
Application Protocols enabling Internet of Remote
Things via Random Access Satellite Channels

Manlio Bacco, Marco Colucci, Alberto Gotta
Institute of Information Science and Technologies (ISTI)

National Research Council (CNR), via G. Moruzzi, 1, Pisa (Italy)
e-mails: {name.surname}@isti.cnr.it

Abstract—Nowadays, Machine-to-Machine (M2M) and
Internet of Things (IoT) traffic rate is increasing at a fast pace.
The use of satellites is expected to play a large role in delivering
such a traffic. In this work, we investigate the use of two of the
most common M2M/IoT protocols stacks on a satellite Random
Access (RA) channel, based on DVB-RCS2 standard. The metric
under consideration is the completion time, in order to identify
the protocol stack that can provide the best performance level.

This work is copyrighted by the IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE. This work has been accepted for publication in IEEE ICC 2017, 21-25 May, Paris.

I. INTRODUCTION

Satellite-based M2M communications represent a large frac-
tion of the IoT market, showing an increasing popularity both
in the research and in the industrial community. The ubiquitous
coverage provided by the satellites may represent a key feature
to enable the so-called IoT massive internetworking, bringing
the connectivity even in remote areas that are unlikely to be
covered by other communication infrastructures (e.g., cellular).

In order to evaluate the feasibility of a satellite-based
solution, along with any physical layer issues (e.g., Signal-
to-Noise Ratio (SNR), power consumption), the interactions
between the transport and the application layer protocols need
further investigations. Connection-oriented transport protocols,
like Transmission Control Protocol (TCP), require connection
establishment procedures, the use of flow control or congestion
control algorithms, which may increase the communication
overhead. The latter is an issue that needs to be carefully taken
into account, especially in the case of IoT/M2M short-lived
connections. In order to mitigate the aforementioned issue,
Internet Engineering Task Force (IETF) has proposed the
use of Constrained Application Protocol (CoAP) (RFC 7252),
a lightweight protocol designed for resource-constrained de-
vices. It relies on the use of User Datagram Protocol (UDP)
at the transport layer; because of this, the reliability is left out
as an optional feature, to be implemented at the application
layer. CoAP endpoints exchange messages according to a
request/response mode and the resources are accessed through
a Uniform Resource Identifier (URI). In order to avoid a
polling mechanism, IETF has designed a protocol extension to
CoAP, based on the so-called observer design pattern (RFC
7641). CoAP clients register to the CoAP server; then, each
client receives a notification every time the state of a resource
changes. The observer pattern is somewhat similar to the
Publish / Subscribe (PUB/SUB) paradigm [1], as implemented
by MQTT, for instance. The performance provided by the

use of MQTT on RA satellite channels, according to the
Digital Video Broadcasting - Return Channel via Satellite, II
generation (DVB-RCS2) standard [2], has been preliminary
studied in [3]. Contrarily to CoAP, MQTT is TCP-based, thus
the congestion control algorithm at the transport layer of each
Return Channel Satellite Terminal (RCST) is responsible for
rate control and retransmissions, if any erasures occur on the
satellite channel.

In this work, we propose a comparison between the MQTT-
based scenario in [3], and a CoAP-based protocol stack. The
performance metric under consideration is the completion time,
which is the time a producer takes to successfully deliver data
to a consumer. The rest of this paper is organized as follows:
Section II reviews some of the most relevant works in the
literature, focusing on IoT/M2M communication scenarios via
satellite and on the comparisons between IoT/M2M protocol
stacks. Section III compares some typical M2M/IoT protocol
stacks. Section IV describes the application scenario under
consideration and Section V shows some preliminary numeri-
cal results obtained via extensive simulation runs. Finally, the
conclusions are provided in Section VI.

II. RELATED WORKS

The work in [4] considers M2M terminals that communicate
with a remote receiver via a satellite link. Each terminal
transmits a fixed amount of data: RA is used to deliver the
first few messages, then the Network Control Centre (NCC)
allocates reserved timeslots to each RCST, in order to ensure
a successfully delivery of data. The authors assess the system
performance by setting the burst duration and by using three
different reception modes at the receiver: Time Division Mul-
tiple Access (TDMA), Frequency Division Multiple Access
(FDMA), Power Division Multiple Access (PDMA) and Turbo
Code Division Multiple Access (TCDMA). The throughput
and the packet error rate are the performance metrics under
consideration. The authors show that TCDMA with multiuser
detection outperforms both FDMA and TDMA in terms of
throughput, thus minimizing the time required to serve a given
set of M2M terminals. In [5], a satellite-based Wireless Sensor
Network (WSN) is considered. In order to handle a potentially
large number of M2M devices, the authors suggest to organize
the nodes in clusters of different sizes. Within a cluster,
the nodes communicate with the cluster-head (CH), which
in turn forwards the collected data to the satellite gateway.

ar
X

iv
:1

70
6.

09
78

7v
1

 [
cs

.N
I]

 2
9

Ju
n

20
17

The clustering mechanism aims at organizing the clusters in
such a way that the application requirements (e.g., minimum
required SNR) can be met. Moreover, in order to cope with
the rain fading that can affect the signal propagation, multi-
ple interconnected satellite gateways are considered. Physical
layer metrics are used to assess the performance level: SNR
and energy consumption. The aforementioned works do not
consider any interactions with higher layer protocols, focusing
on Media Access Control (MAC) and physical layer metrics.
Nonetheless, they consider M2M scenarios involving satellite
communications.

Conversely, application-layer protocols are explicitly com-
pared in [6], [7], [8]. In [6], three classes of protocols for
M2M communications are compared: protocols targeting the
Service-Oriented Architecture (SOA); protocols implemen-
ting the Representational State Transfer (REST) paradigm;
and message-oriented protocols. As SOA protocol, the au-
thors consider OPC1 Unified Automation (UA), a platform-
independent middleware, whereas CoAP and MQTT are cho-
sen as representative of REST architectures and message-
oriented protocols, respectively. The application scenario is
represented by a cellular network delivering M2M data, where
reliability and real-time data exchanges are required. The
completion time in a emulated cellular network is used as key
performance indicator, and, according to the authors, OPC-
based communications outperform CoAP and MQTT-based
data transfer, at the price of a larger overhead. MQTT is TCP-
based, and the contributions provided in [9], [10], [11], [12]
shed some lights on how TCP behaves in presence of a random
access satellite link dominated by collisions, because it may
represent a limiting factor on the achievable throughput in
satellite environments. On the other side, CoAP is UDP-based,
and a comparison is on order when dealing with random access
satellite links, in order to provide some reference figures on
the achievable performance level. A preliminary comparison
between MQTT and CoAP is provided in [7], in terms of
bandwidth usage and latency. In order to compare the two
protocols, the authors consider a simple scenario composed
by a single MQTT publisher that sends data to a MQTT
broker; similarly, the CoAP-based scenario considers data
exchanges between a Hypertext Transfer Protocol (HTTP)
client and a CoAP server. The metrics under consideration
are the total amount of generated traffic and the average
Round-Trip Time (RTT). Both reliable and non-reliable data
transmissions are considered. In both cases, when no losses
occur, CoAP transfers less data and exhibits a shorter RTT
than MQTT, on average. In [8], a satellite-based architecture
is considered: multiple M2M devices send data to a remote
gateway. The performance provided by the use of MQTT and
of CoAP is evaluated, and the authors show that CoAP can
be properly tuned, in order to outperform MQTT even in the
presence of high offered traffic.

1A description of the OPC standard is available at
https://opcfoundation.org/about/what-is-opc/

III. TYPICAL IOT PROTOCOL STACKS

In [13], the authors propose a general satellite network
architecture for IoT/M2M application scenarios, where the
use of satellite communications could provide some benefits,
such as broadcast communications, large coverage also in
suburban and rural areas, support for highly mobile nodes in
absence of the fixed infrastructure. When comparing possible
IoT architectures, several different protocol stacks can be
used, each providing different advantages. Two communi-
cation paradigms are typically considered in IoT scenarios:
request/response and PUB/SUB ones. IoT nodes collect or
produce new data in a event-driven or a time-driven fashion,
typically. While the latter may exhibit regularity over time, the
former shows variable traffic patterns. If the request/response
paradigm is taken into account, the clients should periodically
query the servers in order to retrieve fresh data. On high-
delay links, like in the case of the satellites, the time needed
to successfully complete data exchanges should be carefully
evaluated. The PUB/SUB paradigm, a possible alternative
to the request/response one, allows the data consumers, or
subscribers, to receive any fresh data as soon as they are
available at the data producers, or publishers. A key feature
of the PUB/SUB paradigm is the decoupling between data
producers and data consumers at an intermediate entity, called
broker. In topic-based PUB/SUB systems, each data piece
belongs to one or more topics, or logical channels. The
publishers send new data to the broker, specifying the topic(s)
the data belong to. The broker keeps the list of the active topics
and, for each topic, the list of the active subscribers. Each
subscriber, in fact, declares its interests to the broker through
an initial registration procedure. After that, the mechanism is
straightforward: the publishers send new data to the broker,
which forward them to the subscribed nodes. On high-delay
links, relying on a PUB/SUB-based data exchange allows
halving the delivery delay than relying on a request/response-
based one.

CoAP and MQTT are notable examples of application
protocols implementing the aforementioned two paradigms:
request/response the former, PUB/SUB the latter. MQTT and
CoAP protocol stacks can be seen in Figure 1 and are
discussed in Section III-A and III-B, respectively.

A. MQTT protocol

MQTT is a M2M/IoT application protocol designed by IBM
in 1999 for use in satellite networks. Since then, its use has
largely widespread to terrestrial communications. A typical
MQTT data packet is composed of a 2 bytes long fixed header
part, a variable header part whose size depends on the packet
type, and a variable length payload. Each data packet is sent to
the broker, which maintains the list of the active subscriptions
and of the active topics. Although reliable data transmission
are inherently guaranteed by TCP, MQTT offers three Quality
of Service (QoS) levels to deliver the messages. In fact, TCP
guarantees the reliability for the messages exchanged over
the network connection between broker-publisher and broker-
subscriber, but an End-to-End (E2E) mechanism is absent. To

Fig. 1: Typical IoT protocol stacks

address that, MQTT provides additional reliability levels at the
application.

B. CoAP protocol

CoAP follows a REST architectural style and is designed
for resource-constrained environments. Each CoAP server
logically encapsulates a resource, uniquely identify by a URI.
A CoAP client sends a request by means of a Confirmable
or Non-confirmable message, in order to retrieve the resource
representation available at the server. If a Confirmable message
type is sent, an Acknowledgment (ACK) is expected to confirm
the correct reception of data at the intended receiver; other-
wise, an unreliable data exchange occurs (Non-confirmable
message type). A CoAP request contains the URI of the
resource and is typically performed by means of the HTTP
GET verb. The typical message format includes a fixed-size
header (4 bytes), a variable-length Token field (0-8 bytes),
an options field, and the payload. CoAP is UDP-based, and
it provides optional reliability at the application layer. A
NSTART -long [packets] transmission window2 is dictated
by the specifications; in the default configuration, NSTART
is equal to one. If Confirmable messages are sent, then the
Automatic Repeat reQuest (ARQ) mechanism in use is a
simple Stop-and-Wait protocol, employing exponential back-
off. This choice is motivated by the fact that the protocol is
intended for low-power resource-constrained devices, where
the implementation of more complex mechanisms can present
some computational or technological issues because of the
limited available resources. Anyway, CoAP is a promising
solution as application layer protocol, and its specifications
open to the implementation and to the use of a different ARQ
mechanism, as the use of NSTART > 1 would require3.
This would allow to take advantage of a large class of devices
supporting more complex mechanisms and benefiting of a

2RFC 7252 defines NSTART as the number of simultaneous outstanding
interactions (as in Section 4.7). For the sake of brevity, we refer to it as
transmission window.

3Section 4.7 of RFC 7252 opens to the possibility of using NSTART > 1,
if a congestion control mechanism is available.

larger transmission window. In order to reduce the delivery
delay of a request-response pattern, like in the case of CoAP,
the mechanisms described in the next two paragraphs can be
applied.

1) Observer pattern: CoAP specifications open to the im-
plementation of the so-called observer pattern, which provides
a data exchange model semantically close to the PUB/SUB
one. A CoAP client performs a registration to the server(s),
indicating the URIs it is interested into. Anyway, there is
still a difference with respect to the PUB/SUB paradigm: the
decoupling between data consumers and producers guaranteed
by the publish/subscribe paradigm cannot be provided by the
observer pattern. The absence of a intermediate entity leaves
the server(s) in charge of keeping a list of the interested clients.
The next paragraph explains how the use of a proxy can solve
the aforementioned issue.

2) CoAP proxying: In order to have a CoAP-based con-
figuration really similar to a PUB/SUB one, a further step is
necessary, which exploits the use of the proxying functionality,
as described in RFC 7252. A proxy is defined as a CoAP
endpoint that can be delegated by clients to perform requests
on their behalf. Thus, a CoAP proxy is an intermediate entity,
which can actually decouple the clients from the servers.

By implementing both the proxying functionality and the
observer pattern, as we propose in this work, CoAP behaves
similarly to MQTT.

C. Transport protocols

A key difference between CoAP and MQTT is the trans-
port protocol they rely onto. MQTT is TCP-based, which is
connection oriented, thus a Three-way Handshake (3WHS)
procedure is needed to establish a connection. On the other
side, CoAP is UDP-based4, which realizes a connectionless
communication and does not provide any congestion or flow
control algorithms. While the use of TCP can be of interest
in some M2M/IoT scenarios [12], [14], the majority of them
would largely benefit of a lightweight transport protocol.

In the following section, the performance provided by the
use of MQTT and of CoAP are compared, when the latter im-
plements the observer pattern and the proxying functionality.

IV. SCENARIO DESCRIPTION

In this section, the scenario under consideration is described,
and the logical architecture is visible in Figure 2. Several
CoAP servers produce data that are sent to the CoAP proxies.
Each proxy is in charge of delivering the received data to a
remote CoAP client via DVB-RCS2-compliant RCSTs. Thus,
we assume that the CoAP servers, which encapsulate available
resources, act as data producers. For instance, such an architec-
ture can be applied to low-altitude Unmanned Aerial Vehicle
(UAV) swarms, whose use is growing more and more common
in several application fields, such as the case of precision
agriculture [15]. A master UAV acts as a proxy, collecting

4A TCP-based CoAP version is in a draft IETF proposal available at
https://datatracker.ietf.org/doc/draft-ietf-core-coap-tcp-tls

Fig. 2: The CoAP-based scenario under consideration. The
dotted lines show a typical setup procedure at application
layer (steps 1 and 2) and the notification of new messages

via proxy (steps 3 and 4).

data from other UAVs in the same swarm and delivering data
via satellite to a remote data center.

We recall that CoAP is UDP-based, thus the ARQ protocol
must be implemented at the application layer, if reliable
delivery is expected. In Section IV-A, the CoAP settings in
use are described, while Section IV-B deepens the description
of the system configuration.

A. CoAP protocol implementation

We implemented the CoAP protocol as a Network Simulator
3 (NS-3) module, along with the observer pattern and the
proxying functionality. The numerical results in Section V are
based on the use of those extensions, thus the typical CoAP
request/response paradigm is substituted by a PUB/SUB-like
mechanism. The reason behind the latter choice is straightfor-
ward: removing the need for a request, the data delivery delay
is reduced, because fresh data are available to a client as soon
as they are generated or collected by a server. On high-delay
links, a push strategy can provide large gains with respect to
a pull one, for instance in terms of delivery delay.

B. System configuration

We consider a network composed by a Geosynchronous
(GEO) satellite and a large number of CoAP servers, con-
nected to CoAP proxies; each proxy is connected to a RCST
(see Figure 2). It is worth to underline here that a single
proxy (instead of multiple ones) can be used if a single
network is desired; multiple proxies are to be used if separated
networks are required. In Figure 2, we refer to the more

general case with multiple separated networks. CoAP servers
produce M2M/IoT-like data that is delivered to a remote CoAP
client. If more clients were present on the remote side, a
connection per client would be opened, thus increasing the
contention level on the random access channel. Alternatively, a
receiving proxy can be placed on the remote side, too, in order
to have a single connection per sender proxy to the receiving
one. Thus, the scenario under consideration can be considered
as representative of both aforementioned cases, because the
CoAP client in Figure 2 can be substituted by a CoAP proxy,
then connected to multiple clients.

In the extensive simulations we ran, data sources begin the
transmission according to an exponentially distributed inter-
arrival time with parameter λ. The data payload length is ran-
domly drawn, with probability 1/i, from i Pareto distributions
with parameters xim > 0 and αi > 0, where i ∈ {1, 2, 3}.
The three distributions are here meant to represent small,
medium and large application M2M/IoT payload lengths, as
generated or collected by the server(s). More technically, each
CoAP server sends a burst of packets, then forwarded by the
proxy, which are packed into a bulk of DVB-RCS2 RA blocks,
according to the specifications of Waveform 145, reported
in Table I. A single timeslot can be used per RA block by
each RCST, according to typical configurations of DVB-RCS2
systems. The MAC protocol in use is Contention Resolution
Diversity Slotted ALOHA (CRDSA) [16], configured with 3
replicas. Time is slotted and each RA block is composed of
64 timeslots. The MAC queue length is set to an arbitrary
large value and both return and forward links are assumed
to be error-free. In the return link, collisions can occur, thus
retransmissions are triggered in order to ensure a reliable data
delivery. ACKs are assumed to be always correctly received.

V. PERFORMANCE EVALUATION

The scenario presented in the previous section is here
numerically evaluated and then compared to the MQTT-
based scenario in [3], which is sketched in Figure 3. In this
work, the length of the transmission windows of the CoAP
servers ranges into NSTART ∈ [1, 100]. Thanks to this,
we explore the possibility to reduce the completion time by
increasing NSTART . In the following, a Go-Back-N [17]
ARQ protocol, employing exponential backoff, is in use if
NSTART > 1. The following numerical results are based on
extensive simulation runs based on the use of S-NS3 [18], a
satellite network extension to NS-3 platform. The simulator
parameters have values as reported in Table I and a minimum
of 1000 data exchanges per scenario has been simulated, in
order to ensure statistical reliability.

In Figure 4, the completion time of CoAP and MQTT data
exchanges is visible, in presence of low/moderate load. The
completion time is plotted against an increasing number of
application packets sent per data exchange, as readable on the
x-axis. Seven increasing NSTART values have been selected

5The waveform specifications are drawn from Table A-1 ”Reference Wave-
forms for Linear Modulation Bursts” in [2].

Fig. 3: The MQTT-based scenario in use for comparison.
The dotted lines show a typical setup procedure at

application layer (step 1) and the notification of new
messages via broker (steps 2 and 3).

Name Value
RA scheme 3-CRDSA

RA blocks per superframe 1
RA block duration 13 [ms]

Timeslots per RA block 64
Gross slot size 188 [B]
Net slot size 182 [B]
Bandwidth 8012820 [Hz]

Roll off 0.2
Carrier spacing 0.3 [Hz]
Nominal RTT 0.52 [s]

Pareto distributions x1m = 931 [B]
x2m = 9532 [B]
x3m = 47663 [B]

α1 = α2 = α3 = 1.1

TABLE I: Simulator setup parameters

Protocol stack Avg. aggregated goodput
CoAP/UDP (NSTART = 1) 32.14 [KB/s]
CoAP/UDP (NSTART = 2) 40.46 [KB/s]
CoAP/UDP (NSTART = 3) 43.21 [KB/s]
CoAP/UDP (NSTART = 4) 45.58 [KB/s]
CoAP/UDP (NSTART = 5) 50.1 [KB/s]

CoAP/UDP (NSTART = 10) 57.1 [KB/s]
CoAP/UDP (NSTART = 100) 77.5 [KB/s]

MQTT/TCP 50.6 [KB/s]

TABLE II: Average aggregated goodput at MQTT broker or
at CoAP client/proxy in the scenarios under consideration

0 50 100 150 200 250

payload length [#application packets]

0

5

10

15

20

25

30

35

40

45

50

co
m

pl
et

io
n

tim
e

[s
]

CoAP (NSTART = 1)
CoAP (NSTART = 2)
CoAP (NSTART = 3)
CoAP (NSTART = 4)
CoAP (NSTART = 5)
CoAP (NSTART = 10)
CoAP (NSTART = 100)
MQTT

Fig. 4: Completion time of MQTT and CoAP data exchanges
per CoAP proxy/client or MQTT publisher.

NSTART Normalized MAC offered load
mean 25th p. 75th p.

1 0,0671 0,031 0,09
2 0,0820 0,047 0,11
3 0,0880 0,047 0,12
4 0,0929 0,048 0,12
5 0,1016 0,048 0,14
10 0,1161 0,062 0,15

100 0,1172 0,063 0,16

TABLE III: Normalized MAC offered load for increasing
NSTART values if CoAP is in use at the application layer

in the CoAP-based scenario: the use of a larger value provides
a lower completion time, as expected. Anyway, the latter is
valid only in presence of a low/medium traffic profile on the
RA channel, so that erasures due to collisions are unlikely
to occur. Table III reports the normalized MAC offered load
for each NSTART value and its 25th and 75th percentiles,
when λ−1 = 1 [s]. The collision rate is almost negligible for
the load intervals under consideration. A low/medium traffic
profile is used, in order to avoid congestion phenomena.

The default CoAP configuration (NSTART = 1) provides
a quite large completion time, even for small amounts of data,
sub-utilizing the available system resources. In case of larger
values, the completion time decreases and, for NSTART =
100, CoAP provides a lower completion time than MQTT. It
is worth underlining here that the Bandwidth-Delay Product
(BDP) of the satellite link is ≈ 40 CoAP packets; thus, when
NSTART = 100 and the burst length is larger than BDP,

backlogging is present.
The completion time of the MQTT-based scenario depends

on TCP6 congestion control algorithm; as the TCP congestion
window increases over time, the curve exhibits an almost linear
trend to a first approximation, in presence of a low collision
rate on RA channels.

If looking at the completion time, a comparable value is
obtained with a CoAP configuration with NSTART = 10.
Anyway, the different trends in the completion time provided
by MQTT and CoAP are clearly visible: in the first part,
the completion time in MQTT-based scenario increases faster
than in the CoAP-based scenario because of the small TCP
congestion window. As soon as TCP congestion window
increases because of larger payload lengths, the completion
time reduces accordingly.

Table II shows the average aggregated goodput at CoAP
client/proxy (see Figure 2), compared with the same at MQTT
broker (see Figure 3). Thanks to the lower overhead provided
by the CoAP/UDP stack, it outperforms the MQTT/TCP stack.
In fact, even if MQTT/TCP is approximately equivalent to
using CoAP/UDP with NSTART = 10, the larger overhead
reduces the achievable goodput w.r.t. the latter configuration,
as shown in Table II. Eventually, some considerations are in
order: in IoT/M2M scenarios, the use of CoAP can provide
some advantages over MQTT, because the length of the
transmission window can be set at the application level, as well
as the ARQ algorithm in use, thus providing a larger flexibility.
Furthermore, the CoAP-based protocol stack exhibits a lower
overhead, which is desirable in such application scenarios.

VI. CONCLUSIONS

This work focuses on a comparison between two of
the largely used IoT/M2M protocol stacks, based on the
use of CoAP and MQTT protocols, implementing the re-
quest/response and the PUB/SUB communications paradigm,
respectively. The PUB/SUB paradigm can bring large benefits
in satellite-based architectures, because of the reduction of
the delivery time thanks to the fact that fresh data are sent
to registered subscribers as soon they are produced. Because
of the latter, in this work, we investigated the use of the
CoAP protocol in conjunction with the so-called observer
pattern and the proxying functionality, in order to exploit
the advantages provided by the PUB/SUB paradigm, which
also provides a fairer comparison than relying on the default
CoAP implementation. A qualitative comparison is provided
in this work, together with some preliminary numerical results,
highlighting how the performance level provided by the use
of CoAP outperforms the one provided by MQTT on RA
satellite channels, and underlining the flexibility that easily
tunable settings at application layer provide w.r.t to lower layer
settings. Future work will focus on M2M/IoT communications
in presence of higher traffic rates, where the performance
provided by CoAP may still need further investigation.

6TCP NewReno (RFC 6582) is in use in this scenario.

ACKNOWLEDGMENTS

This work has been partially supported by the Tuscany re-
gion in the framework of SCIADRO project (FAR-FAS 2014),
and by SatNEx (Satellite Network of Experts) programme, IV
phase.

REFERENCES

[1] S. Tarkoma, Publish/Subscribe Systems: Design and Principles. Wiley,
2012.

[2] “Second generation, DVB-RCS2 Part2: Lower layers for satellite stan-
dard,” ETSI EN 301 545-2, 2012.

[3] M. Bacco, T. De Cola, G. Giambene, and A. Gotta, “Advances on elastic
traffic via M2M satellite user terminals,” in International Symposium on
Wireless Communication Systems (ISWCS), Aug. 2015.

[4] P. Bhave and P. Fines, “System Behavior and Improvements for M2M
Devices Using an Experimental Satellite Network,” in Region 10 Sym-
posium (TENSYMP), May 2015.

[5] S. Vassaki, G. T. Pitsiladis, C. Kourogiorgas, M. Poulakis, A. D.
Panagopoulos, G. Gardikis, and S. Costicoglou, “Satellite-based sensor
networks: M2M Sensor communications and connectivity analysis,”
in International Conference on Telecommunications and Multimedia
(TEMU), July 2014.

[6] L. Durkop, B. Czybik, and J. Jasperneite, “Performance evaluation of
M2M protocols over cellular networks in a lab environment,” in 18th
International Conference on Intelligence in Next Generation Networks
(ICIN), Feb. 2015.

[7] N. D. Caro, W. Colitti, C. K. Steenhaut, G. Mangino, and G. Re-
ali, “Comparison of two lightweight protocols for smartphone-based
sensing,” in IEEE 20th Symposium on Communications and Vehicular
Technology in the Benelux (SCVT), Nov. 2013.

[8] M. Collina, M. Bartolucci, A. Vanelli-Coralli, and G. E. Corazza,
“Internet of Things Application Layer Protocol Analysis over Error
and Delay prone Links,” in 7th Advanced Satellite Multimedia Systems
Conference and the 13th Signal Processing for Space Communications
Workshop (ASMS/SPSC), Sept. 2014.

[9] N. Celandroni, F. Davoli, E. Ferro, and A. Gotta, “On elastic traffic
via Contention Resolution Diversity Slotted Aloha satellite access,”
International Journal of Communication Systems, vol. 29, no. 3, pp.
522–534, 2016.

[10] A. Gotta, M. Luglio, and C. Roseti, “A TCP/IP satellite infrastructure for
sensing operations in emergency contexts,” Computer Networks, vol. 60,
pp. 147–159, 2014.

[11] M. Bacco, A. Gotta, C. Roseti, and F. Zampognaro, “A study on TCP
error recovery interaction with random access satellite schemes,” in
7th Advanced Satellite Multimedia Systems Conference (ASMS/SPSC)
(and 13th Signal Processing for Space Communications workshop), vol.
January, 2014, pp. 405–410.

[12] M. Bacco, T. De Cola, G. Giambene, and A. Gotta, “M2M Traffic via
Random Access Satellite links: Interactions between Transport and MAC
Layers,” arXiv preprint arXiv:1609.03387, 2016.

[13] M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, and R. Prasad, “Satellite
Communications Supporting Internet of Remote Things,” IEEE Internet
of Things Journal, vol. 3, pp. 113–123, 2016.

[14] M. Bacco, T. De Cola, and A. Gotta, “TCP New Reno over DVB-
RCS2 Random Access Links: Performance Analysis and Throughput
Estimation,” in Global Communications Conference (GLOBECOM),
2015 IEEE. IEEE, 2015, pp. 1–6.

[15] M. Bacco, E. Ferro, and A. Gotta, “UAVs in WSNs for agricultural
applications: An analysis of the two-ray radio propagation model,” in
SENSORS, 2014 IEEE. IEEE, 2014, pp. 130–133.

[16] E. Casini, R. De Gaudenzi, and O. R. Herrero, “Contention Resolution
Diversity Slotted ALOHA (CRDSA): An enhanced random access
scheme for satellite access packet networks,” Wireless Communications,
IEEE Transactions on, vol. 6, no. 4, pp. 1408–1419, 2007.

[17] H. Burton and D. Sullivan, “Errors and error control,” Proceedings of
the IEEE, vol. 60, no. 11, pp. 1293–1301, 1972.

[18] V. Hytönen, B. Herman, J. Puttonen, S. Rantanen, and J. Kurjenniemi,
“Satellite Network Emulation with Network Simulator 3,” in Ka and
Broadband Communications, Navigation and Earth Observation Con-
ference, 2014.

	I Introduction
	II Related Works
	III Typical IoT protocol stacks
	III-A MQTT protocol
	III-B CoAP protocol
	III-B1 Observer pattern
	III-B2 CoAP proxying

	III-C Transport protocols

	IV Scenario description
	IV-A CoAP protocol implementation
	IV-B System configuration

	V Performance Evaluation
	VI Conclusions
	References

