
Towards Adaptive State Consistency
in Distributed SDN Control Plane

Ermin Sakic*, Fragkiskos Sardis**, Jochen Guck*** and Wolfgang Kellerer***
* {Technical University of Munich, Siemens AG}, Munich, Germany, ermin.sakic@{tum.de, siemens.com}

** Centre for Telecommunications Research, King’s College London, London, UK, fragkiskos.sardis@kcl.ac.uk
*** Technical University of Munich, Munich, Germany, {guck, wolfgang.kellerer}@tum.de

Abstract—State synchronisation in clustered Software Defined
Networking controller deployments ensures that all instances
of the controller have the same state information in order to
provide redundancy. Current implementations of controllers use
a strong consistency model, where configuration changes must
be synchronised across a number of instances before they are
applied on the network infrastructure. For large deployments,
this blocking process increases the delay of state synchronisation
across cluster members and consequently has a detrimental effect
on network operations that require rapid response, such as fast
failover and Quality of Service applications. In this paper, we
introduce an adaptive consistency model for SDN Controllers
that employs concepts of eventual consistency models along with
a novel ’cost-based’ approach where strict synchronisation is
employed for critical operations that affect a large portion of
the network resources while less critical changes are periodically
propagated across cluster nodes. We use simulation to evaluate
our model and demonstrate the potential gains in performance.

Keywords - SDN, distributed control plane, scalability,
QoS, adaptive consistency, RAFT, OpenDaylight, ONOS

I. INTRODUCTION

Software Defined Networking (SDN) is one of the main
technologies in 5G networks which enables the logically
centralised control of network infrastructures by abstracting the
underlying topology and exposing high-level Application Pro-
gramming Interfaces (APIs) for controlling packet forwarding.
The centralized control paradigm however introduces a single
point of failure and scalability challenges in large infrastruc-
tures such as those found in network service providers and
data centres. To address the scalability and resilience issues,
controllers can be run in distributed mode, where individual
instances participate in load-balancing of network events and
provide redundancy in case of controller failures.

For large networks, the scalability and resilience of the
SDN controller becomes important as it poses a single point
of failure for the entire network. A single node running the
controller may not scale well for hundreds of switches and
thousands of concurrent OpenFlow events. Similarly, a single
node cannot provide high reliability when it comes to hardware
failures. To address this problem, SDN controllers are clustered
over multiple nodes, where each instance of the controller is
responsible for a number of switches while also providing
redundant copies of the other instances’ state. When a node
fails, another controller instance takes over the failed node’s
tasks and resumes operation with no downtime.

In distributed computing, clustering refers to the loose or
tight coupling of nodes for purpose of reliability and load

balancing. Such systems can be scaled horizontally by adding
nodes to the cluster, however, as more nodes are added, the
overhead in state synchronisation between nodes increases.
There exist two main models for synchronising state across
a cluster. The strong consistency model [1] requires that the
distributed state across cluster members is replicated and,
following any single state-update at state leader, propagated
using mutual consensus to replicas. In contrast, the eventual
consistency model [2] omits the consensus procedure and
guarantees that at least one delivery invariant holds. However,
the advantage of non-blocking operations comes at the expense
of sacrificing the total ordering of state updates and sometimes
the system correctness. In eventually consistent systems, the
convergence to a single state is determined by two factors:
anti-entropy and reconciliation. Anti-entropy ensures that data
is synchronised in a timely manner and that the system will not
enter a state of complete de-synchronisation between instances
[3]. Reconciliation refers to the mechanisms that determine
the final system state by resolving conflicting updates from
different instances. Typically such conflicts are resolved by
the last-writer-wins approach, where the most recent change
of state is considered final [4].

In this paper, we introduce the concept of runtime adap-
tation of consistency levels in state synchronisation for an
SDN Distributed Control Plane (DCP). A consistency level
is assigned to every resource state accessed by an SDN
application (e.g. routing, topology manager). The consistency
level is adapted based on the experienced effort of state
convergence after a non-synchronisation period has expired;
and the inefficiencies resulting from operations with stale
state as inputs. We define the application inefficiency as a
qualitative distance between the optimal and computed result.
The proposed method enables the design of scalable SDN
DCPs, since the majority of state updates are executed as local
non-blocking, eventually consistent operations. The methodol-
ogy of changing the level of controller consistency on-the-fly
allows for maintaining a scalable system by sacrificing some
controllable amount of result optimality - and thus the blocking
overhead of cluster-wide synchronisation.

Inspired by the concept of demarcation protocol reserva-
tions [5], we introduce bounded resource credit sets for safe
updates of a shared resource state. By means of operating
on a limited set of assigned reservation tokens, manipulation
of resources does not result in immediate propagation of a
state update, but allows for maintaining the resource bounds
invariant and hence correctness property. Contrary to the
approach where following a detected conflict consistency levels

ar
X

iv
:1

90
2.

02
57

3v
1

 [
cs

.N
I]

 7
 F

eb
 2

01
9

are adapted, the bounded resource credits approach avoids oc-
curence of conflicts and initiates cluster-wide synchronisation
only when the controller has depleted its assigned reservation
tokens.

The rest of the paper is structured as follows: Section II
describes the problem of state synchronisation in distributed
SDN controller deployments, Section III investigates the state
of art related to state synchronisation in distributed systems and
focuses on existing SDN controller implementations, Section
IV presents the proposed solution for adaptive state consis-
tency, Section V presents and discusses the performance of
the proposed method using simulation and finally, Section VI
concludes this paper.

II. PROBLEM DEFINITION

In distributed deployments, individual controller instances
hold application state necessary to fulfil the requirements of
controller applications (e.g. path finding, network firewall,
policy handlers). Assuming a partitioned DCP design, we
distinguish between global and local controller decisions.
Global decisions necessitate a response to events where an
action modifies the configuration of a switch that is outside the
controller’s administrative domain. Interaction with other con-
troller instances in the DCP is necessary, resulting in latency
overhead in controller-to-controller interactions. In state of the
art scalable SDN DCPs [6], [7], a network is typically parti-
tioned into multiple administrative sub-domains.To minimize
controller-to-controller synchronisation efforts in the DCP, our
model supports transformation of global controller decisions
into local ones, by means of assigning all controllers as masters
of all switches and granular per-controller planning of switch
notification subscriptions for scalability. Hence in our case, a
global route configuration that necessitates message passing
across the whole DCP in current controllers [6], [7], can be
applied by a single controller to all switches on path, since the
administrative domain of the controller can stretch across the
whole network. The related OpenFlow-based controller role
configuration is explained in more detail in Subsection IV-A.

Northbound Client

Leader

Replica-1

Replica-2

Request

Prepare

Promise

Accept-Request

Accept-Response

Request-Response

Fig. 1. Paxos workflow where leader requires confirmation only from cluster
majority to progress the state. Notice how Replica-2 delays its response.

Strong consistency systems always implement some con-
sensus algorithm to enable conflict-free distribution of state
updates. Paxos [8], a popular decentralized consensus algo-
rithm, proposes a four-delay state update method encompass-
ing Prepare-Request, Promise, Accept-Request and Accept-
Response delays, as depicted in Figure 1. The Prepare phase,
and hence two propagation delays, may be skipped if the

Proposer instance knows that it is the only one to sug-
gest a value. In large-scale SDN deployments, the amount
of incoming controller requests can reach up to 11 million
requests per second [9]. In worst case, every request may
necessitate a consensus run per state change, thus preventing
fast network reconfigurations and introducing a bottleneck
on control plane, and ultimately data-plane. Although slight
variations of Paxos, including the recent RAFT [10] consensus
algorithm, were proposed in literature [10]–[12], the general
concept and signaling overhead of the algorithm is unchanged.

Recently published industrial SDN use-cases introduce
new requirements on global QoS-aware route establishment
across Wide Area Networks (WAN) [13], [14] and locally
administered networks [15]. Petropoulos et al. [13] describe
the requirements of critical infrastructure operators for on-
demand network service establishment in a Software Defined-
WAN and for the interconnection of a large number of IoT
(Internet of Things) devices over network service provider’s
infrastructure. Their wind-power use-case assumes QoS guar-
antees for individual IoT-device-to-Cloud application flows.
Coupled with the ever-growing number of IoT devices and
need for dynamic resource (de-)allocation for globally com-
puted QoS-enabling paths, current SDN controller solutions
will not be able to provide the necessary degree of scalability
in global configuration. Some 5G use-cases [16] introduce
the requirements of connection setup times of <15-30ms
for low-latency services in converged backbone for arbitrary
numbers of end-hosts. Initial performance measurements of an
SDN- and OpenDaylight-enabled DCP in the test network of
Telecom Italia [14] show that the requirement of low setup
time cannot be met in most scenarios. The identified main
cause of delay in end-to-end path establishment lies in the
controller-to-controller interactions, required in order to reach
consensus for distributed path establishment. Our approach
can minimize this response handling time in critical path by
means of adaptively lowering the frequency of controller-to-
controller interactions, hence enabling a larger throughput of
new connection admissions than possible with current strong
consistent DCP models.

Alternative approaches to the strong consistency model
assume an eventual consistent state synchronisation where
changes made to a controller instance get propagated over
time across the cluster, thus solving the issue of blocking
during synchronisation period. This allows the active instance
to apply changes immediately and synchronise its state over
time. However, it may also lead to a scenario where, upon a
node’s failure, the current state of a sub-domain is lost. This
can have a detrimental effect on the entire network as the
consistency of initial state determines the quality of output
delivered by the controller’s decisions. For example, a path
computation application which identifies a globally optimal
path on the network with regards to currently utilized resources
and a given set of constraints (e.g. on delay, bandwidth etc.),
may produce a suboptimal result due to stale information
on the state of reservations. We consider the amount of
observed result suboptimality as an input for our autonomous
consistency level adaptation algorithm. This online algorithm
outputs the consistency level required in order to provide an
exactly sufficient amount of experienced result-correctness.

Summarized, this paper investigates the relation between

overhead minimization in SDN DCP and associated system
correctness. In particular, we investigate the trade-off between
lowered response-time delays and inefficiencies resulting from
operating with stale data. Can strict requirements on low setup
times be supported for different topologies and traffic patterns,
while ensuring a sufficient degree of system correctness at
all times? We conclude that a strong consistent DCP intro-
duces critical overhead in controller-to-controller synchroni-
sation [14], while an eventually consistent DCP provides no
correctness guarantees whatsoever [1]. Hence we introduce an
alternative adaptive consistency model that provides instanta-
neous response for majority of requests, while bounding the
observed correctness of result to a tunable threshold.

III. RELATED WORK

In this section we investigate the state-of-art in distributed
systems state synchronisation. Special focus is placed on
clustering mechanisms in existing SDN controller implemen-
tations and their advantages and disadvantages in large-scale
deployments.

Botelho et al. [17] investigate the performance of a
strongly-consistent replicated data store implementation BFT-
SMaRT [18] in Floodlight. While the results in a four-node
cluster show promising transaction throughput for data store
requests made for simple host-port mappings, significantly
lowered data-store performance was measured for more com-
plex load balancing and device management operations. The
enforcement delays and blocking times in data-plane were not
considered in this study. Furthermore, the evaluated network
consisted of a single OpenFlow switch, deployed in an out-of-
band control channel. A more realistic in-band control network
would cause higher variance in request inter-arrival times,
higher data-plane configuration latencies and possibly data-
plane bottlenecks in case all requests were destined for a
centralized cluster leader.

In terms of SDN controller solutions, HyperFlow [19]
selectively synchronises the network state among controller
replicas via an eventually consistent publish/subscribe system
based on WheelFS [20]. OpenDaylight (ODL) [6] and DISCO
[21] rely on strong synchronisation between all controller
instances, where any changes made to a particular instance
have to be synchronised with a number of other instances
in the cluster before they can be applied to the network. In
ODL Clustering, a single controller instance is the leader of
any state shard at any point in time and only the leader is
allowed to initialize changes to its state. Following a state
modification, the leader propagates the update to follower-
controller replicas that also hold the shard. The leader, together
with its followers make up a strong consistency cluster. ODL
Clustering implements RAFT [10], a consensus algorithm
which extends Paxos [8] with membership change and leader
election mechanisms, but is equivalent in terms of fault-
tolerance and performance. Inside the RAFT cluster of size
N , each data store change is initiated by the leader, and
propagated to at least N/2 followers. The followers must
acknowledge the state update before the leader can continue
processing further state changes. This blocking period may
take an arbitrary amount of time depending on the placement
of leader and followers, propagation delays in the network,
processing delays and size of quorum. The requirement that

at least N/2 + 1 cluster participants reflect the leaders state
update is a minimum requirement for overlapping reads and
writes in a reliable cluster that tolerates bN/2c failures [8].
More stringent deployments may require acknowledgement
by a higher number of followers, hence causing additional
overhead.

ONOS [7] and ONIX [22] expose an alternative and more
recent controller design that tries to solve the issue of scala-
bility by providing the APIs for selection of either strong or
eventual consistency mode for its distributed state primitives.
Thus, applications which can operate correctly without strictly
consistent state updates synchronise in eventually consistent
manner. However, the active state consistency model does not
change at run-time and must be hard-coded in the SDN appli-
cation without knowing the exact constraints of the network
it will be deployed in. The applications designer is unaware
if the application might run correctly even if its state was
eventually synchronised which is the case when the probability
of a state-conflict is very small. This may lead to overly-
pessimistic estimations of an application’s requirements in
the deployed domain. For example, routing applications may
tolerate suboptimality if maximized network utilization is not
a concern.

Levin et al. [23], show that distributed network functions,
such as load-balancers, can work around eventual consistency
and still deliver performance sufficient for production deploy-
ments. Yu et al. [24] introduce a continuous consistency model
for geo-replicated services, where application designers can
bound the maximum distance between the local data state and
final consistent state. In their model, distance in actual and
stale state view is parametrized by the numerical and order
error and state staleness. In context of SDN, Panda et al. [1]
argue that linearisability is likely an unnecessary property for
ensuring correct application of most network policies, as the
investigated policies often have simple correctness conditions.
Furthermore, the authors state that determining a consistency
model that is necessary and sufficient for network policies is
an important research problem.

IV. PROPOSED SOLUTION

In the following section, we introduce our adaptive consis-
tency model for SDN controllers, where state synchronization
occurs according to performance and consistency constraints
set by the application at runtime. We make use of triggers
that allow for dynamic switching of consistency level on a
per-state-fragment basis, based on a defined local threshold.
This threshold could, for example, be the allowed observed
suboptimality of path reservations, based on consistency of
the resource reservation state of accepted paths. In this case,
the suboptimality of a result has a source in the fact that
concurrently executed path reservations were not propagated to
the instance that established the suboptimal path. However, the
trade-offs of suboptimality and scalability might be tolerable
in systems where request throughput and response time are
highly-valued properties.

Our model envisions an eventually consistent synchronisa-
tion approach in an SDN DCP, where synchronisation credits
for state modifications are assigned to controller replicas. The
credit-based approach bounds the data staleness which may

arise as a consequence of concurrent and non-synchronised
modification of states in cluster members. Consistency levels
control the frequency of DCP-wide state-updates and eventual
reconciliation of state-conflicts. Tight consistency levels lead
to more frequent synchronisation, hence causing more control
plane overhead compared to relaxed consistency levels, where
synchronisation overhead is minimized but the probability of
occurring state-conflicts is raised. Our cost-aware algorithm
is used to identify the balance in between the two key per-
formance indicators; the synchronisation overhead and system
correctness of DCP, by adaptively modifying the consistency
levels based on application-specified correctness thresholds.
We also describe conflict detection and remediation mecha-
nisms that serve the purpose of deterministic convergence to
a single stable state on conflicting controller replicas.

A. System Model

The OpenFlow-based DCP is modeled as a cluster of N
controllers with each switch in the data plane configured to
register with all controllers in the administrative domain in
OFPCR ROLE EQUAL mode. In this mode, the controller has
full access to the switch and is equal to other controllers of
the same role. Controllers react to external events (northbound
requests, PACKET INs and other OpenFlow notifications) lo-
cally. While northbound requests are directed and hence han-
dled by a single controller instance, the invariant of the exactly-
once response needs to hold for asynchronous data plane
events (e.g. PACKET INs) as well. By default, all controllers in
OFPCR ROLE EQUAL role receive all switch asynchronous
messages. Hence, OFPCR EQUAL mode in OpenFlow must
be combined using per-controller Asynchonous Configuration
[25] to expose notifications (e.g. PACKET INs) to a subset
of controllers. The choice of the exact controller that handles
a switch request is a controller assignment problem [26] and
is out of scope in this paper. Alternatively, the switch can
broadcast the request to all controllers in OFPCR EQUAL
role. Following a successful execution of response, the exactly-
once execution invariant can be guaranteed by broadcasting a
proprietary notification to the assigned controller set [27].

To circumvent the need for a strictly consistent cluster
synchronisation, a resource state S in our system is associated
with a maximum synchronisation credit amount CS

total. Every
credit value CS represents a smallest non-divisible element
of resource S, allocated to an SDN controller instance KN

for concurrent and non-synchronised modification of a shared
resource state S. By bounding the amount of concurrent
modifications for resource S per controller, distance in value
between the local, concurrently modified, data state S and its
final consistent state (after synchronisation) can be controlled.
The total sum of synchronisation credits CS

total represents
the maximum number of concurrent modifications to state S
during a single non-synchronisation cycle. We distribute the
total synchronisation credits across N controller so that:

CS
total =

N∑
KN=0

CS
KN

(1)

Resource representation of S may encompass both physical
or virtual network resources - e.g. bandwidth or flow table
elements available for reservation. Depending on the required

C1
C2

C3

S1 S2 S3

S4S4 S5S5 S6

credit
type C

SS1→S2
BW

C1
Cadd−flow

C1 ...

amount 200 [Mbps] 20 [#exec]

credit
type C

SS1→S2
BW

C2
Cadd−flow

C2 ...

amount 400 [Mbps] 20 [#exec]

credit
type C

SS1→S2
BW

C3
Cadd−flow

C3 ...

amount 400 [Mbps] 20 [#exec]

Fig. 2. An exemplary assignment of synchronisation credits to controllers
in DCP. As add-flow operation ultimately modifies the reserved resource
amount SS1→S2

BW , notice that both the execution credits Cadd−flow , and

granular resource credits CSS1→S2
BW limit the maximum duration of non-

synchronisation period for the bandwidth resource SS1→S2
BW . Hence, it is

expected that for state S the controller tracks a single type of synchronisation
credit - CS , at granularity of state S; or COp, at granularity of operation Op
that modifies S.

granularity of state management, limitations for bounded num-
ber of modifications may be configured either per state or per
operation which affects multiple states. Hence we distinguish
between resource credits CS

total for state S, and execution
credits COp

total for operation Op that modifies state S.

Isolation of state modifications per-controller allows for
concurrent and unsynchronised access to state. In Figure 2,
the resource credit CSBW

total for bandwidth resource SBW =
SS1→S2
BW for edge S1 → S2, and the execution credit

Cadd−flow
total for operation add-flow that operates on state

SS1→S2
BW , are distributed across the controller instances.

Controller KN modifies the resource state in a man-
ner where each update is handled locally for some non-
synchronisation period TS , without cluster-wide synchronisa-
tion of state. TS is thus the time period elapsed in-between
cluster-wide synchronisations of controllers’ views of state S.

In some cases, the strategy of concurrent modifications of a
state S may result in global inefficiencies and suboptimality of
a result. The quality of a result is correlated with the staleness
of the input state S. To limit the effect of asynchronous access
to a state, we introduce the notion of consistency levels. The
choice of a consistency level CLS for the state S, defines
the maximum duration of non-synchronisation period TS

max. In
our model, the actual elapsed non-synchronisation period TS

i
is not the same for all synchronisation cycles i and may vary
based on the occurrence frequency of synchronisation triggers.
Observed system KPIs, such as the logged network utilization
or encountered number of state synchronisation conflicts, are
used as triggers for cluster-wide synchronisation procedure.
The triggers eventually lead to adaptation of CLS and are
explored further in the text. The result of consistency model
adaptation is the new active consistency level. In addition to
TS
max, the active consistency level also governs the maximum

number of locally executed, non-synchronised state updates by
tightening or relaxing the resource/execution synchronisation
credit CS

KN
/ COp

KN
. The synchronisation credit is associated

with a particular resource for which the adaptation is executed.

For example, SDN applications utilizing the edge-cost state
for purposes of routing on a network graph may tolerate
low consistency for edge-cost values. By decoupling the
synchronisation and routing operations, scalability of routing
execution is raised at the expense of result optimality. On

the other hand, the same routing applications might require
strong consistent graph state updates. No routing artefacts
such as loop occurrences or blackholes may happen when the
topology state is updated, hence topology state modifications
must be serialized. Synchronisation of topology updates is in
most networks not a scalability constraint since, compared to
frequency of routing requests, graph updates are rare.

B. Allocation of Synchronisation Credits

Manipulation of locally-assigned resources allows for
reservation and freeing of the resource without a cluster-wide
state synchronisation required, as long the reservations are con-
ducted within the assigned credit boundaries. We distinguish
between two types of synchronisation credits: Execution credit
sets associated with the amount of allowed local operation
executions; and resource credit sets associated with the actual
physical or virtual network resources.

Bounded execution credit sets. Credit set COp
KN

repre-
sents the total number of executions of operation Op that
may run locally on controller KN , without the cluster-wide
synchronisation of states modified by the operation. Different
to demarcation protocol approach described below, the number
of allowed remaining executions drops monotonically with
time. Following a depletion of execution credits, cluster-
wide synchronisation leads to view convergence for all states
modified by the operation Op. The credits are then refreshed
on all controller replicas.

Bounded resource credit sets. A global resource S is di-
vided into equally sized N resource partitions, which are placed
on and handled separately by N controllers. Manipulation of
locally-assigned resources allows for reservation and freeing
of the resource, with no synchronisation required in between
the holders of the resource, as long as the reservations are
conducted within the assigned boundaries. For every resource
S, each controller KN is assigned the local resource modifi-
cation boundaries inf(S) = 0 and sup(S) = CS

KN
. Initially,

the controller-internal reservation variable reserved(S) = 0,
since no resources are reserved at controller initialization time.

This approach assumes that every controller maintains
inf(S) and sup(S), as well as the reserved(S) variables
for any divisible resource S, taking into account all possible
outcomes of isolated transactions. Resource S may be manip-
ulated by more than a single application in SDN controller.
The resource boundaries are enforced across all controller
applications operating on state S. Defined manipulations on re-
source S include increment and decrement operations. Before
executing the reservation, the resulting variable reserved(S)
is validated against the assigned inf(S) and sup(S), which
it may not exceed. This step is the resource access control.
By calling the decr(S, n) operation, the replica consumes n
resource tokens. Analogously, by calling incr(S, n), a replica
produces n tokens. Tokens are added or subtracted from the
current value of reserved(S), following a successful commit
of transaction associated with the reservation. A successful
commit updates reserved(S) to currently utilized resource
amount and unexpected abort of transactions triggers a cluster-
wide conflict reconciliation. In cases wherein no tokens are
available:

sup(S)− reserved(S) ≤ inf(S) (2)

tokens may be requested from other resource controllers. If
no resource credits are transferred to requester controller, the
reservation fails.

All resources whose reservations may be represented as
counter objects with fixed ranges can also be modeled as
resource credits, some examples being flow table sizes, meter
IDs, IP address pools for DHCP, per-port/queue bandwidth
shares etc.

C. Adaptation of Consistency Levels

Assuming unbounded resource credit sets, the choice of a
consistency level governs the maximum non-synchronisation
period TS

max for state S. In case of an execution credit set, it
governs both TS

max (where S may be modified by operation
Op) and the number of allowed isolated executions COp

KN
for

operation Op in SDN controller KN . Consistency level change
is state-/operation-specific, hence CSA

KN
6= CSB

KN
for resources

SA and SB , and COp1
KN
6= COp2

KN
for operations Op1 and Op2,.

Following triggers lead to tightened CLS , which, depend-
ing on type of resource, result in shorter duration of TS

max
and a lower-than-current number of allowed isolated state
modifications CS

KN
/ operation executions COp

KN
:

• Cost of result suboptimality of an eventually-consistent
execution of an operation is above a specific threshold.
Serialized historical information about the requests is
required to derive the actual costs of execution. In
case path finding computes paths which are consider-
ably suboptimal than would be the case with strong
synchronisation, CLS is tuned to a stricter level.

• Cost of state-update conflicts is above a specified
threshold - if all controllers are able to run operations
that modify the shared resource set S, following a
successful conflict detection (e.g. same state is mod-
ified concurrently), controllers may raise the CLS to
a stricter level. Conflict resolution strategy must be
deployed in order to reconcile the diverged state into
a consistent state across the cluster.

• Setup-failures wherein the callback associated with
resource reservation does not result in a successful
configuration of an external network device. Device
is able to detect and notify false configuration, and
controller must deduce a configuration conflict. His-
torical information of steps leading to setup failures is
required for conflict detection and state reconciliation.

Following triggers lead to relaxation of CLS , which, depend-
ing on type of resource, result in longer TS

max and a higher-
than-current number of allowed isolated state modifications
CS

KN
/ operation executions COp

KN
:

• Cost of result suboptimality of an eventually-consistent
execution of an operation is below a specific threshold
- the result could on average be close-to-optimal even
in case of a more relaxed consistency model.

• Cost of consistency-related conflicts is below a specific
threshold and the observed probability of incurred
state-update-related conflicts is small.

D. State Synchronisation Triggers

Various events may trigger the cluster-wide state synchro-
nisation. Based on the locality of an event, we distinguish
external and local synchronisation triggers in SDN controller.

Locally activated Triggers.

• Following the exhaustion of an execution credit set
COp

KI
, the controller KI must contact other controllers

from cluster set KN to lease additional execution
credits, whereby KI /∈ KN .

• Following the exhaustion of a resource credit set CS
KI

the controller KI must contact other controllers from
cluster set KN , where KI /∈ KN to lease additional
resource credits.

• If maximum duration of non-synchronisation period
TS
max is exceeded, the local controller propagates its

current state version to all other cluster participants
and resets the credit set CS

KI
/ COp

KI
.

• On unsuccessful commit (transaction abort) of an
operation or identified divergent states, the resource
owner assumes a conflict has happened. It retrieves
the current state of other cluster participants to identify
and resolve the local merge conflict.

Externally activated Triggers.

• Following an exhaustion of the execution or resource
credit set in one controller in cluster, another controller
replica is triggered to synchronise its state and lease
additional resource or execution credits.

• If maximum duration of non-synchronisation period
TS
max is exceeded at one controller replica, the replica

initiates the cluster-wide synchronisation and all other
controllers are triggered to accept the update.

E. Algorithm

Algorithm 1 depicts the state synchronisation procedure for
state SA and adaptation of active consistency level CLSA

. On
observed state SA modification in a remote controller Krem,
controller Kloc proceeds to adapt the consistency level CLSA

for state SA based on locally identified conflict-resolve and
result suboptimality costs (Ccflct and Csbptml, respectively)
and given reference CL threshold maps maxSA

[CLcurr
SA

] and
minSA

[CLcurr
SA

]. For simplicity, cost thresholds are manually
specified by the SDN application which operates on the state.

In Algorithm 1, controller Krem triggers a state synchroni-
sation event by sending a state update to controller Kloc. Kloc

then initiates the local state synchronisation as follows:

1) Lines 3-4: Any obvious state-conflicts are detected
by controller Kloc (e.g. by using version vector [28]
comparison to determine state-update causality).

2) Lines 5-7: In case of an identified version conflict,
state conflict cost Ccflct is computed based on cost
of conflict-resolve strategy utilized to converge the
views on state SA.

Algorithm 1: State synchronisation procedure and adap-
tation of active state consistency level CLSA

for state SA

in an SDN controller
Input :
State-update SKrem,Vrem

A with version vector Vrem

originated at remote controller Krem;
Buffer of outstanding state-updates stateUpdateQueue;
Initial active consistency level CLSA

;
Mapping of maximum non-synchronisation durations
mapSyncPeriod[] to various consistency levels;
Mapping of synchronisation credit set sizes
mapResourceCredits[] to various consistency levels;
Mapping of minimum and maximum cost tresholds
minSA

[] and maxSA
[] to various consistency levels;

Initialization: Number of iterations n = 0
Output : Adapted consistency level CLnew

SA

1 upon updated(stateUpdateQueue):

2 i = ++ n

3 SKrem,Vrem

A ← stateUpdateQueue.pop()

4 (SKloc,Vloc

Anew) ← merge(SKloc,Vloc

A , SKrem,Vrem

A)

5 if conflictDetected(SKloc,Vloc

A) = true then
6 Ccflct ← handleConflict(SKloc,Vloc

Anew)
7 end

8 if subOptimalityDetected(SKloc,Vloc

Anew) = true then
9 Csbptml ← handleSuboptimality(SKloc,Vloc

Anew)

10 end
11 Ci

SA,sum ← Ccflct + Csbptml

12 CSA
accum =

∑n
0 C

i
SA,sum

13 CLnew
SA

= adaptCL(CSA
accum, CLSA

)

14 if CLnew
SA
6= CLSA

then
15 TSA

max = mapSyncPeriod[CLnew
SA

]

16 CSA

Kloc
= mapResourceCredits[CLnew

SA
]

17 //COp
Kloc

= mapExecutionCredits[CLnew
SA

]
18 genClusterEvent(CLnew

SA
, CL MOD)

19 CLSA
= CLnew

SA

20 end

21 localCommit(SKloc,Vloc

Anew)

22 if CSA,sum.length() > observationWindowSize
then

23 CSA,sum.shift(1)
24 n−−
25 end
26 upon elapsed(Timer(TSA

max)):
27 if SKloc,Vloc

A .updated() then
28 genClusterEvent(SKloc,Vloc

A , SY NC)
29 end
30 Timer(TSA

max).reset()

31 Function adaptCL (measuredCost, CLcurr
SA

)
32 if measuredCost > maxSA

[CLcurr
SA

] then
33 return CLcurr.tighten()
34 else if measuredCost < minSA

[CLcurr
SA

] then
35 return CLcurr.relax()
36 else
37 return CLcurr

3) Lines 8-10: The SDN application computes the in-
duced suboptimality of local result in previous non-
synchronisation period and outputs the cost of subop-
timality Csbptml. Computation of this cost is specific
to application logic. We show how an exemplary
routing application can provide this implementation
in Section V-A.

4) Line 11-13: Based on frequency and amplitude of
Ccflct and Csbptml, the active CL is adapted. The
depicted approach assumes a simple threshold-based
assignment of CLs, where the minimum and maxi-
mum thresholds associated with a CL are pre-defined.

5) Lines 14-20: A new timer duration of non-
synchronisation period is set. Depending on granular-
ity of consistency design, either resource synchronisa-
tion credit set CSA

Kloc
or execution credit set COp

Kloc
(see

Subsection IV-A) for isolated modifications of state
SA in Kloc is loaded according to newly assigned
CL. CL update is then propagated to all controllers
that keep track of state SA.

After the state synchronisation procedure has determined
the new consistency level CLnew

SA
, controllers that hold state

SA modify their timers TSA
max accordingly. If execution credits

are assigned for operations that manipulate SA, the number
of execution credits allocated for isolated executions of these
operations is lowered or raised according to CLnew

SA
. Analo-

gously, if resource credits are assigned for modifications of
state SA, the number of resource credits allocated for isolated
modifications is lowered or raised according to CLnew

SA
.

F. Conflict Detection and Remediation

Our eventually consistent SDN control plane assumes iso-
lated state updates initiated by different controller instances
at arbitrary points in time. Hence, controllers may operate on
diverging isolated views of a shared state. Eventual propaga-
tion of one replica’s state may lead to state conflicts in other
replicas. In the case of network partitions or node failures,
the minority of nodes may lag behind the majority. When
network partitions are merged or nodes recover from failure,
the rejoined controller replicas might hold diverged states. A
conflict handling strategy in such scenarios can be described
in three dimensions:

1) Identification of state-merge conflicts
2) Resolution of state-merge conflicts
3) Proactive avoidance of state-merge conflicts

While the method referenced in Algorithm 1 is based
on version vector comparison, advanced Distributed Database
Management Systems (DDBMS) implement various strategies
to identify synchronisation conflicts:

• Read-repair [29]: When a client query is made,
DDBMS performs a digest query against all replicas
and pushes the most recent version to out-of-date
replicas.

• Anti-entropy: Controllers periodically pool other
replica’s state and decide if their state views differ.
Riak KV1, a distributed NoSQL database, relies on

1Riak KV - http://basho.com/products/riak-kv/

a Merkle tree implementation for efficient divergent
state discovery. Replicas in Riak recursively compare
their trees until the conflict is localized. Similarly,
ONOS [7] randomly picks up another replicated in-
stance at 3-5 second intervals, and synchronises the
respective topology views.

• Causality inference using version vectors, version
clocks, wall-clock time or similar update-version
tracking mechanisms [28], [30]. By comparing logical
clocks exchanged between actors on a state, concur-
rent quorum writes can be identified.

Arising conflicts may lead to invalidation of some system
invariants. In our model, each conflict is associated with a
resolution cost Ccflct. The conflict resolution cost depends on
the conflict weight, which is an application criteria, and the
induced penalty time of conflict-repair, which is a property of
the conflict resolve strategy. Different conflict resolve mecha-
nisms can be considered with their respective cost:

• Update invalidation: Operations are roll-backed and a
reference consistent state is determined and applied at
all conflicting replicas.

• Replica-ID/Priority-based: Specific replicas are pre-
ferred over others when comparing the state vectors.

• State convergence on all replicas using commutative
operations: System makes assumption that all opera-
tions on target state commute [31], or transforms the
non-commutative to commutative operations [32].

• Last-writer wins: If causality of operation is deducible
(e.g. by comparing the wall-clock), system selects the
latest update. This strategy often leads to loss of one
of the concurrent updates [33].

• Manual Selection: Client is offered conflicting state
versions and must to select a single preferred version.

V. IMPLEMENTATION

A. Simulation of Concurrent Path Computations and Resource
Reservations with Multiple SDN Controllers

To evaluate the effect of consistency level adaptation, we
have developed a cluster-aware path-finding SDN controller
application which measures and logs the suboptimality of
routing results, where suboptimality is a function of execution
credit set size, number of controller replicas, active consistency
level, traffic model and network topology size. The application
utilizes a bandwidth-constrained Dijkstra implementation to
identify and reserve paths for uniformly selected source and
destination pairs in a variable-size grid network.

As the underlying network design and traffic patterns may
bias the results experienced in practice, various topology sizes
and traffic models were evaluated. The grid topology size was
scaled between 5x5 to 25x25 vertices, with directed edges
modeled as 1GbE links. The traffic models consider uniform
specification of a flow bandwidth requirements in [1,30] Mbps
range. We include an access control mechanism for new flow
requests, which ensures that the edges whose 1GbE bandwidth
capacities are exceeded during the reservation procedure are
pruned before the Dijkstra routing procedure execution can

take place. For simplification, the cost function which provides
the cost input CE for an edge E, considers the total sum of
flows configured on that edge:

CE =

#flowsE∑
i=0

1 (3)

Following an execution of a path finding algorithm in
operation add−flow, bandwidth resources are reserved at the
edges of the computed path. Whenever bandwidth utilization
on an edge exceeds 80%, for every new flow, an existing,
uniformly and randomly selected flow is removed, hence
allowing for embedding of a large number of sequential flow
requests and realistic results.

To introduce concurrency in execution, multiple SDN Con-
troller instances execute the path finding algorithm add−flow
in isolation from other instances. Hence their local values of
CE might differ during the non-synchronisation period. The
synchronisation trigger fires after an assigned set of execution
credits COp

KN
is exceeded on every controller instance KN .

The controllers then synchronise the costs of edges CE and
converge to the same state. We vary the execution credits
Cadd−flow

KN
, allocated for the path-finding operation add-flow

and focus on identifying the trade-off between the frequency
of cluster-wide synchronisations and the result suboptimality
which is formally defined as:

Dsubopt =
Ooptimal

Omeasured
(4)

where Ooptimal is the cost of true optimal path (com-
puted as if all reservation updates in system were strictly
serialized); and Omeasured is the actual measured cost of
a sampled path identified by an isolated instance during
the non-synchronisation period. As each path computation
in a controller instance KN only considers the reservation
updates made during the non-synchronisation period on the
local executor instance, in terms of total path cost, non-
optimal paths with Dsubopt 6= 1 could be determined. In our
simulation, isolated reservations made by different instances of
SDN controllers have often lead to concurrent reservation of
bandwidth resources on the same edge, hence sacrificing the
optimality of cheapest path finding. The suboptimality Dsubopt

is computed after the synchronisation trigger fires, followed by
a cluster-wide synchronisation of CE .

In the deployed eventually consistent model, reservation
state modifications are instantaneous. While the cluster-wide
synchronisation at the end of a non-synchronisation period is
implemented as a blocking task, all intermediate local state
changes are instantaneous updates, hence providing obvious
response time benefits compared to a strong consistent ap-
proach. Consistency levels assigned for a state are defined by
the amount of execution credits Cadd−flow

KN
assigned to cluster

participants for isolated execution of operation add-flow.

B. Experimental results

To evaluate the effects of different deployed topologies
and traffic models on experienced routing suboptimality, we

Consist.Lvl CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9 CL10 CL11

Cadd−flow
KN

2 3 5 9 17 25 33 41 49 57 65

TABLE I. STATIC MAPPING OF THE CONSISTENCY LEVEL CLN TO
NUMBER OF PATH FINDING EXECUTION CREDITS Cadd−flow

KN
FOR

OPERATION add-flow THAT MAY RUN IN ISOLATION.

vary the consistency level and hence the number of isolated
executions Cadd−flow

KN
per controller KN . Our static mapping

of amount of isolated executions of add− flow operations to
consistency level CLi is shown in Table I. By manipulating
the active consistency level, a controller instance KN executes
a lowered or raised number of path finding executions in
isolation from other instances KI 6= KN .

According to Figure 3, compared to smaller topology sizes,
large topologies lead to higher result suboptimality Dsubopt.
A possible explanation for this phenomenon is that with
the implemented bounded execution credit set model, state
synchronisation is triggered after an execution credit set is
exceeded. In the case of large topologies, a single add-flow ex-
ecution can modify a higher number of switches on a computed
path than in the case of smaller topologies. Hence consistency
management using resource credit sets might possibly lead to
lower and uniform suboptimality for variable topology sizes.
Furthermore, as expected, the Dsubopt of a routing operation
scales linearly with the duration of non-synchronisation period
during which the routing operations are executed in isolation.
For a setup of N = 3 controllers, each executing 65 concurrent
flow additions in worst case, compared to a strongly consistent
setup, 99th percentile of result suboptimality for the eventually
consistent setup peaks at 2.22%, a fairly low inefficiency.

Consistency Level CLN

1 2 3 4 5 6 7 8 9 10 11

0

0.5

1

1.5

2

2.5

R
es

u
lt

 s
u
b
o
p
ti

m
al

it
y
 [

%
]

T = 5x5 P = [1,10] Mbps

T = 10x10 P = [1,10] Mbps

T = 15x15 P = [1,10] Mbps

T = 20x20 P = [1,10] Mbps

T = 25x25 P = [1,10] Mbps

Fig. 3. Measured Dijkstra routing inefficiency for variable topology sizes
T , variable consistency levels CLN (as per Table I), and traffic flows
with uniformly distributed bandwidth requirement P = [1, 10] Mbps. The
cost suboptimality scales with the strictness of active consistency level and
topology size. Our cost function, described in Equation 3, considers the sum
of flows placed on edges as edge cost, and bandwidth capacity as admission
constraint. The curves may differ slightly for cost functions that consider other
cost inputs (e.g. reserved bandwidth or buffer size).

With regards to correlation between consistency level and
result suboptimality, Figure 4 depicts similar behaviour. It also
shows how variation in traffic patterns influences performance
of an eventually consistent system. By intelligent variation of
assignment of execution credit amount and consistency level,

bounding of experienced suboptimality to an arbitrary target
value is possible, regardless of active traffic patterns.

0

1

2

3

4

5

6

R
es

u
lt

 s
u
b
o
p
ti

m
al

it
y
 [

%
]

T = 25x25 P = [1,5] Mbps

T = 25x25 P = [1,10] Mbps

T = 25x25 P = [1,15] Mbps

T = 25x25 P = [1,20] Mbps

T = 25x25 P = [1,30] Mbps

Consistency Level CLN

1 2 3 4 5 6 7 8 9 10 11

Fig. 4. Measured Dijkstra routing inefficiency for variable traffic models P ,
variable consistency levels CLN (as per Table I), and a static 25x25 nodes
grid topology. The cost suboptimality scales with the strictness of consistency
levels and traffic models. Compared to micro-flows, the elephant-flows are
more often evaluated as cost-inefficient paths, as larger amounts of resource
are reserved on every flow admission and the 1Gbps edge capacity invariant
is invalidated more frequently.

Figure 5 portrays the cumulative probability of any single
flow request arriving at the beginning of non-synchronisation
period, for which initially an optimal solution is identified;
being flagged as a suboptimal path at the time of cluster-wide
synchronisation (at the end of non-synchronisation period).
However, even when the probability of finding a suboptimal
path is as high as 35% in worst case, the overall suboptimality
of identified path is acceptable, as shown in Figures 3 and 4.

5 10 15 20 25 30 35

0

0.25

0.5

0.75

1

CL1

CL2

CL3

CL4

CL6

CL8

CL11

Probability that a flow is embedded suboptimally [%]

C
u
m

u
la

ti
v
e

P
ro

b
ab

il
it

y
 [

%
]

Fig. 5. CDF of probability that during the non-synchronisation period a
flow is embedded suboptimally. Cumulative probability is determined over all
possible combinations of traffic models and topology sizes. With relaxation
of the applied consistency level CLN (as per Table I), probability rises that
an identified reference path is suboptimal at end of its non-synchronisation
period. With more relaxed consistency levels CLN > CL6, as many as
34% of computed paths were identified as suboptimal at the end of non-
synchronisation period. Regardless of this probability, Figures 3 and 4 show
that the qualitative inefficiency of suboptimal path cost always stays low.

Concurrent execution of an operation allows for faster
handling of a large set of same-type requests. Figure 6 depicts
the measured mean suboptimality when handling a batch of

140k path requests for each combination of traffic model
and topology size. We vary the size of cluster between 3
to 15 controller replicas. The consistency level defines the
number of path finding executions executed in parallel at
every of the available controller instances. The suboptimality
is shown to scale with the number of concurrent path finding
executions, and hence peaks at 25% for the largest cluster
size of 15 controllers, and the most-relaxed consistency level
CL11 → Cadd−flow

KN
= 65 isolated operations per controller.

0
15

5

10

S
u
b
o
p
ti

m
al

it
y
 [

%
]

9

15

Controller

20

Consistency Level CLN

25

6

1 3 5 6 7
8 9 10 11

3

12

Fig. 6. Load-balancing of path requests over a variable-size cluster of
SDN controllers. The average suboptimality of sampled flows is determined
over all possible combinations of traffic models and topology sizes. For
different CLN , each controller instance executes a variable number of add-
flow operations in isolation (as per Table I). The state of admissioned flows on
every edge E (and hence the cost CE) is distributed to all controller instances
at the end of non-synchronisation period.

Figure 6 shows that a cluster of 6 SDN controllers is
able to cope with consistency level set to CL8 (41 isolated
requests per instance), while limiting the path cost difference
to less than 6% compared to similar but strong consistent
setup. In scenarios where flows are short-lived and higher cost
inefficiencies can be tolerated, adaptation of the consistency
level assigns higher shares of execution credits to controller
instances. A consistency level adaptation mechanism, such
as the threshold-based approach introduced in Algorithm 1,
oscillates the experienced suboptimality around a named target
value, while minimizing the flow setup latencies independent
of the network topology and traffic model at hand.

VI. CONCLUSION

An eventually-consistent SDN DCP paves the way for
scalable control plane designs. Our algorithm for adaptation
of consistency levels leverages observed frequency and weight
of conflicts in order to find a consistency level appropriate
for targeted system optimality and correctness. In terms of
response delay, enabling non-synchronised global switch con-
figurations is especially efficient when working with short-
lived flows that require fast response. By not relying on costly
consensus after every single resource state update, end-clients
in network can profit from shortened request-handling time in
the SDN controller. If state synchronisation conflicts occur and
correctness is endangered, our system adapts autonomously to
a more appropriate consistency level. Threshold-based runtime
modification of consistency levels considers costs of conflict in
order to approximate the optimal trade-off between correctness

and performance. We have shown by simulation that eventually
consistent DCP can provide limited inefficiency compared to
its strong consistent counterpart.

Eventual consistency sacrifices some degree of correctness
in order to provide performance. While failure of a controller
may lead to delayed or lost events, achieving zero-loss property
is a challenging research topic, even in a strong consistent
DCP [34]. Fault-tolerance properties of our consistency model
were not considered in this paper but need further investigation.
While strong and eventually consistent DCPs were compared
in terms of cost-related metrics, time- and message-overhead
metrics were left for later comparison. To this end, trade-
offs between short execution time and blocking period du-
ration incurred by conflict resolve procedure require further
attention. Trade-offs between synchronisation overhead and
result inefficiency when using either execution or resource
credit sets are an additional open point for investigation.
Finally, dynamic allocation of synchronisation credits based on
reinforcement learning-approximated consistency levels could
provide a more sophisticated alternative to the threshold-based
approach presented in this paper.

VII. ACKNOWLEDGEMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 671648 VirtuWind.

REFERENCES

[1] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “CAP for
Networks,” in Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking. ACM, 2013, pp. 91–96.

[2] P. Bailis and A. Ghodsi, “Eventual Consistency Today: Limitations,
Extensions, and Beyond,” Commun. ACM, vol. 56, no. 5, 2013.

[3] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic Algorithms for
Replicated Database Maintenance,” in Proceedings of the Sixth Annual
ACM Symposium on Principles of Distributed Computing. ACM, 1987.

[4] W. Vogels, “Eventually Consistent,” Commun. ACM, vol. 52, no. 1, pp.
40–44, Jan. 2009.

[5] D. Barbard and H. Garcia-Molina, “The Demarcation Protocol: A
technique for maintaining linear arithmetic constraints in distributed
database systems,” in International Conference on Extending Database
Technology, 1992, pp. 373–388.

[6] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a Model-Driven SDN Controller architecture.”

[7] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking,
2014.

[8] L. Lamport, “Paxos Made Simple,” ACM SIGACT News 32, Dec. 2001.
[9] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics

of Data Centers in the Wild,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement. ACM, 2010.

[10] D. Ongaro and J. Ousterhout, “In Search of an Understandable Con-
sensus Algorithm,” in 2014 USENIX Annual Technical Conference
(USENIX ATC 14). USENIX Association, Jun. 2014, pp. 305–319.

[11] C.-C. Ho, K. Wang, and Y.-H. Hsu, “A fast consensus algorithm for
multiple controllers in software-defined networks,” in 18th International
Conference on Advanced Communication Technology, 2016.

[12] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, and F. Pedone, “Clock-
RSM: Low-latency inter-datacenter state machine replication using
loosely synchronized physical clocks,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2014, pp. 343–354.

[13] G. Petropoulos, F. Sardis, S. Spirou, and T. Mahmoodi, “Software-
defined inter-networking: Enabling coordinated QoS control across the
internet,” in 23rd International Conference on Telecommunications,
2016.

[14] A. Bianco, P. Giaccone, S. D. Domenico, and T. Zhang, “The Role of
Inter-Controller Traffic for Placement of Distributed SDN Controllers,”
CoRR, vol. abs/1605.09268, 2016.

[15] J. Guck, M. Reisslein, and W. Kellerer, “Function Split between Delay-
Constrained Routing and Resource Allocation for Centrally Managed
QoS in Industrial Networks,” IEEE Transactions on Industrial Infor-
matics, no. 99, 2016.

[16] U. o. S. 5G Innovation Centre, “5G Whitepaper: The Flat Distributed
Cloud (FDC) 5G Architecture Revolution,” 2016.

[17] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani, “On the
Feasibility of a Consistent and Fault-Tolerant Data Store for SDNs,”
in Proceedings of the 2013 Second European Workshop on Software
Defined Networks. IEEE Computer Society, 2013, pp. 38–43.

[18] A. N. Bessani, J. Sousa, and E. A. P. Alchieri, “State Machine
Replication for the Masses with BFT-SMART,” in DSN, 2014.

[19] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proceedings of the 2010 internet network
management conference on Research on enterprise networking, 2010.

[20] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek, and
R. Morris, “Flexible, Wide-Area Storage for Distributed Systems with
WheelFS,” in NSDI, vol. 9, 2009, pp. 43–58.

[21] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed Multi-
domain SDN Controllers,” CoRR, vol. abs/1308.6138, 2013.

[22] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “ONIX:
A Distributed Control Platform for Large-scale Production Networks,”
in Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, 2010, pp. 351–364.

[23] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically Centralized?: State Distribution Trade-offs in Software De-
fined Networks,” in Proceedings of the First Workshop on Hot Topics
in Software Defined Networks. ACM, 2012, pp. 1–6.

[24] H. Yu and A. Vahdat, “Design and Evaluation of a Continuous Consis-
tency Model for Replicated Services,” in Proceedings of the 4th Con-
ference on Symposium on Operating System Design & Implementation
- Volume 4. USENIX Association, 2000.

[25] “OpenFlow Switch Specification: Version 1.5.0 (Protocol Version
0x06),” Open Networking Foundation, Dec. 2014.

[26] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller
assignment in data center networks: Stable matching with transfers,”
in INFOCOM, 2016.

[27] A. Mantas and F. M. V. Ramos, “Consistent and fault-tolerant SDN
with unmodified switches,” CoRR, vol. abs/1602.04211, 2016.

[28] A. Jankunas, “Design and Evaluation of a Continuous Consistency
Model for Replicated Services,” vol. 45, no. 5, pp. 964–968, 2000.

[29] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[30] Y. Lu, Y. Lu, and H. Jiang, “Adaptive consistency guarantees for large-
scale replicated services,” Proceedings of the 2008 IEEE International
Conference on Networking, Architecture, and Storage, pp. 89–96, 2008.

[31] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
replicated data types,” in Symposium on Self-Stabilizing Systems, 2011.

[32] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues,
“Making geo-replicated systems fast as possible, consistent when nec-
essary,” in Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), 2012, pp. 265–278.

[33] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: scalable causal consistency for wide-area storage
with COPS,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. ACM, 2011, pp. 401–416.

[34] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller
Fault-tolerance in Software-defined Networking,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research. ACM, 2015, pp. 4:1–4:12.

	I Introduction
	II Problem Definition
	III Related Work
	IV Proposed Solution
	IV-A System Model
	IV-B Allocation of Synchronisation Credits
	IV-C Adaptation of Consistency Levels
	IV-D State Synchronisation Triggers
	IV-E Algorithm
	IV-F Conflict Detection and Remediation

	V Implementation
	V-A Simulation of Concurrent Path Computations and Resource Reservations with Multiple SDN Controllers
	V-B Experimental results

	VI Conclusion
	VII Acknowledgement
	References

