean distance between TX and RX positions, and
1¥(x;) is the spatially correlated shadow fading component
(in dB), which is Gaussian distributed with mean zero and
variance 012/). The channel model (1) has been empirically
confirmed by [13], [21]-[23], allowing to model the variations
of received signal power in a wireless channel. Due to the
imperfect RX characteristics, each agent is assumed to obtain
a noisy version of the received power y; = Prx(x;) + n,
where n; ~ N(0,02). An example of a realization of the
received power with respect to a TX located at the origin is
shown in Fig. 1.

B. Training Database Model

During the measurement phase, each agent 7 visits a set
of locations, aggregated in a matrix X; and collects the
corresponding RX powers, aggregated in a vector y;. The
agent thus builds up a training database D; = {X;,y;}, as
visualized in Fig. 2. The number of visited locations will be
denoted by | D;|. We further introduce y = [y{,y1,...,y &%,
X = {Xi,Xao,...,Xn}, and the complete database D =
Uilil D;, which is not available to any agent. We assume no

overlap between the local databases, so that |D| = Zf\il |D;).

Fig. 2. Each agent 4 has a local database D;, containing |D;| entries.

III. PROBLEM STATEMENT

Our aim is to perform:

1) Distributed Learning: Estimate the channel parameters
(say 0, to be defined later) from D, through distributed
processing.

2) Distributed Prediction: Determine the predictive distri-
bution p(Prx(x.) | D,6,x,) of the received power
at an unvisited test location x, through distributed
processing.

Before detailing the distributed approaches to learning and

prediction, we first review standard centralized learning and
prediction.

IV. CENTRALIZED GAUSSIAN PROCESS REGRESSION

In this section, we present GPR for capturing the spatial
correlation of the received power and for predicting the chan-
nel at a test location. The received power Prx (x;) at location
X, represents a continuous spatial process and is modeled as
a Gaussian process:

Prx(x;) ~ Q’P(,u(xi),C’(xi,xj)), 2)

where the mean function p(x;) and the covariance function
between location x; and location x; denoted C'(x;,x;) are
defined as

p(xs) = E[Prx(xi)]

3)
= Prx + Go — 10vlog [|1%x: — xi]|,
l[xi — ;[
C(Xi,Xj):O'ieXp<—d(3j ) (4)

where d. is the correlation distance of the shadowing. By
setting o« = 1, we will obtain the Gudmundson model [14],
which will be used in this paper to model the correlation
properties of shadowing.

A. Learning

The objective of learning is to estimate the hyper-parameters
of the GPR model from the channel database D = {X,y}.
From (3) and (4), the hyper-parameters of our GPR model are
given by

0= [y,Go,04,de, 0] " 3)



The vector 6 can be learned by maximizing the log-likelihood
with respect to 6, which is given by

0 = argmaxlog p(y | X, 6). (6)
0

B. Prediction

Once the hyper-parameter vector 6 is estimated, the predic-
tive probability density function (pdf) of the received power
at a test location x, is obtained by conditioning Prx(x) on
the dataset D = {X,y}. It is denoted p(Prx (x.) | D,0,x.)
and follows a Gaussian distribution with mean Prx(x.) and
variance o3y (x.) given by [9]

Prx(x:) = p(x.) + kK (y — u(X)), (7)
0ax (%) = ku — KT K 'k, ®)

where K = C(x;,x;)+02, so that K is the N x N covariance
matrix of y at X; k, = C(x;,x,) for x; € X is the
N x 1 covariance vector between measurements y and the
measurement y, at X.; k.. = C(X.,X.) + 02 is the prior
variance; 1(X) is the N x 1 mean vector at training locations
X where the ¢-th entry is computed with the help of (3), i.e.,
w(X) = u(x;) for x; € X, and u(x,) is the prior mean at
test location x,. Note, the prior mean and prior variance can
be obtained in the absence of the database D.

V. DISTRIBUTED GAUSSIAN PROCESS REGRESSION

In centralized GPR, the CC performs the prediction com-
putations (i.e., mean (7) and variance (8)) by collecting the
measurements from all the agents. In this section, we present
a distributed GPR where each agent performs the prediction
computations independently in a distributed way. For this,
we assume independence among the agent databases D;,
similar to [16]. Each agent determines a local pdf conditioned
on the local database, and subsequently combines the local
predictions using a Bayesian Committe Machine (BCM) from
[17] to obtain the overall predictive pdf p(Prx(x+) | D, 0, x.)
for a test location x,. We use the BCM to develop a distributed
GPR in MAS by adapting a distributed average consensus
algorithm [24]. Our focus will be on prediction, but for the
sake of completeness, we briefly discuss learning as well.

A. Learning

Under the independence assumption among individual
databases D;, the log-likelihood is approximated as

N
log p(y|X,0) ~ Y log p(y:|Xi,0), )

i=1
so that maximizing with respect to € can be written in the
following form:

N
R ) v
subject to 6; —z=0,i€{l,...,N}, 1D

where z is a common global variable. Problems of this form
can be solved using standard distributed approaches, such as
ADMM [25].

B. Prediction

Once an estimate of 6 is obtained, we aim to determine
p(PRX(x*) | D,H,x*) at an unvisited test location x,. For
distributed prediction, each mobile agent relies on its own
database. Hence, we perform the following GP approximation,
similar to [17]

p(Di | D1, Da, ..., Di—1,Dit1, ..., D, Prx(x4), 6, %)

~p(D; | Prx(x:),0,%,). (12)
According to [17], (12) provides a good approximation when
the correlation between databases is small. This condition
can be met if measurements from one database are spatially
separated from the other. In other words, as pointed out in [17],

by partitioning the database D and assigning the database of
each cluster D; to a separate agent . We then have

p(Prx(x:) | D,0,x,) o< p(Pax(x.) | 0,x.)
N

< [[p(Di | Prx(x.),0,x.). (13)
=1

Applying Bayes’ rule, we obtain
[T, p(Prx () | Di, 0, x.)

P(Prx(x.) | D,6,%.) o (p(Prx (x4)]6,x ))N_l

)

(14)
where p(Prx(x.)|0,%.) is the a priori predictive pdf at test
location x, with mean p(x,) and variance k... Since all
distributions involved in (14) are Gaussian, and the product
of Gaussians is also Gaussian, we can write

NPRX(X*) (/JC (X*)’ 03 (X*))

P <) | D,0,x, , (15
p( RX(X ) | X ) X NPRX(x*) (Mp(x*),ag) ( )
with N B
Dz ‘71%2( i(%) Prx,i(x)
,LLC(X*) = N ’ ) ) (16)
> i1 URX,i(X*)
N -1
02(x,) = |:ZO'R>2<J-(X*):| , (17)
i=1
and
fp (%) = pa(x), (18)
k**
o= (19)

where Prx ;(x) and aﬁ%yi(x*) are the predictions of agent i,
based on D;, computed similarly to (7)—(8), respectively. Note
that the prior mean x(x.) and variance k.. are known to each
agent. Using the results for the ratio of two Gaussian distri-
butions, we find that p(Prx(x.) | D, 6,x.) is proportional to
a Gaussian distribution with mean

= Tpost (%) (He(x.) /02 (%) = pp (%) [07)
(20)

Fipost (%)

and variance
1

1/02(x.) + 1/02(x.) 1)

Jgost (X* ) =



From the above derivations, it is clear that the agents should
agree on fic(x.) and 02(x,) in order to determine fipost (X )
and 07 (x.). Both fi¢(x.) and 02(x,) can be computed in a
distributed manner through an average consensus scheme. To
this end, we introduce state variables fi(l) and )\l(-l) at agent 1,

where [ represents the consensus iteration. We set

fi(o) = NU;&J(X*) Prx,i(x) (22)
and
MY = Nog2 (). (23)
Letting Cgl) = | i(l),)\gl)]T, agents then apply a consensus
update rule [24]. For instance
! 1 1 !
¢V =¢P a0 Y (€ - ¢!, 24)

JEN;

where 7 is a small constant', and A is the neighborhood
set of agent 4, as determined by the adjacency matrix A. As
| — +o0, it can be verified that
N
. B _
eV =3 opd (%) Prxa(x.) (25)
i=1

and

N
M) 3" opd (k) = 1/0?(x.),

=1

(26)

from which s (x.) and o2(x,) are easily retrieved. By sub-
stituting pc(x,) and o2(x.) in (20) and (21), the global pre-
dictive pdf (15) has mean 05t (X.) and variance o2 (X.),
which were computed in a distributed way. We note that in
case predictions are made at multiple test locations x, ;, the
corresponding consensus algorithms can run in parallel.

C. Computation, Storage, and Communication Demands

The main benefit of distributed GPR over centralized GPR
lies in the reduction of complexity and storage requirements,
at a cost in terms of communication overhead and prediction
performance. The storage requirement for distributed GPR
relates to: (i) the size of the local database D;, where generally
|D;| < |D| and (ii) the data structures for learning and
prediction. These latter storage requirements are dominated
by storing of the covariance matrices (e.g., K in (7)) of the
training databases, and thus scale as O(|D;|?) at agent i.
The computational requirements are similarly dominated by
the covariance matrices, which must be inverted during both
the learning and prediction stages. This complexity scales as
O(|D;|?) at agent i. Clearly, the quadratic and cubic scaling
of storage and complexity highlight the benefit of distributed
GPR over centralized GPR.

In terms of communication overhead, both learning and
prediction require iterative methods, whereby agents broadcast
and update internal state variables. The number of broadcasts
per agent depends on the tolerable disagreement and it is in
general hard to quantify, as it depends on the connectivity of
the network graph.

I A sufficient condition to reach consensus is n < 1/A, where A is the
maximum node degree of graph G [24].
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Fig. 3. Mean of GPR prediction (in dBm) for V = 1000 (i.e., fully distributed
with 1 measurement per agent).

VI. NUMERICAL RESULTS

We present numerical results to illustrate the performance
of predicting the received power Prx of centralized GPR and
distributed GPR.

A. Simulation Setup

We consider a MAS scenario in a square area A of
200 m x 200 m. The transmitting agent (TX) is placed at loca-
tion x; = [0,0]™ and transmits with a power of 33 dBm. The
received power is generated according to a Gaussian field (2),
with o = 1 in (4), path-loss exponent 3.5, 8 dB of shadowing
standard deviation, a shadowing correlation distance of 50 m,
and o, = 0.01. The N mobile agents are randomly and
uniformly deployed. Communication links between pairs of
agents are established independent and identically distributed
(i.i.d.) with probability p = 0.1. We perform prediction in
a fine grid of N, = 2061 locations (corresponding to a
resolution of 4 meters). For training measurements, we will fix
the total size of database to |D| = 1000, and let |D;| = |D|/N,
whereby we vary N. Hence, N = 1 corresponds to a central-
ized GPR, while N = 1000 corresponds to one measurement
per agent.

We consider two distinct ways of assigning measurements
to agents:

e Random assignment: measurements are randomly dis-
tributed in A and each measurement is assigned randomly
to one of the N agents.

o Clustered assignment: measurements are first clustered
geographically into N clusters of roughly equal size.
Each cluster is then assigned to one of the N agents.

To assess the prediction quality using the centralized GPR
and the distributed GPR, we consider the mean squared error
(MSE) between the ground truth and the predicted mean. It is
defined as

2

_ LN, 2
MSE = F Hpost (X*J) - PRX(X*J) ’
P i

27

-
Il



50: T T T T T T T

40 4_‘ ...... min []

MSE

\ \ \ \ . . !
5 10 15 20 25 30 35 40

Number of iterations [

Fig. 4. Mean MSE for networks with different connectivity versus number
of consensus iterations [ for 20 agents with each having 50 measurements.
The dashed lines indicate the minimum and maximum MSE, respectively.

where ijgst

iteration .

(-) is defined in (20) evaluated at consensus

B. Results and Discussion

Qualitative Comparison: To illustrate the reconstruction
quality, we present the predicted mean of the received power
Prx for N = 1000 (i.e., fully distributed) in Fig. 3. We note
that the result for N = 1 (i.e., fully centralized) matches
closely to Fig. 1 and it is therefore omitted. If we compare the
mean predicted received power with the true field of Fig. 1,
we can notice that the quality of Fig. 3 is comparatively lower
than Fig. 1. The main reason for this is that in the distributed
GPR case, each agent has just one measurement, and hence
(i) agents (|D;| = 1) cannot exploit the spatial correlation of
the large-scale fading; (ii) predictions rely largely on the path-
loss only.

Convergence Behavior: We now analyze the impact of the
number of consensus iterations [ on the MSE for the case of
N = 20 and |D;| = 50. In Fig. 4, the mean MSE over the
N agents together with the minimum and maximum MSE at
each iteration [ is plot for random and clustered assignment.
We observe that the prediction error decreases with the number
of iterations [. In addition, for the random assignment, each
agent is able to perform a good prediction of the power at
the test location x,, while for the clustered assignment, only
one agent in the vicinity of x, will be able to make a good
prediction. This leads to a larger initial disagreement for the
clustered case, and thus a slower convergence for the clustered
assignment.

Quantitative Comparison: We assess the prediction quality
with respect to the number of measurements per agent |D;|.
In Fig. 5, the mean MSE is plotted for different number
of measurements per agent, averaged over 100 realizations
of the channel field. Note that as the number of agents N
increases, the cardinality of the respective measurement set
|D;| decreases, so we transit from the centralized prediction
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Fig. 5. MSE versus average size of the database per agent, for a total database
size of |D| = 1000.

to the completely distributed prediction. First of all, it can
be observed that the prediction error in terms of the MSE
reduces as the number of measurements at each agent |D;]|
increases. This is because the agents are able to exploit spatial
correlation more effectively when there are more entries in the
local databases D;. Secondly, when the databases correspond
to geographically clustered locations, the MSE is significantly
lower, compared to a completely random assignment of mea-
surements to agents. This is because in the random assignment,
there is less opportunity to exploit spatial correlation, i.e., the
location of measurements are far apart. Thirdly, reducing the
database size from 1000 to 100 leads to a 60 % increase
in MSE for the random assignment (resp. 10 % for the
clustered assignment), while with fully distributed approach,
both assignments lead to a 400 % increase in MSE. This
highlight the fact that with distributed approach comes a
performance penalty. Finally, we remark that for a simplified
path-loss only model, we obtained a mean MSE of 58.34,
which is significantly higher than the MSE of distributed
GPR with any database size using model (1), highlighting the
fact that considering shadowing correlation is important when
predicting wireless channels.

Prediction Under Location Uncertainty: In practical MAS
applications, the agents’ locations may not have knowledge
of their true locations. We consider the case where, for the
purpose of prediction, measurements of agent ¢ are taken
at locations X,;, but the agent assumes they are taken at
XZ- = X; + W;, where each entry in W; is i.i.d. zero-mean
Gaussian with a standard deviation drawn from an exponential
distribution with mean 1/A. We consider uncertain training
with A = 6 m for a fraction of the agents and A = 0 m for the
remaining agents. Test locations have no location uncertainty.
For N = 5, ie, |D;] = 200 of Fig. 5, the impact of
localization errors on prediction quality is presented in Table I.
It can be seen how the MSE value increases with the increase
of number of agents with the location uncertainty. Moreover,



the random assignment is less sensitive to location errors. In
either case, since location errors are generally less than the
shadowing correlation distance, the MSE impact is relatively
limited.

TABLE I
IMPACT OF LOCATION UNCERTAINTY

Npmber of agents 0 1 5 3 4 5
with uncertainty

MSE for random | 23 | 54 | g03 | 882 | 955 | 10.38
assignment

MSE for clustered | g\ | cag | 839 | 991 | 1135 | 12.84
aSSlgnment

VII. CONCLUSION AND OUTLOOK

In this paper, we presented a distributed Gaussian process
regression framework for channel prediction in MAS. The pro-
posed method reduces computation and memory requirements
compared to a centralized GPR, thus allowing to increase the
size of the training dataset. For prediction, this is achieved by
first performing local prediction on each mobile agent and then
combining the local information using a consensus scheme to
obtain a global prediction. In terms of prediction quality, the
path-loss and shadowing model employed in the distributed
GPR provide superior performance over a simple path-loss
only model. Numerical results show that the performance of
the proposed method in terms of the mean squared error
depends on (i) the number of measurements per agent, (ii)
the geographic spread of measurements for each agent. When
measurements assigned to an agent are clustered geograph-
ically, this leads to better performance, though at a cost of
slower convergence. Our future work aims to investigate the
size of the agent database that provides a good trade-off
between the prediction quality and computation complexity
versus communication overhead.
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